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Abstract 
 
This paper presents the introductory knowledge of stochastic processes for finance 
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[1] Continuous Function and Discontinuous Function 
 
[1.1] Function 
 
Definition 1.1 Function     A function  or  on  uniquely maps 
(relates) a set of input values  to a set of output values

: (f a f a→ ) :f A B→ R
a A∈ ( )f a B∈ . The domain of a 

function is the set A  on which a function is defined and the set of all actual outputs 
 is called the range of a function. ( )f a B∈

 
A function is a many-to-one mapping (i.e. not one-to-many mapping). For example, a 
function  is a one-to-one mapping, ( )f a a= 2( )f a a= −  is a two-to-one mapping except 
for , and 0a = ( ) sin(2 )f a aπ=  is a many-to-one mapping. 
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Figure 1.1: Examples of a function . : (f a f a→ )

)

 
[1.2] Left Limit and Right Limit of a Function 
 
Definition 1.2 Left limit and Right limit of a function     A function  on 

 has a left limit  at a point 
: (f a f a→

R ( )f b− a b=  if  approaches ( )f a ( )f b−  when  approaches 
 from the below (the left-hand side): 

a
b
 

lim ( ) ( )a b f a f b→ − = − . 
 
A function  on  has a right limit : (f a f a→ ) R ( )f b+  at a point a b=  if  
approaches  when  approaches b  from the above (right-hand side): 

( )f a
( )f b+ a

 
lim ( ) ( )a b f a f b→ + = + . 
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[1.3] Right Continuous Function and Right Continuous with Left Limit (RCLL) 
Function 
 
Definition 1.3 Right continuous function     A function  on  is said to be right 
continuous at a point  if it satisfies the following conditions: 

f R
a b=

 
(1)  is defined. In other words, a point b  is in the domain of a function .   ( )f b f
(2) Right limit of the function as a  approaches  from the above (right hand side) exists, b
      i.e. lim ( ) ( )a b f a f b→ + = + .  
(3) . ( ) ( )f b f b+ =
 
Definition 1.4 Right continuous with left limit (rcll) function     A function  on R  is 
said to be right continuous with left limit at a point 

f
a b=  if it satisfies the following 

conditions: 
 
(1)  is defined. In other words, a point b  is in the domain of a function .   ( )f b f
(2) Right limit of the function as a  approaches  from the above (right hand side) exists, b
      i.e. lim ( ) ( )a b f a f b→ + = + . Left limit of the function as a  approaches  from the b
      below (left hand side) exists, i.e. lim ( ) ( )a b f a f b→ − = − . 
(3) . ( ) ( )f b f b+ =
 
The above definitions imply that a rcll function is right continuous, but the reverse is not 
true. In other words, a rcll function is more restrictive than a right continuous function 
because a rcll function needs left limit. This point is illustrated in Figure 1.2.    

 
Figure 1.2: Relationship between rc function and rcll function.  
 
Consider a piecewise constant function defined as (illustrated in Figure 1.3): 
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0   if   1

( ) 1   if   1 <2
2   if   2 <3

a
f a

a

<⎧
⎪= ≤⎨
⎪ ≤⎩

a .                                            (1.1) 

 
The right limit at a point  is equal to the actual value of the function at a point1a = 1a = : 
 

(1 ) (1) 1f f+ = = , 
 
this means  is right continuous at a point f 1a = . But the left limit at a point  is not 
equal to the actual value of the function at a point

1a =
1a = : 

 
(1 ) 0 (1) 1f f− = ≠ = , 

 
this means  is not left continuous at a point f 1a = . Therefore, this function is right 
continuous with left limit. And the jump size is: 
 

(1 ) (1 ) 1 0 1f f+ − − = − = . 
 

 
Figure 1.3: Right continuous with left limit (rcll) function. 
 
[1.4] Left Continuous Function and Left Continuous with Right Limit (LCRL) 
Function 
 
Definition 1.5 Left continuous function     A function  on R  is said to be left   
continuous at a point  if it satisfies the following conditions: 

f
a b=

 
(1)  is defined. In other words, a point b  is in the domain of a function .   ( )f b f
(2) Left limit of the function as  approaches b  from the below (left hand side) exists, a
      i.e. lim ( ) ( )a b f a f b→ − = − . 
(3) . ( ) ( )f b f b− =
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Definition 1.6 Left continuous with right limit (lcrl) function     A function  on  is 
said to be left continuous with right limit at a point a

f R
b=  if it satisfies the following 

conditions: 
 
(1)  is defined. In other words, a point b  is in the domain of a function .   ( )f b f
(2) Right limit of the function as a  approaches  from the above (right hand side) exists, b
      i.e. lim ( ) ( )a b f a f b→ + = + . Left limit of the function as a  approaches  from the b
      below (left hand side) exists, i.e. lim ( ) ( )a b f a f b→ − = − . 
(3) . ( ) ( )f b f b− =
 
Consider a piecewise constant function defined as: 
 

                                                    
0   if   1

( ) 1   if   1 2
2   if   2 3

a
f a a

a

≤⎧
⎪= < ≤⎨
⎪ < ≤⎩

.                                            (1.2) 

 
The left limit at a point  is equal to the actual value of the function at a point1a = 1a = : 
 

(1 ) (1) 0f f− = = , 
 
this means  is left continuous at a point f 1a = . But the right limit at a point  is not 
equal to the actual value of the function at a point

1a =
1a = : 

 
(1 ) 1 (1) 0f f+ = ≠ = , 

 
this means  is not right continuous at a point f 1a = . Therefore, this function is left 
continuous with right limit. And the jump size is: 
 

(1 ) (1 ) 1 0 1f f+ − − = − = . 
 
[1.5] Continuous Function 
 
Definition 1.7 Continuous function     A function  on R  is said to be 
continuous at a point  if it satisfies the following conditions: 

: (f a f a→ )
a b=

 
(1)  is defined. In other words, a point b  is in the domain of a function .   ( )f b f
(2) Right limit of the function as a  approaches  from the above (right hand side) exists, b
      i.e. lim ( ) ( )a b f a f b→ + = + . Left limit of the function as a  approaches  from the b
      below (left hand side) exists, i.e. lim ( ) ( )a b f a f b→ − = − . 
(3) . ( ) ( ) ( )f b f b f b+ = − =
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In other words, a continuous function is a left and right continuous function which in turn 
means that a continuous function is the most restrictive among rc, rcll, and continuous 
functions. All the functions in Figure 1.1 are continuous.  
 

 
Figure 1.4: Illustration of a continuous function. 

 
Figure 1.5: Relationship between rc, rcll, and continuous functions.  
 
[1.6] Discontinuous Function 
 
Definition 1.8 Discontinuous function     A function  on  is said to be 
discontinuous at a point  (called a point of discontinuity) if it fails to satisfy being a 
continuous function. 

: (f a f a→ )

)

R
a b=

 
There are three different categories of points of discontinuities.  
 
Definition 1.9 A function with removable discontinuity (singularity)     A function 

 on R  is said to have a removable discontinuity at a point  if it 
satisfies the following conditions: 

: (f a f a→ a b=
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(1)  is defined or  is not defined.  ( )f b ( )f b
(2) Left limit lim ( ) ( )a b f a f b→ − = −  exists. Right limit lim ( ) ( )a b f a f b→ + = +  exists. 
(3) . ( ) ( ) ( )f b f b f b− = + ≠
 
This means that a removable discontinuity at a point a b=  looks like a dislocated point 
as shown by Figure 1.6 where the example is a function: 
 

5   if   3 
( )

5   if   3
a a

f a
a

− + ≠⎧
= ⎨ =⎩

. 

 
This function has a left limit 2 which is equal to the right limit at a point : 3a =
 

(3 ) (3 ) 2f f− = + = , 
 
but these limits are not equal to the actual value that this function takes at a point : 3a =
 

(3 ) (3 ) 2 (3) 5f f f− = + = ≠ = , 
 
which indicates that  is discontinuous at a point f a b= . 

 
Figure 1.6: Example of a removable discontinuity with the defined discontinuity 
point . (3) 5f =
 
Or, consider a function: 
 

2 25( )
5

af a
a
−

=
−

, 

 
which is undefined at a point . But its left limit and right limit exist and they are 
equal: 

5a =

 
(5 ) (5 ) 10f f− = + = . 
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Therefore, it is a function with removable discontinuity, too. 

 
Figure 1.7: Example of a removable discontinuity with the undefined discontinuity 
point . (5)f
 
Definition 1.10 A function with discontinuity of the first kind (jump discontinuity)     
A function  on  is said to have a jump discontinuity at a point a  if it 
satisfies the following conditions: 

: (f a f a→ ) R b=

 
(1)  is defined. In other words, a point b  is in the domain of a function .   ( )f b f
(2) Left limit  exists. Right limit ( )f b− ( )f b+  exists. 
(3) . ( ) ( )f b f b− ≠ +
 
Then, the jump is defined by the amount ( ) ( )f b f b+ − − . 
 
Consider a function:  
 

                                                      
1   if   1

( ) 0   if   1 
1   if   1

a
f a a

a

>⎧
⎪= =⎨
⎪− <⎩

.                                              (1.3) 

 
This function has a left limit -1 which is not equal to the right limit 1 at a point : 1a =
 

(1 ) 1 (1 ) 1f f− = − ≠ + = , 
 
and the jump size is: 
 

(1 ) (1 ) 1 ( 1) 2f f+ − − = − − = . 
 

 8



© 2005 Kazuhisa Matsuda   All rights reserved. 

 
Figure 1.8: Example of a jump discontinuity. 
 
Definition 1.11 A function with discontinuity of the second kind (essential 
discontinuity)     A function  on  is said to have an essential 
discontinuity at a point  if either (or both) of left limit 

: (f a f a→ ) R
a b= ( )f b−  or right limit ( )f b+   

does not exist. 
 
The typical example of an essential discontinuity given in most textbooks is the function: 
 

                                                
sin(1/ )   if   0

( )
0   if   0

a a
f a

a
≠⎧

= ⎨ =⎩
,                                          (1.4) 

 
which does not have both left limit ( )f b−  and right limit ( )f b+  as shown by Figure 1.9. 
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Figure 1.9: Example of an essential discontinuity. 
 
Figure 1.10 illustrates the relationship between rcll, continuous, and discontinuous 
functions.  
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Figure 1.10: Relationship between rcll, continuous, and discontinuous functions.  
 
[2] Stochastic Process 
 
A stochastic process is a collection of random variables: 
 

[0, ]( )t TX ∈ , 
 
where the index denotes time. Note that we are interested in the continuous time 
stochastic process where the time index takes any value in the interval  (or it 
could be an infinite horizon). Discrete time stochastic process can be defined using a 
countable index set : 

[0, ]t T∈

t∈N
 

( )tX ∈N . 
 
A stochastic process is defined on a filtered probability space [0, ]( , , )t T∈Ω PF  (see 
Appendix 1 and 2 for details) where Ω  is an arbitrary set and  is a probability measure 
on .  is called a filtration which is an increasing family of 

P
[0, ]t T∈F [0, ]t T∈F σ -algebras of a 

subset ofΩ  which satisfy for ∀ ≤ :   0 s t≤
 

s t⊆F F . 
 
Intuitively speaking, a filtration is an increasing information flow about  as time 
progresses.  

[0, ]( t TX ∈ )

 
We can alternatively state that a continuous time stochastic process is a random function: 
 

:[0, ]X T ×Ω→ R . 
 
After the realization of the randomnessω , a sample path of  is defined as: [0, ]( t TX ∈ )
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( ) :X tω → R  or ( ) : ( )tX t Xω ω→ . 

 
A stochastic process  is said to be nonanticipating with respect to the filtration 

 or -adapted if the value of 
[0, ]( t TX ∈ )

tF tF tX  is revealed at time t  for each [0,  ]t T∈ .  
 
[2.1] Convergence of Random Variables 
 
Definition 2.1 Pointwise convergence     Let ( )( )nX ω∈N  be a sequence of real valued 
random variables on a space ( ,  under a scenario (i.e. event or randomness), )Ω PF ω∈Ω . 
A sequence ( ( )nX )ω∈N  is said to converge pintwisely to a random variable X  if: 
 

lim ( )nn
X Xω

→∞
= . 

 
Pointwise convergence is the strongest notion of convergence because it requires 
convergence to a random variable X  for all scenarios (samples)ω∈Ω , i.e. even for 
those scenarios with zero probability.   
 
Definition 2.2 Almost sure convergence     Let ( )( )nX ω∈N  be a sequence of real valued 

random variables on a space ( ,  under a scenario, )Ω PF ω∈Ω . A sequence ( )( )nX ω∈N  is 
said to converge almost surely to a random variable X  if: 
 

( )lim ( ) 1nn
X Xω

→∞
= =P . 

 
Almost sure convergence is weaker than pointwise convergence since those samples 
ω∈Ω  with non convergence lim ( )nn

X Xω
→∞

≠  have zero probability: 

 

( ) ( )lim ( ) lim ( ) 1 0 1n nn n
X X X Xω ω

→∞ →∞
= + ≠ =P P + = . 

 
Almost sure convergence is used in the strong law of large numbers. Almost sure 
convergence implies convergence in probability which in turn implies convergence in 
distribution. 
 
Definition 2.3 Convergence in probability     Let ( )nX ∈N  be a sequence of real valued 

random variables on a space ( , . A sequence , )Ω PF ( )nX ∈N  is said to converge in 
probability to a random variable X  if for everyε +∈R : 
 

( )lim 0nn
X X ε

→∞
− > =P , 

 11



© 2005 Kazuhisa Matsuda   All rights reserved. 

 
or equivalently: 
 

( )lim 1nn
X X ε

→∞
− ≤ =P . 

 
Intuitively speaking, convergence in probability means that the probability of nX  getting 
closer to X  rises (and eventually converges to 1) as we take  larger and larger. 
Convergence in probability is used in the weak law of large numbers. Convergence in 
probability implies convergence in distribution. 

n

 
Definition 2.4 Convergence in mean square     Let ( )nX ∈N  be a sequence of real valued 

random variables on a space ( , . A sequence , )Ω PF ( )nX ∈N  is said to converge in mean 
square to a random variable X  if for everyε +∈R : 
 

( )2lim 0nn
E X X

→∞
− = . 

 
Convergence in mean square implies convergence in probability following Chebyshev’s 
inequality. 
 
Definition 2.5 Convergence in distribution (Weak convergence)     Let (  be a 

sequence of real valued random variables on a space
)nX ∈N

( , , )Ω PF . A sequence ( )  is 
said to converge in distribution to a random variable 

nX ∈N

X  if for z∈R : 
 

( ) ( )lim nn
X z X z

→∞
≤ = ≤P P . 

 
Loosely speaking, convergence in distribution means that only when we take sufficiently 
large n , the probability that nX  is in the interval [ ,  approaches the probability that ]a b
X  is in the interval [ , . Convergence in distribution is the weakest definition of 
convergence in the sense that it does not imply any other convergence but implied by all 
other notions of convergence listed above.   

]a b

 
[2.2] Law of Large Numbers and Central Limit Theorem 
 
Definition 2.6 Weak law of large numbers     Let 1 2, , 3X X X … be  random 
variables from a distribution with mean 

. .i i d
µ  and variance 2σ < ∞ . Define its sample mean 

as: 
 

1 2 ... n
n

X X XX
n

+ + +
= . 
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Then, the sample mean nX  converges in probability to the (population) meanµ : 
 

( )lim 0nn
X µ ε

→∞
− > =P , 

 
for any . Or equivalently: ε +∈R
 

( )lim 1nn
X µ ε

→∞
− < =P . 

 
Definition 2.7 Strong law of large numbers     Let 1 2 3, ,X X X … be  random 
variables from a distribution with mean

. .i i d
µ < ∞ . Define its sample mean as: 

 
1 2 ... n

n
X X XX

n
+ + +

= . 

 
Then, the sample mean nX  converges almost surely to the (population) mean µ : 
 

( )lim 1nn
X µ

→∞
= =P , 

 
for any .  ε +∈R
 
Definition 2.8 Central limit theorem     Let 1 2, , 3X X X … be  random variables 
from a distribution with mean

. .i i d
µ < ∞  and variance 2σ < ∞ . Define the sum of a sequence 

of random variables as: 
 

1 2 ...n nS X X X= + + + . 
 
We know the followings: 
 
                              [ ] [ ] [ ] [ ]1 2 ...n nE S E X X X nµ= + + = , 

[ ] [ ] [ ] [ ] 2
1 2 ...n nVar S Var X Var X Var X nσ= + + + = . 

 
Then, informally, the sum  converges in distribution to a normal distribution with 
mean 

nS
nµ  and variance 2nσ  as : n →∞

 
                   ( ) (lim nn

S b Y b
→∞

≤ = ≤P P )

( )2

22

1 1exp
22

b Y n
dY

nn

µ
σπ σ−∞

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∫ , 
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where Y  is a normal random variable, i.e. ( )2,Y N n nµ σ∼ .  
 
Formal central limit theorem is a standardization of the above informal one. Define a 
random variable nZ  as: 
 

n
n

S nZ
n
µ

σ
−

= . 

 
Then, nZ  converges in distribution to the standard normal distribution as : n →∞
 
                           ( ) ( )lim nn

Z b Z
→∞

≤ = ≤P P b  

21 1exp
22

b
Z dZ

π−∞

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫ , 

 
where Z  is the standard normal random variable, i.e. ( )0,1Z N∼ .  
 
[2.3] Inequalities 
 
Definition 2.9 Markov’s inequality     Let X  be a nonnegative random variable. Then, 
for anyb : +∈R
 

( ) [ ]E X
X b

b
≥ ≤P . 

 
Proof 
 

[ ] ( ) ( ) ( )
0 0

b

b
E X Xd X Xd X Xd X

∞ ∞
= = +∫ ∫ ∫P P P

≥

. 

 
This means: 
 

[ ] ( ) ( ) ( ) ( )
b b b

E X Xd X bd X b d X b X b
∞ ∞ ∞

≥ ≥ = =∫ ∫ ∫P P P P . 

 
Thus: 
 

[ ] ( )E X
X b

b
≥ ≥P . 

,  
 
Markov’s inequality provides an upper bound of the probability that a nonnegative 
random variable is greater than an arbitrary positive constant  by relating a probability 
to an expectation. A variant of Markov’s inequality is called Chebyshev’s inequality. 

b
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Definition 2.10 Chebyshev’s inequality     Let X  be a random variable on  (i.e. both 

 and ) with mean 
R

+R −R µ < ∞  and variance 2σ < ∞ . Then, for any : k +∈R
 

( )
2

2X k
k
σµ− ≥ ≤P . 

 
Proof 
 
Start with Markov’s inequality: 
 

( ) [ ]E X
X b

b
≥ ≤P

. 
 
Replace a random variable X  with a random variable 2(X )µ−  and  with : b 2k
 

( )
2 2

2 2
2 2

( )
( )

E X
X k

k k
µ σµ

⎡ ⎤−⎣ ⎦− ≥ ≤ =P , 

 
which in turn indicates: 
 

                                                      ( )
2

2X k
k
σµ− ≥ ≤P , 

( ) 2

1X k
k

µ σ− ≥ ≤P . 

,  
 
Chebyshev’s inequality provides bounds of random variables from any distributions as 
long as their means and variances are known. For example, when 2k = : 
 

                                            ( ) 12
4

X µ σ− ≥ ≤P  

                                            ( ) 12 , 2
4

X Xµ σ µ σ− + ≥ − ≥ ≤P  

                                            ( ) 12 , 2
4

X Xµ σ µ σ≤ − ≥ + ≤P  

                                            ( ) 32 2
4

Xµ σ µ σ− ≤ ≤ + ≥P . 

 
This tells us that the probability that any random variable lies within two standard 
deviations is at least .75.  
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Definition 2.11 Cauchy-Schwarz’s inequality     Let X  and Y  be jointly distributed 
random variables on R  with each having finite variance. Then: 
 

( )2 2 2[ ] [ ] [ ]E XY E X E Y≤ . 
 
Proof 
 
Omitted. 
 
[3] Putting Structure on Stochastic Processes 
 
The purpose of any mathematical (statistical) modeling regardless of the field is to fit less 
complicated models to the highly complicated real world phenomena as accurate as 
possible. Mathematical models are less complicated in the sense that they make some 
simplifying assumptions or put some simplifying structures (restrictions) on the real 
world phenomena for the purpose of gaining tractability. There are some popular 
dependence structures put on stochastic processes which mathematicians have developed 
and used for years.    
 
[3.1] Process with Independent and Stationary Increments: Imposing Structure on a 
Probability Measure  P
 
Before giving the definition of processes with independent and stationary increments, we 
must know the basics. 
 
Definition 3.1 Conditional probability     The conditional probability of an arbitrary 
event A  given an event with positive probability B  is: 
 

( )( )
( )

A BA B
B

=
∩PP

P
. 

 
When , ( ) 0B =P ( )A BP  is undefined. 
 
Definition 3.2 Statistical (Stochastic) independence     Two arbitrary events A  and B  
are said to be independent, if and only if: 

 
( ) ( ) ( )A B A B=∩P P P . 

 
This definition of independence has two advantages. Firstly, it is symmetric in A  and B . 
In other words, an event A ’s independence of an event B  implies an event B ’s 
independence of an event A . Secondly, this definition holds even when an event B  has 
zero probability, i.e. .  ( ) 0B =P
 
When two arbitrary events A  and B  are independent, from the definition of a 
conditional probability: 
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( ) ( )( ) (

( )
A BA B A

B
= =
P PP P
P

) . 

 
It is important to note that this is a result of statistical independence and not the 
definition. This is because the above equation is not true (i.e. undefined) when ( ) 0B =P  
and it is not symmetric in that ( ) ( )A B =P P A  does not necessarily imply ( ) (B A B=P P ) .  
 
Definition 3.3 Mutual statistical independence     Arbitrary events , , …,  are 
said to be mutually independent, if and only if: 

1A 2A nA

 
1 2 1 2( ... ) ( ) ( )... ( )n nA A A A A A=∩ ∩ ∩P P P P

)

. 
 
Definition 3.4 Processes with Independent and Stationary Increments     A stochastic 
process (  with values in  on a filtered probability space [0, ]t TX ∈ R [0, ]( , , )t T∈Ω PF  is said 
to be a process with independent and stationary increments if it satisfies the following 
conditions: 
 
(1) Its increments are independent. In other words, for 1 2 ... nt t t< < < : 

 
2 1 3 2 1 2 1 3 2

( ... ) ( ) ( )... ( )
n n n nt t t t t t t t t t t tX X X X X X X X X X X X

− −
− − − = − − −∩ ∩ ∩P P P

1
P . 

 
(2) Its increments are stationary: i.e. for h +∀ ∈R , t h tX X+ −  has the same distribution 
as hX . In other words, the distribution of increments does not depend on  (i.e. temporal 
homogeneity).  

t

      
Consider an increasing sequence of time 1 20 ... nt t t t u< < < < < < < ∞  where t  is the 
present. As a result of independent increments condition: 
 
                                      

1 2 10( , ,..., )
nu t t t t t tX X X X X X X X− − − −P  

                                  1 2 1

1 2 1

0

0

( , ,..., )
( , ,..., )

n

n

u t t t t t t

t t t t t

X X X X X X X X
X X X X X X

− − − −
=

− − −

∩P
P

 

1 2 1

1 2 1

0

0

( ) ( , ,..., )
( , ,..., )

n

n

u t t t t t t

t t t t t

X X X X X X X X
X X X X X X

− − − −
=

− − −

P P
P

 

                                  ( )u tX X= −P , 
 
which means that there is no correlation (probabilistic dependence structure) on the 
increments among the past, the present, and the future.  
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For example, independent increments condition means that when modeling a log stock 
price l  as an independent increment process, the probability distribution of a log 
stock price in year 2005 – 2006 is independent of the way the log stock price increment 
has evolved over the years (i.e. stock price dynamics), i.e. it doesn’t matter if this stock 
crushes or soars in year 2004 – 2005):  

n tS

 
2006 2005 2003 2002 2004 2003 2005 2004(ln ln ..., ln ln , ln ln , ln ln )S S S S S S S S− − − −P  

              . 2006 2005(ln ln )S S= −P
 
Using the simple relationship ( )u u t tX X X X≡ − +  for an increasing sequence of time 

: 1 20 ... nt t t t u< < < < < < < ∞
 

1 2 1 20 0( , , ,..., , ) (( ) , , ,..., , )
n nu t t t t u t t t t t tX X X X X X X X X X X X X X= − +P P  

                                                             ( )u tX X= P , 
 
which holds because an increment ( )u tX X−  is independent of tX  by definition and the 
value of tX  depends on its realization ( )tX ω . This is a strong probabilistic structure 
imposed on a stochastic process because this means that the conditional probability of the 
future value uX  depends only on the previous realization ( )tX ω  and not on the entire 
past history of realizations

1 20 , , ,..., ,
nt t t tX X X X X  (i.e. called Markov property which is 

discussed soon).   
 
Although this condition seems too strong, it imposes a very tractable property on the 
process. Because if two variables X  and Y  are independent: 
 
                                           [ ] [ ] [ ]E XY E X E Y= , 
                                           [ ] [ ] [Var X Y Var X Var Y ]+ = + , 

[ , ] 0Cov X Y =  (i.e. [ , ] 0Corr X Y = ). 
 
Stationary increments condition means that the distributions of increments t h tX X+ −  do 
not depend on the time , but they depend on the time-distance  of two observations (i.e. 
interval of time). In other words, the probability density function of increments does not 
change over time. For example, if you model a log stock price l  as a process with 
stationary increments, the distribution of increment in year 2005 – 2006 is the same as 
that in year 2050 – 2051: 

t h

n tS

 
2006 2005 2051 2050ln ln   ln lnS S d S S− − . 
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There is no doubt that the above independent and stationary increments conditions 
impose a strong structure on a stochastic process ( )[0, ]t TX ∈ , as a result of these 
restrictions, the mean and variance of the process is tractable: 
 
                                                       0 1[ ]tE X tµ µ= + , 

2 2
0 1[ ]tVar X tσ σ= + , 

 
where 0 0[ ]E Xµ = , 1 1 0[ ]E Xµ µ= − 2 2

0 0 0[( ) ]E Xσ µ= − 2
0, , and 2 2

1 1 1[( ) ]E Xσ µ σ= − − . 
 
[3.2] Martingale: Structure on Conditional Expectation 
 
[3.2.1] Definition of Martingale 
 
Originally, the word ‘martingale’ comes from a French acronym of a gambling strategy. 
Imagine a coin flip gamble in which you win if a head turns up and you lose if a tail turns 
up. Martingale strategy requires a gambler to double his bet after every loss. Following 
martingale strategy, a gambler can recover all the losses he made and end up with an 
initial amount of his wealth plus an initial bet. Table 3.1 gives a sample path of a 
martingale strategy in which a gambler initially owns $200 of wealth, start betting with a 
stake of $2, and due to his bad luck his first win comes at the seventh trial. As you can 
see, he basically ends up where he started, i.e. his initial wealth of $200 (plus an initial 
bet of $2). Thus, a martingale strategy tells that after gambling many hours a gambler 
gains nothing (loses nothing) and his wealth remains constant on average.      
 

Table 3.1 Martingale Gambling Strategy 
Trial 0 1 2 3 4 5 6 7 
Result  Loss Loss Loss Loss Loss Loss Win 
Bet  $2 $4 $8 $16 $32 $64 $128 
Net Gain  -$2  -$4 -$8 -$16 -$32 -$64 +$128 
Wealth $200 $198 $194 $186 $170 $138 $74 +$202 
 
In probability theory, a stochastic process is said to be a martingale if its sample path has 
no trend. Formally, a martingale is defined as the follows. 
 
Definition 3.5 Martingale     Consider a filtered probability space [0, ]( , , )t T∈Ω PF . A rcll 
stochastic process  is said to be a martingale with respect to the filtration  
and under the probability measure P  if it satisfies the following conditions: 

[0, ]( )t t TX ∈ tF

 
(1) tX  is nonanticipating. 
(2) [ ]tE X < ∞  for . Finite mean condition.   [0,  ]t∀ ∈ T

(3) [ ]u t tE X X=�F  for . u t∀ >
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In other words, if a stochastic process is a martingale, then, the best prediction of its 
future value is its present value. Note that the definition of martingale makes sense only 
when the underlying probability measure  and the filtration  have been 
specified.  

P [0, ]( )t t T∈F

 
The fundamental property of a martingale process is that its future variations are 
completely unpredictable with the filtration :  tF
 

0,  [ ] [ ] [ ] 0t u t t t u t t t t tu E x x E x E x x x+ +∀ > − = − = − =F F F . 
 
Finite mean condition is necessary to ensure the existence of the conditional expectation. 
 
[3.2.2] An Example of Continuous Martingale: A Standard Brownian Motion  
 
Let  be a standard Brownian motion process defined on a filtered probability 
space . Then,  is a continuous martingale with respect to the 
filtration  and the probability measure .  

[0, )( tB∈ ∞ )
)

)

[0, )( , , )t∈ ∞Ω F P [0, )( tB∈ ∞

[0, )t∈ ∞F P
 
Proof 
 
By definition,  is a nonanticipating process (i.e. [0, )( tB∈ ∞ [0, )t∈ ∞F - adapted process) with 

the finite mean [ ] 0tE B = < ∞  for [0, )t∀ ∈ ∞ . For 0 t u∀ ≤ ≤ < ∞ : 
 

                                                          
u

u t t vB B dB= + ∫ .                                                   

 
Using the fact that a Brownian motion is a nonanticipating process, i.e. [ ]t t tE B B=F : 
 

[ ] [ ] [ ] [ ]
u

u t t u t t t t v tt
E B B E B E B E B dB− = − = + −∫F F F F tB  

                        [ ] [ ] [ ]
u

u t t t t v tt
E B B E B E dB B− = + −∫F F F t  

                        [ ] 0u t t t tE B B B B− = + −F 0= , 
  
or in other words: 
 

[ ] [ ] [ ] [ ]
u u

u t t v t t t v t tt t
E B E B dB E B E dB B= + = + = +∫ ∫� � � �F F F F 0  

                     [ ]u t tE B B=�F , 
 
which is a martingale condition. 

,  
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Let  be a standard Brownian motion process defined on a filtered probability 
space . Then, a Brownian motion with drift 

[0, )( tB∈ ∞ )
)[0, )( , , )t∈ ∞Ω F P [0, ) [0, )( ) (t tX t Bµ σ∈ ∞ ∈ ∞≡ +  is 

not a continuous martingale with respect to the filtration [0, )t∈ ∞F  and the probability 
measure .  P
 
Proof 
 
By definition,  is a nonanticipating process (i.e. [0, )( tX ∈ ∞ ) [0, )t∈ ∞F - adapted process) with 
the finite mean [ ] [ ]t tE X E t B tµ σ µ= + = < ∞  for [0, )t∀ ∈ ∞  andµ ∈R . For 

: 0 t u∀ ≤ ≤ < ∞
 

                                                         
u

u t t
X X dX= + v∫ .                                      

 
Using the fact that a Brownian motion with drift is a nonanticipating process, i.e. 

[ ]t t tE X X=F : 
 

[ ] [ ] [ ] [
u u

u t t v t t t v tt t
E X E X dX E X E dX= + = +∫ ∫� � �F F F ]�F  

                          [ ] (u t tE X X u tµ= + −�F )

)t

, 
 
which violates a martingale condition.  

,  
 
But one way to transform nonmartingales into martingales is to make the process 
driftless. In other words, eliminating the trend of the process which is sometimes called a 
detrending. Consider the following example. 
 
A detrended Brownian motion with drift defined as: 
 

[0, ) [0, ) [0, )( ) ( ) (t tX t t B t Bµ µ σ µ σ∈ ∞ ∈ ∞ ∈ ∞− ≡ + − ≡ , 
 
is a continuous martingale with respect to the filtration [0, )t∈ ∞F  and the probability 
measure .  P
 
Proof 
              
For : 0 t u∀ ≤ ≤ < ∞
 

                        [ ] [( ) (
u u

u t t vt t
E X u E X t dX dvµ µ µ− = − + −∫ ∫� �F F) ]t  
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[ ] [( ) ] [( ) ]
u u

u t t t vt t
E X u E X t E dX dvµ µ µ− = − + −∫ ∫� �F F t�F  

                         [ ] ( ) (u t tE X u X t u t u tµ µ µ µ− = − + − −�F )−  

                         [ ]u t tE X u X tµ µ− = −�F , 
 
which satisfies a martingale condition.  

,  
 
[3.2.3] Martingale Asset Pricing 
 
Most of financial asset prices are not martingales because they are not completely 
unpredictable and most financial time series have trends. Consider a stock price process 

 on a filtered probability space { ;0 }tS t T≤ ≤ [0, ]( , , )t T∈Ω PF  and let  be the risk-free 
interest rate. In a small time interval

r
∆ , risk-averse investors expect  to grow at some 

positive rate. This can be written as under actual probability measure : 
tS
P

 
[ ]t tE S S+∆ >P F t . 

 
This means that a stock price  is not martingale under  and with respect to . To be 
more precise, risk-averse investors expect  to grow at a rate greater than  because a 
stock is risky: 

tS P tF

tS r

 
[ ]r

t tE e S S− ∆
+∆ >P F t . 

 
The stock price discounted by the risk-free interest rate r

te S− ∆
+∆  is not martingale under 

 and with respect to .  P tF
 
How can we convert a discounted stock price r

te S− ∆
+∆  into a martingale? First approach 

is to eliminate the trend. The trend in this case is the risk premium π  which risk-averse 
investors demand for bearing extra amount of risk. If we can estimateπ  correctly, a 
discounted stock price  can be converted into a martingale by detrending:   r

te S− ∆
+∆

 
( )[ ] [r r

t t t tE e e S E e S Sπ π− ∆ − ∆ − + ∆
+∆ +∆ ] t= =P PF F . 

 
But this approach involves the rather difficult job of estimating the risk premium π  and 
is not used in quantitative finance. Martingale asset pricing uses the second approach to 
convert non-martingales into martingales by changing the probability measure. We will 
try to find an equivalent probability measure  (called risk-neutral measure) under 
which a discounted stock price becomes martingale: 

Q

 
[ ]r

t tE e S S− ∆
+∆ t=Q F . 
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[3.2.4] Submartingales and Supermartingales 
 
Definition 3.6 Submartingale     Consider a filtered probability space . A 
rcll stochastic process  is said to be a submartingale with respect to the filtration 

 and under the probability measure  if it satisfies the following conditions: 

[0, ]( , , )t T∈Ω PF

[0, ]( )t t TX ∈

tF P
 
(1) tX  is nonanticipating. 
(2) [ ]tE X < ∞  for . Finite mean condition.   [0,  ]t∀ ∈ T

(3) [ ]u t tE X X≥�F  for . u t∀ >
 
Intuitively, a submartingale is a stochastic process with a positive (upward) trend. A 
submartingale gains or grows on average as time progresses. 
 
Definition 3.7 Supermartingale     Consider a filtered probability space . A 
rcll stochastic process  is said to be a supermartingale with respect to the 
filtration  and under the probability measure  if it satisfies the following conditions: 

[0, ]( , , )t T∈Ω PF

[0, ]( )t t TX ∈

tF P
 
(1) tX  is nonanticipating. 
(2) [ ]tE X < ∞  for . Finite mean condition.   [0,  ]t∀ ∈ T

(3) [ ]u t tE X X≤�F  for . u t∀ >
 
Intuitively, a supermartingale is a stochastic process with a negative (downward) trend. A 
supermartingale loses or declines on average as time progresses. 
 
By definition, any martingale is a submartingale and a supermartingale.  
 

 
Figure 3.1: Relationship among martingales, submartingales, and supermartingales. 
 
[3.3] Markov Processes: Structure on Conditional Probability 
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This section gives a brief introduction to a class of stochastic processes called Markov 
processes which impose a restriction on the conditional probabilities. This differs from 
martingales which impose a structure on conditional expectations.  
 
[3.3.1] Discrete Time Markov Chains 
 
Definition 3.8 Discrete time Markov chain     Consider a discrete time stochastic 
process (  (i.e. ) defined on a filtered probability space  
which takes values in a countable or a finite set 

)n nX ∈N 0,1, 2,...n = ( , , )n∈Ω N PF
E  called a state space of the process. A 

realization nX  is said to be in state i E∈  at time n  if nX i= . An E -valued discrete time 
Markov chain is a stochastic process which satisfies for n∀ ∈N  and ,i j E∀ ∈ : 
 

1 0 1 2 1( , , ,..., ) ( )n n nX j X X X X i X j X+ += = = =P P n i= . 
 
This is called a Markov property. Markov property means that the probability of a 
random variable 1nX +  at time  (tomorrow) being in a state 1n+ j  conditional on the 
entire history of the stochastic process 0 1 2( , , ,..., )nX X X X  is equal to the probability of a 
random variable 1nX +  at time  (tomorrow) being in a state 1n+ j  conditional only on the 
value of a random variable at time  (today). In other words, the history (sample path) of 
the stochastic process 

n
0 1 2( , , ,..., )nX X X X  is of no importance in that the way this 

stochastic process evolved or the dynamics 1 0 2 1( , ,...)X X X X− −  does not mean a thing 
in terms of the conditional probability of the process. The only factor which influences 
the conditional probability of a random variable 1nX +  at time 1n+  (tomorrow) is the state 
of a random variable at time  (today). n
 
The probability 1( n nX j X+ = =P )i  which is a conditional probability of moving from a 
state i  at time  to a state n j  at time 1n+  is called a one step transition probability. In 
the general cases, transition probabilities are dependent on the states and time such 
that : m n∀ ≠ ∈N
 

1 1( ) (n n m mX j X i X j X+ += = ≠ = =P P )i . 
 
When transition probabilities are independent of time , discrete time Markov chains are 
said to be time homogeneous or stationary. 

n

 
Definition 3.9 Time homogeneous (stationary) discrete time Markov chain     
Consider a discrete time stochastic process ( )n nX ∈N  (i.e. 0,1, 2,...n = ) defined on a filtered 
probability space (  which takes values in a countable or a finite set , , )n∈Ω N PF E  called a 
state space of the process. A realization nX  is said to be in state i E∈  at time  n
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if nX i= . An E -valued time homogeneous discrete time Markov chain is a stochastic 
process which satisfies for  andn∀ ∈N ,i j E∀ ∈ : 
 
                           1 0 1 2 1( , , ,..., ) ( )n n nX j X X X X i X j X+ += = = =P P n i=  

                                                                                 1 0( )X j X i= = =P  

                                                                                 ( )j i= P . 
 
In other words, transition probabilities do not depend on time  and only depend on 
transition states from i  to

n
j . A matrix of transition probabilities 

,
( )

i j E
j i

∈
=P P  is called 

a transition probability matrix: 
 

,

(0 0)  (1 0)  (2 0)  (3 0)  

(0 1)   (11)  (2 1)   (3 1)  

(0 2)  (1 2)  (2 2)  (3 2)  ( )
                                  

(0 )   (1 )   (2 )   (3 )  
                           

i j E
j i

i i i i

∈
=

"

"

"
# # # #

"
# # #

P P P P
P P P P
P P P PP

P P P P
       #

. 

 
Transition probabilities ( )j iP  satisfy the following conditions: 
 
(1) ( ) 0j i ≥P  for . ,i j E∀ ∈

(2) ( ) 1
j E

j i
∈

=∑ P  for . i E∀ ∈

 
Condition (2) guarantees the occurrence of a transition including a case in which the state 
remains unchanged. 
 
Proposition 3.1 Defining a discrete time Markov chain     An E -valued general 
discrete time Markov chain ( )n nX ∈N  is completely defined if it satisfies the following 
conditions: 
 
(1) All transition probabilities 1 1( n n n nX i X i+ + )= =P  are known.          
(2) The probability distribution of the initial (i.e. time 0) state of the Markov chain 

 is known. 0 0( )X i= =P 0P
 
Proof 
 
Consider obtaining the joint probability distribution of an E -valued general discrete time 
Markov chain . From the definition of a conditional probability: ( )n nX ∈N
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0 0 1 1 2 2( , , ,..., )n nX i X i X i X i= = = =P  

0 0 1 1 2 2 1 1 0 0 1 1 2 2 1 1( , , ,..., ) ( , , ,..., )n n n n n nX i X i X i X i X i X i X i X i X i− − −= = = = = = = = = =P P − . 
 
Since  is a Markov chain: ( )n nX ∈N

 
0 0 1 1 2 2 1 1( , , ,..., )n n n nX i X i X i X i X i− −= = = = =P 1 1( )n n n nX i X i− −= = =P 1( )n ni i −= P . 

 
Joint probability can be calculated as: 
 
   0 0 1 1 2 2( , , ,..., )n nX i X i X i X i= = = =P  
                      1 0 0 1 1 2 2 1( ) ( , , ,..., )n n n ni i X i X i X i X i− −= = = =P P 1−=  

1 1 1 0 0 1 1 2 2 2 2( ) ( , , ,..., )n n n n n ni i X i X i X i X i X i− − − −= = = = =P P −=  
                          0 0 1 1 2 2 2 2( , , ,..., )n nX i X i X i X i− −× = = = =P  
                      1 1 2 0 0 1 1 2 2 2( ) ( ) ( , , ,..., )n n n n n ni i i i X i X i X i X i− − − − −= = = =P P P 2=  

                      1 1 2 2 1 1 0( ) ( )... ( ) ( )n n n ni i i i i i i i− − −= P P P P 0P  
,  

 
Consider a transition probability of a time homogeneous discrete time Markov chain 

 from a state i  at time k  (i.e. ( )n nX ∈N kX i= ) to a state j  at time k n+ . This is called a 
-step transition probability and expressed as: n

 
( )

0( ) ( ) n
k n k nX j X i X j X i j+ = = = = = =P P ( )iP . 

 
Proposition 3.2  step transition probability matrix (a special case of Chapman-
Kolmogorov equation)     Consider a time homogeneous discrete time Markov chain 

 defined on a filtered probability space (

n

( )n nX ∈N , , )n∈Ω N PF  which takes values in a 
countable or a finite set E  called a state space of the process. Then, its -step transition 
probability matrix from a state  at time  (i.e. 

n
i k kX i= ) to a state j  at time  is 

given by for  and : 
k n+

,k n∀ ∈N ,i j E∀ ∈
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )n n y z y z
v E v E

j i j i v i j v v i j
∈ ∈

= = =∑ ∑P P P P P P v . 
 
where  and y z n+ = (0) ( )j iP  is defined as: 
 

(0) 1   for   
( )

0   for   
i j

j i
i j
=⎧

= ⎨ ≠⎩
P . 

 
Proof 
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When : 1n =
 

(1) ( ) ( )j i j=P P i . 
 
When : 2n =
 

(2) ( ) ( ) ( )
v E

j i v i
∈

= j v∑P P P . 
 
By induction: 
 

( 1) ( ) ( ) (n n
v E

)j i v i+
∈

= j v∑P P P . 
,  

 
One interesting topic about this  step transition probability matrix is its asymptotic 
behavior as . As  becomes larger, the initial state i  becomes less important and 
in the limit as , 

n
n →∞ n

n →∞ ( )n j iP  is independent of . We recommend Karlin and Taylor 
(1975) for more details. 

i

 
[3.3.2] Markov Processes 
 
Definition 3.10 Markov Processes (Continuous time Markov chains)     Consider a 
continuous time stochastic process ( )[0, ]t TX ∈  defined on a filtered probability space 

 which takes values in  (for simplicity) called a state space of the 

process. (  is said to be a time homogeneous Markov process if for  and 
: 

[0, ]( , , )t T∈Ω PF N

)[0, ]t TX ∈ h +∀ ∈R
,i j∀ ∈N

 
( ) ( ) ( )h t h t t h tj i X j X j X+ += = = =F�P P P i= . 

 
Markov property means that the probability of a random variable t hX +  at time t h  
(tomorrow) being in a state 

+
j  conditional on the entire history of the stochastic process 

[0, ] [0, ]t tX≡F  is equal to the probability of a random variable t hX +  at time t h  
(tomorrow) being in a state 

+
j  conditional only on the value of a random variable at time 

 (today). In other words, the history (sample path) of the stochastic process  is of no 
importance in that the way this stochastic process evolved or the dynamics does not mean 
a thing in terms of the conditional probability of the process.  

t [0, ]tF

 
[4] Sample Path Properties of Stochastic Processes 
 
[4.1] Continuous Stochastic Process 
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In this section we give the formal definition of the continuity of a sample path of a 
stochastic process which we believe is underrated in the literature. Note that the 
continuity of path and continuity of time are different subjects. In other words, a 
continuous time stochastic process does not imply continuous stochastic process.  
 
There are different notions of continuity of sample paths which use different notions of 
convergence of random variables we saw in section 1. 
 
Definition 4.1 Continuous in mean square     A real valued stochastic process  
on a filtered probability space  is said to be continuous in mean square if 
for : 

[0, ]( )t TX ∈

[0, ]( , , )t T∈Ω PF
[0,  ]t T∀ ∈

 
2lim [ ] 0s ts t

E X X
→

− = . 

 
Continuity in mean square implies continuity in probability following Chebyshev’s 
inequality. 
 
Definition 4.2 Continuous in probability     A real valued stochastic process  
on a filtered probability space  is said to be continuous in probability if 
for  and every : 

[0, ]( )t TX ∈

[0, ]( , , )t T∈Ω PF

[0,  ]t∀ ∈ T ε +∈R
 

( )lim 0s ts t
X X ε

→
− > =P , 

 
or equivalently: 
 

( )lim 1s ts t
X X ε

→
− ≤ =P . 

 
Intuitively speaking, continuity in probability means that the probability of sX  getting 
closer to tX  rises (and eventually converges to 1) as s  approaches . t
 
For example, a Brownian motion process is continuous in mean square and continuous in 
probability although its proof is not that easy (refer to any stochastic process textbook for 
this). But it turns out that the above definitions of continuity are too loose because a 
Poisson process can be proven to be continuous in mean square and probability (proof is 
omitted). Therefore, a more strict definition of continuity is used for the definition of a 
continuity of a sample path of a stochastic process. 
 
Definition 4.3 Continuous stochastic process     A real valued nonanticipating 
stochastic process  on a filtered probability space [0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω PF  is said to be 
(almost surely) continuous if a sample path of the process [0, ]( (t TX ))ω∈  is almost surely a 
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continuous function for . In other words, a sample path of the process [0,  ]t∀ ∈ T
))[0, ]( (t TX ω∈  satisfies for : [0,  ]t T∀ ∈

 
(1) Right limit of the process as s  approaches t  from the above (right hand side) exists, 
      i.e.

,
lim s ts t s t

X X +→ >
= . Left limit of the process as  approaches  from the below s t

      (left hand side) exists, i.e.
,

lim s ts t s t
X X −→ <

= . 

(2) t t tX X X+ −= = . 
 
This means that a continuous stochastic process is a right continuous and left continuous 
stochastic process. 
 
[4.2] Right Continuous with Left Limit (RCLL) Stochastic Process 
 
Definition 4.4 Right continuous with left limit (rcll) stochastic process     A real 
valued nonanticipating stochastic process  on a filtered probability space 

 is said to be a rcll stochastic process if for
[0, ]( t TX ∈ )

[0, ]( , , )t T∈Ω PF [0,  ]t T∀ ∈ : 
 
(1) Right limit of the process as s  approaches t  from the above (right hand side) exists, 
      i.e.

,
lim s ts t s t

X X +→ >
= . Left limit of the process as  approaches  from the below s t

      (left hand side) exists, i.e.
,

lim s ts t s t
X X −→ <

= . 

(2) t tX X+ = . 
 
In other words, only the right continuity is needed (this allows jumps). Apparently, a 
continuous stochastic process implies a rcll stochastic process (but the reverse is not 
true). What we encounter in finance literatures are all rcll stochastic processes (for the 
modeling of stock price dynamics. Rcll processes include jump discontinuous process 
such as Poisson processes and infinite activity Lévy processes. Essentially discontinuous 
processes are useless in finance because they don’t have either (or both) of the left limit 

tX −  or the right limit tX + .   
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Figure 4.1: Relationship between rcll, continuous, and jump discontinuous 
processes.  
 

 
A) A continuous stochastic process.              B) A jump discontinuous stochastic process. 
Figure 4.2: Examples of rcll stochastic processes. 
 
Suppose  is a discontinuity point. The jump of the stochastic process at  is defined as:  t t
 

t t tX X X −∆ = − . 
 
A rcll nonanticipating stochastic process  can have a finite number of large 
jumps and countable number (possibly infinite) of small jumps. 

[0, ]( t TX ∈ )

]

 
[4.3] Total Variation 
 
Definition 4.5 Total variation of a function     Let  be a bounded function defined 
in the interval[ , : 

( )f x
]a b

 
( ) :[ , ]f x a b → R . 

 
The interval can be infinite, i.e.[ ,−∞ ∞ . Consider partitioning the interval [ ,  with the 
points: 

]a b
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0 1 2 1... n na x x x x x b−= < < < = . 

 
Then, the total variation of a function  is defined by: ( )f x
 

1
1

( ) sup ( ) ( )
n

i i
i

T f f x f x −
=

= −∑ , 

 
where sup indicates a supremum (least upper bound).  
 
Definition 4.6 Function of finite variation     A function  on the interval [ ,  is 
said to be a function of finite variation, if its total variation on the interval [ ,  is finite: 

( )f x ]a b
]a b

 

1
1

( ) sup ( ) ( )
n

i i
i

T f f x f x −
=

= − <∑ ∞ . 

  
Proposition 4.1 Every bounded increasing or decreasing function is of finite variation on 
the interval[ , .  ]a b
 
Proof 
 
Consider an increasing function  on the interval[ , . By its definition, for : ( )f x ]a b i∀
 

1( ) ( ) 0i if x f x −− ≥ . 
 

And: 
 

{ }1 1 2 2 1 1( ) sup ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )n n n nT f f x f x f x f x f x f x f x f x− − −= − + − + + − + − 0  

      { }0( ) sup ( ) ( )nT f f x f x= −  

      { }( ) sup ( ) ( )T f f b f a= − , 
 
which is finite because  is bounded: ( )f x
 

( ), ( )f a f b−∞ < < ∞ . 
 
Definition 4.7 Total variation of a stochastic process     Consider a real valued 
stochastic process  on a filtered probability space[0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω PF . Partition the 
time interval [0  with the points: , ]T
 

0 1 2 10 ... n nt t t t t T−= < < < < = . 
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Then, the total variation of a stochastic process  on the time interval [0  is 
defined by: 

[0, ]( t TX ∈ ) , ]T

 

1
1

( ) sup ( ) ( )
n

i i
i

T X X t X t −
=

= −∑ , 

 
where sup indicates a supremum (least upper bound).  
 
Definition 4.8 Stochastic process of finite variation     A real valued stochastic process 

 on a filtered probability space[0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω PF on the interval [0  is said to be a 
stochastic process of finite variation, if the total variation on the interval [0  of a 
sample path of the process is finite with probability 1: 

, ]T
, ]T

 

1
1

( ( ) sup ( ) ( ) ) 1
n

i i
i

T X X t X t −
=

= − < ∞∑P = . 
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