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Abstract 
 
This paper presents everything you need to know about Merton jump diffusion (we call it 
MJD) model. MJD model is one of the first beyond Black-Scholes model in the sense that 
it tries to capture the negative skewness and excess kurtosis of the log stock price density 
( )0ln( / )TS SP  by a simple addition of a compound Possion jump process. Introduction of 

this jump process adds three extra parametersλ , µ , and δ  (to the original BS model) 
which give the users to control skewness and excess kurtosis of the ( )0ln( / )TS SP . 
Merton’s original approach for pricing is to use the conditional normality of MJD model 
and expresses the option price as conditional Black-Scholes type solution. But modern 
approach of its pricing is to use the Fourier transform method by Carr and Madan (1999) 
which is disccused in Matsuda (2004).  
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[1] Model Type 
 
In this section the basic structure of MJD model is described without the derivation of the 
model which will be done in the next section. 
 
MJD model is an exponential Lévy model of the form: 
 

0 e tL
tS S= , 

 
where the stock price process { ;0 }tS t T≤ ≤  is modeled as an exponential of a Lévy 
process { . Merton’s choice of the Lévy process is a Brownian motion with 
drift (continuous diffusion process) plus a compound Poisson process (discontinuous 
jump process) such that: 

;0 }tL t T≤ ≤

 
2

1
( )

2

tN

t t
i

L k t Bσα λ σ
=

= − − + + iY∑ , 

 
where { ;0 }tB t T≤ ≤  is a standard Brownian motion process. The term 

2

( )
2 tk t Bσα λ σ− − +  is a Brownian motion with drift process and the term  is a 

compound Poisson jump process. The only difference between the Black-Scholes and the 
MJD is the addition of the term . A compound Poisson jump process  

contains two sources of randomness. The first is the Poisson process  with intensity 
(i.e. average number of jumps per unit of time) 

1
tN

ii
Y

=∑

1
tN

ii
Y

=∑ 1
tN

ii
Y

=∑
tdN

λ  which causes the asset price to jump 
randomly (i.e. random timing). Once the asset price jumps, how much it jumps is also 
modeled random (i.e. random jump size). Merton assumes that log stock price jump size 
follows normal distribution, ( ) 2. . . ( , )idx i i d Normal µ δ∼ : 
 

2

22

( )1( ) exp{ }
22
i

i
dxf dx µ

δπδ

−
= − . 

 
It is assumed that these two sources of randomness are independent of each other. By 
introducing three extra parametersλ , µ , and δ  to the original BS model, Merton JD 
model tries to capture the (negative) skewness and excess kurtosis of the log return 
density  which deviates from the BS normal log return density.     (( 0ln /tS SP ))
 
Lévy measure  of a compound Poisson process is given by the multiplication of the 
intensity and the jump size density : 

( )dxA
( )f dx

 
( ) ( )dx f dxλ=A . 
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A compound Poisson process (i.e. a piecewise constant Lévy process) is called finite 
activity Lévy process since its Lévy measure  is finite (i.e. the average number of 
jumps per unit time is finite): 

( )dxA

 

( )dx λ
∞

−∞
= < ∞∫ A . 

 
The fact that an asset price  is modeled as an exponential of Lévy process  means 

that its log-return 

tS tL

0

ln( )tS
S

 is modeled as a Lévy process such that: 

 
2

10

ln( ) ( )
2

tN
t

t t
i

S L k t B
S

σα λ σ
=

= = − − + + iY∑ . 

 
Let’s derive the model. 
 
[2] Model Derivation 
 
In MJD model, changes in the asset price consist of normal (continuous diffusion) 
component that is modeled by a Brownian motion with drift process and abnormal 
(discontinuous, i.e. jump) component that is modeled by a compound Poisson process. 
Asset price jumps are assumed to occur independently and identically. The probability 
that an asset price jumps during a small time interval  can be written using a Poisson 
process  as: 

dt
tdN

 
                Pr {an asset price jumps once in } = Pr{dt 1tdN = }  ≅  dtλ , 
 

Pr {an asset price jumps more than once in } = Pr{ }  , dt 2tdN ≥ ≅ 0
 
                Pr {an asset price does not jump in } = Pr{dt 0tdN = } ≅  1 dtλ− , 
 
where the parameter  is the intensity of the jump process (the mean number of 
jumps per unit of time) which is independent of time .   

λ +∈R
t

 
Suppose in the small time interval  the asset price jumps from  to  (we call  
as absolute price jump size). So the relative price jump size (i.e. percentage change in the 
asset price caused by the jump) is: 

dt tS t ty S ty

 

1t t t t
t

t t

dS y S S y
S S

−
= = − , 
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where Merton assumes that the absolute price jump size  is a nonnegative random 
variables drawn from lognormal distribution, i.e. 

ty
2ln( ) . . . ( , )ty i i d N µ δ∼ . This in turn 

implies that 
21

2[ ]tE y e
µ δ+

=  and 
2 22 2[( [ ]) ] ( 1)t tE y E y e eµ δ δ+− = − . This is because if 

ln ( , )x N a b∼ , then 
2

2 2
1

22( , ( 1
a b a b bx Lognormal e e e
+ + ))−∼ . 

 
MJD dynamics of asset price which incorporates the above properties takes the SDE of 
the form:   
 

                                         ( ) ( 1)t
t t

t

dS k dt dB y dN
S

α λ σ= − + + − t ,                                     (1) 

 
where α  is the instantaneous expected return on the asset, σ  is the instantaneous 
volatility of the asset return conditional on that jump does not occur, tB  is a standard 
Brownian motion process, and  is an Poisson process with intensity tN λ . Standard 
assumption is that ( )tB , , and (  are independent. The relative price jump size 

of , , is lognormally distributed with the mean 

( )tN )ty

tS 1ty −
21

2[ 1] 1tE y e k
µ δ+

− = − ≡  and the 

variance .
2 22 2[( 1 [ 1]) ] ( 1)t tE y E y e eµ δ δ+− − − = − 1 This may be confusing to some readers, 

so we will repeat it again. Merton assumes that the absolute price jump size  is a 
lognormal randon variable such that: 

ty

 

                                     
2

2 2
1

22( ) . . . ( , ( 1))ty i i d Lognormal e e e
µ δ µ δ δ+ + −∼ .                             (2) 

 
This is equivalent to saying that Merton assumes that the relative price jump size 1ty −  is 
a lognormal random variable such that: 
 

                             
2

2 2
1

22( 1) . . . ( 1, ( 1)ty i i d Lognormal k e e e
µ δ µ δ δ+ +− ≡ −∼ )−

t

.                      (3) 
 
This is equivalent to saying that Merton assumes that the log price jump size  is 
a normal random variable such that: 

ln ty Y≡

 
                                                   2ln( ) . . . ( , )ty i i d Normal µ δ∼ .                                          (4) 
 

This is equivalent to saying that Merton assumes that the log-return jump size ln( )t t

t

y S
S

 is 

a normal random variable such that: 

                                                 
1For random variable x , [ 1] [Variance x Variance x]− = . 
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                                       2ln( ) ln( ) . . . ( , )t t
t t

t

y S y Y i i d Normal
S

µ δ= ≡ ∼ .                              (5) 

 
It is extremely important to note: 
 

21
2[ 1] 1       [ln( )]t tE y e k E y

µ δ
µ

+
− = − ≡ ≠ = , 

 
because l . n [ 1] [ln( 1)] [ln( )]t tE y E y E y− ≠ − = t

 
The expected relative price change  from the jump part  in the time 
interval  is 

[ / ]t tE dS S tdN
dt kdtλ  since [( 1) ] [ 1] [ ]t t t tE y dN E y E dN k dtλ− = − = . This is the predictable 

part of the jump. This is why the instantaneous expected return on the asset dtα  is 
adjusted by kdtλ−  in the drift term of the jump-diffusion process to make the jump part 
an unpredictable innovation:  
 

[ ] [( ) ] [ ] [( 1)t
t t

t

dS ]tE E k dt E dB E y d
S

α λ σ= − + + − N  

                                [ ] ( ) 0t

t

dSE k dt kdt dt
S

α λ λ= − + + =α . 

 
Some researchers include this adjustment term for predictable part of the jump kdtλ−  in 
the drift term of the Brownian motion process leading to the following simpler (?) 
specification: 
 

                                       ( 1)t
t t

t

dS dt dB y dN
S

α σ= + + − t  

                                        ( ,t
kt )B Normal tλ
σ

−∼  

[ ] ( )t

t

dS kdtE dt kdt dt
S

λα σ λ
σ

= + − + =α . 

 
But we choose to explicitely subtract kdtλ  from the instantsneous expected return dtα  
because we prefer to keep tB  as a standard (zero-drift) Brownian motion process. Realize 
that there are two sources of randomness in MJD process. The first source is the Poisson 
Process  which causes the asset price to jump randomly. Once the asset price jumps, 
how much it jumps (the jump size) is also random. It is assumed that these two sources of 
randomness are independent of each other. 

tdN

 
If the asset price does not jump in small time interval  (i.e.dt 0tdN = ), then the jump-
diffusion process is simply a Brownian motion motion with drift process: 
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( )t
t

t

dS k dt dB
S

α λ σ= − + . 

 
If the asset price jumps in  (dt 1tdN = ): 
 

( ) (t
t t

t

dS k dt dB y
S

α λ σ= − + + −1) , 

 
the relative price jump size is 1ty − . Suppose that the lognormal random drawing  is 

, the asset price falls by 20%. 
ty

0.8
 
Let’s solve SDE of (1). From (1), MJD dynamics of an asset price is: 
 
                                     ( ) ( 1)t t t t tdS k S dt S dB y S dNt tα λ σ= − + + − .                  
 
Cont and Tankov (2004) give the Itô formula for the jump-diffusion process as: 
 

2 2

2

( , ) ( , ) ( , )( , )
2

t t t
t t

tf X t f X t f X tdf X t dt b dt dt
t x x

σ∂ ∂ ∂
= + +

∂ ∂ ∂
 

                                        ( , ) [ ( ) ( )]t
t t t t

f X t dB f X X f Xtx
σ − −

∂
+ + + ∆ −

∂
, 

 
where  corresponds to the drift term and tb tσ  corresponds to the volatility term of a 

jump-diffusion process 0 0 0
1

tNt t

t s s s
i

iX X b ds dB Xσ
=

= + + + ∆∑∫ ∫ . By applying this: 

 

          
2 2 2

2

ln ln lnln ( )
2

t t t
t t

t t

S S Sd S dt k S dt dt
t S

σα λ∂ ∂
= + − +

∂ ∂
tS

S
∂
∂

 

                                                                          ln [ln ln ]t
t t t t

t

SS dB y S
S

σ tS∂
+ +

∂
−  

2 2

2

1 1 1ln ( ) [ln ln ln ]
2

t
t t t t t t

t t t

Sd S k S dt dt S dB y S S
S S S

σα λ σ
⎛ ⎞

= − + − + + + −⎜ ⎟
⎝ ⎠

t  

         
2

ln ( ) ln
2t td S k dt dt dB yσα λ σ= − − + +t t  

         
2

0 0 1
ln ln ( )( 0) ( ) ln

2
tN

t t t i
S S k t B Bσα λ σ

=
− = − − − + − +∑ iy  

         
2

0 1
ln ln ( ) ln

2
tN

t t i
S S k t Bσα λ σ

=
= + − − + +∑t iy  
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         ( )
2

0 1
exp ln exp ln ( ) ln

2
tN

t t i
S S k t Bσα λ σ

=

⎧ ⎫
= + − − + +⎨ ⎬

⎩ ⎭
∑t iy  

         ( )
2

0 1
exp exp ln

2
tN

t t t i
S S k t B yσα λ σ

=

⎧ ⎫⎛ ⎞⎪ ⎪= − − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑ i  

         
2

0
1

exp[( ) ]
2

tN

t t
i

S S k t B yσα λ σ
=

= − − + iΠ , 

 
or alternatively as: 
 

         
2

0
1

exp[( ) ln ]
2

tN

t t
i

S S k t B yσα λ σ
=

= − − + +∑ i . 

 
Using the previous definition of the log price (return) jump size l : n( )t ty Y≡
 

                                     
2

0
1

exp[( ) ]
2

tN

t
i

S S k t B Yσα λ σ
=

= − − + +t i∑ .                                   (6) 

 
This means that the asset price process { ;0 }tS t T≤ ≤  is modeled as an exponential Lévy 
model of the form: 
 

0 e tL
tS S= , 

 
where tX  is a Lévy process which is categorized as a Brownian motion with drift 
(continuous part) plus a compound Poisson process (jump part) such that: 
 

2

1
( )

2

tN

t t
i

L k t Bσα λ σ
=

= − − + + iY∑ . 

In other words, log-return 
0

ln( )tS
S

 is modeled as a Lévy process such that: 

 
2

10

ln( ) ( )
2

tN
t

t t
i

S L k t B
S

σα λ σ
=

= = − − + + iY∑ . 

 

Note that the compound Poisson jump process 
1

1
tN

i
i

y
=

=Π  (in absolute price scale) or 

 (in log price scale) if 
1 1

ln 0
t tN N

i i
i i

y Y
= =

= =∑ ∑ 0tN =  (i.e. no jumps between time 0 and t ) or 

positive and negative jumps cancel each other out.   
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In the Black-Scholes case, log return  is normally distributed: 0ln( / )tS S
 

                                             
2

0 exp[( ) ]
2t tS S t Bσα σ= − +  

2
2

0

ln( ) [( ) , ]
2

tS Normal t t
S

σα σ−∼ . 

 

But in MJD case, the existence of compound Poisson jump process 
1

tN

i
i

Y
=
∑  makes log 

return non-normal. In Merton’s case the simple distributional assumption about the log 
return jump size 2( ) ( , )iY N µ δ∼  enables the probability density of log return 

0ln( / )t tx S S=  to be obtained as a quickly converging series of the following form: 
 

                            
0

( ) ( ) (t t t
i

)tx A N i x A N
∞

=

∈ = = ∈ =∑P P P i  

                            
2

2

0

( )( ) ( ;( ) , )
! 2

t i

t t
i

e t 2x N x k t i t i
i

λ λ σα λ µ σ δ
−∞

=

= − − +∑P +                       (7) 

 

where 
2

2 2( ; ( ) , )
2tN x k t i t iσα λ µ σ δ− − + +  

                                     

2
2

2 22 2

21 exp[ ]
2( )2 ( )

tx k t

t it i

σα λ µ

σ δπ σ δ

i
⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪− − − +⎢ ⎥⎨ ⎬⎜ ⎟

⎪ ⎪⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦= −
++

. 

 

The term ( )( )
!

t i

t
e tN i

i

λ λ−

= =P  is the probability that the asset price jumps  times during 

the time interval of length . And 

i

t
2

2( ) ( ; ( ) ,
2t t t

2 )x A N i N x k t i t iσα λ µ σ δ∈ = = − − + +P                      

is the Black-Scholes normal density of log-return assuming that the asset price jumps i  
times in the time interval of . Therefore, the log-return density in the MJD model can be 
interpreted as the weighted average of the Black-Scholes normal density by the 
probability that the asset price jumps  times. 

t

i
 
By Fourier transforming the Merton log-return density function with FT parameters 

, its characteristic function is calculated as: ( , , ) (1,1)a b =
    

      ( )( ) exp ( )t ti x x dxφ ω ω
∞

−∞
= ∫ P t
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              ( ) ( ) ( ){ }2 21 1exp exp 2 1 2
2 2

t i t i k t i iλ ω µ δ ω λ ω ω α σ ω⎡ ⎤⎧ ⎫= − − + − − +⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦
+ . 

 
After simplification: 
 
     [ ]( ) exp ( )tφ ω ψ= ω  
 
with the characteristic exponent (cumulant generating function): 
 

     
2 2 2 2 2

( ) exp 1
2 2

i i k
2

δ ω σ σ ωψ ω λ ωµ ω α λ
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − − + − − −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

,                                   (8) 

 

where 
21

2 1k e
µ δ+

≡ − . The characteristic exponent (8) can be alternatively obtained by 
substituting the Lévy measure of the MJD model: 
 

( )2

22
( ) exp ( )

22

dx
dx f dx

µλ λ
δπδ

⎧ ⎫−⎪ ⎪= − =⎨ ⎬
⎪ ⎪⎩ ⎭

A  

                                     ( )2( ) ,f dx N µ δ∼  
 
into the Lévy-Khinchin representation of the finite variation type (read Matsuda (2004)): 
                    

                                { }
2 2

( ) exp( ) 1 ( )
2

ib i x dxσ ωψ ω ω ω
∞

−∞
= − + −∫ A  

                                { }
2 2

( ) exp( ) 1 ( )
2

ib i x f dxσ ωψ ω ω ω λ
∞

−∞
= − + −∫  

                                { }
2 2

( ) exp( ) 1 ( )
2

ib i x f dxσ ωψ ω ω λ ω
∞

−∞
= − + −∫  

{ }2 2

( ) ( ) ( )
2

i xib e f dx f dxωσ ωψ ω ω λ
∞ ∞

−∞ −∞
= − + −∫ ∫  

 

Note that  is the characteristic function of : ( )i xe f dxω∞

−∞∫ ( )f dx

 
2 2

( ) exp
2

i xe f dx iω δ ωµω
∞

−∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫ . 

 
Therefore: 
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2 2 2 2

( ) exp 1
2 2

ib iσ ω δ ωψ ω ω λ µω
⎧ ⎫⎛ ⎞⎪ ⎪= − + − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

, 

 

where 
2

2
b σ kα λ= − − . This corresponds to (8). Characteristic exponent (8) generates 

cumulants as follows: 
 

                                            
2

1 2
cumulant kσα λ λ= − − + µ , 

                                            2 2 2
2cumulant σ λδ λµ= + + , 

                                            2 3
3 (3 )cumulant λ δ µ µ= + , 

4 2 2
4 (3 6 )cumulant 4λ δ µ δ µ= + + . 

 
Annualized (per unit of time) mean, variance, skewness, and excess kurtosis of the log-
return density ( )txP  are computed from above cumulants as follows: 
 

                      [ ]
212

2
1 1

2tE x cumulant e
µ δσα λ λ
+⎛ ⎞

= = − − −⎜ ⎟
⎝ ⎠

µ+  

                      [ ] 2 2 2
2tVariance x cumulant σ λδ λµ= = + +  

                      [ ]
( ) ( )

2 3
3
3/ 2 3/ 22 2 2

2

(3 )
t

cumulantSkewness x
cumulant

λ δ µ µ

σ λδ λµ

+
= =

+ +
 

                      [ ]
( ) ( )

4 2 2 4
4
4/ 2 22 2 2

2

(3 6 ) t
cumulantExcess Kurtosis x

cumulant
λ δ µ δ µ

σ λδ λµ

+ +
= =

+ +
.                 (9) 

 
We can observe several interesting properties of Merton’s log-return density ( )txP . 
Firstly, the sign of µ  which is the expected log-return jump size, [ ]tE Y µ= , determines 
the sign of skewness. The log-return density ( )txP  is negatively skewed if 0µ <  and it is 
symmetric if 0µ =  as illustrated in Figure 1.  
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Figure 1: Merton’s Log-Return Density for Different Values of µ . 0.5µ = −  in blue, 

0µ =  in red, and 0.5µ =  in green. Parameters fixed are 0.25τ = , 0.03α = , 0.2σ = , 
1λ = , and 0.1δ = .  

 
Table 1 

Annualized Moments of Merton’s Log-Return Density in Figure 1 
 
Model                 Mean           Standard Deviation          Skewness          Excess Kurtosis 
 

0.5µ = −           -0.0996                   0.548                         -0.852                    0.864 
0µ =                 0.005                     0.3742                         0                           0.12 
0.5µ =             -0.147                     0.5477                         0.852                    0.864 

 
Secondly, larger value of intensity λ  (which means that jumps are expected to occur 
more frequently) makes the density fatter-tailed as illustrated in Figure 2. Note that the 
excess kurtosis in the case 100λ =  is much smaller than in the case 1λ =  or 10λ = . 
This is because excess kurtosis is a standardized measure (by standard deviation).   

 11



© 2004 Kazuhisa Matsuda   All rights reserved. 
 

-0.75 -0.25 0 0.25 0.75
log−return xt

0
0.5

1
1.5

2
2.5

3
3.5

ytisneD

λ=100

λ=10

λ=1

 
Figure 2: Merton’s Log-Return Density for Different Values of Intensityλ . 1λ =  
in blue, 10λ =  in red, and 100λ =  in green. Parameters fixed are 0.25τ = , 0.03α = , 

0.2σ = , 0µ = , and 0.1δ = .  
Table 2 

Annualized Moments of Merton’s Log-Return Density in Figure 2 
 
Model                 Mean           Standard Deviation          Skewness          Excess Kurtosis 
 

1λ =                 0.00499                   0.2236                           0                        0.12 
10λ =              -0.04012                  0.3742                           0                        0.1531 
100λ =            -0.49125                  1.0198                           0                        0.0277 

 
Also note that Merton’s log-return density has higher peak and fatter tails (more 
leptokurtic) when matched to the Black-Scholes normal counterpart as illustrated in 
Figure 9.3. 

-1 -0.5 0 0.5 1
log−return xt

0
0.5

1
1.5

2
2.5

3

ytisneD

BS

µ=−0.5
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Figure 3: Merton Log-Return Density vs. Black-Scholes Log-Return Density 
(Normal). Parameters fixed for the Merton (in blue) are 0.25τ = , 0.03α = , 0.2σ = , 

1λ = , 0.5µ = − , and 0.1δ = . Black-Scholes normal log-return density is plotted (in red) 
by matching the mean and variance to the Merton.  
 

Table 3 
Annualized Moments of Merton vs. Black-Scholes Log-Return Density in Figure 3 

 
Model                 Mean           Standard Deviation          Skewness          Excess Kurtosis 
 
Merton with 

0.5µ = −           -0.0996                   0.548                         -0.852                    0.864 
 
Black-Scholes  -0.0996                   0.548                              0                           0 
 
[3] Log Stock Price Process for Merton Jump-Diffusion Model 
 
Log stock price dynamics can be obtained from the equation (6) as: 
 

                                      
2

0
1

ln ln
2

tN

t t
i

S S k t Bσα λ σ
=

⎛ ⎞
= + − − + +⎜ ⎟

⎝ ⎠
iY∑ .                             (10)              

 
Probability density of log stock price  is obtained as a quickly converging series of 
the following form (i.e. conditionally normal): 

ln tS

 

                
0

(ln ) ( ) (ln )t t t
i

S A N i S A N i
∞

=

∈ = = ∈ =∑ tPP P  

                
2

2 2
0

0

( )(ln ) ln ; ln ,
! 2

t i

t t
i

e tS N S S k t i t
i

λ λ σ iα λ µ σ δ
−∞

=

⎛ ⎞⎛ ⎞
= + − − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ +P ,        (11) 

 
where: 
 

                      
2

2 2
0ln ; ln ,

2tN S S k t i t iσα λ µ σ δ
⎛ ⎞⎛ ⎞

+ − − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

                       
( ) ( )

2
2

0

2 22 2

ln ln
21 exp

22

tS S k t i

t it i

σα λ µ

σ δπ σ δ

⎡ ⎤⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎢ ⎥− + − − +⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎝⎩ ⎭⎠= −⎢ ⎥
++ ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

.                                        
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By Fourier transforming (11) with FT parameters ( , , ) (1,1)a b = , its characteristic function 
is calculated as: 
 

          ( )( ) exp ln (ln ) lnt ti S S dφ ω ω
∞

−∞
= ∫ P tS

                 
2 2 2 2 2

0exp exp( ) 1 ln ( )
2 2

t i i S k tδ ω σ σ ωλ µω ω α λ
⎡ ⎤⎛ ⎞ ⎛ ⎞

= − − + + − − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦2

t ,    (12) 

  

where 
2

2 1k e
δµ+

= − . 
 
[4] Lévy Measure for Merton Jump-Diffusion Model 
 
Lévy measure  of a compound Poisson process is given by the multiplication of the 
intensity and the jump size density : 

( )dxA
( )f dx

 
( ) ( )dx f dxλ=A . 

 
The Lévy measure  represents the arrival rate (i.e. total intensity) of jumps of sizes ( )dxA
[ , ]x x dx+ . In other words, we can interpret the Lévy measure  of a compound 
Poisson process as the measure of the average number of jumps per unit of time. Lévy 
measure is a positive measure on , but it is not a probability measure since its total mass 

( )dxA

R
λ  (in the compound Poisson case) does not have to equal1: 
 

( )dx λ += ∈∫ A R . 
 
A Poisson process and a compound Poisson process (i.e. a piecewise constant Lévy 
process) are called finite activity Lévy processes since their Lévy measures  are 
finite (i.e. the average number of jumps per unit time is finite): 

( )dxA

 

( )dx
∞

−∞
< ∞∫ A . 

 
In Merton jump-diffusion case, the log-return jump size is ( ) 2. . . ( , )idx i i d Normal µ δ∼ : 
 

2

22

( )1( ) exp{ }
22
i

i
dxf dx µ

δπδ

−
= − . 

 
Therefore, the Lévy measure  for Merton case can be expressed as: ( )dxA
 

                                      
2

22

( )( ) ( ) exp{ }
22

dxdx f dx λλ
δπδ

−
= = −A µ .                             (13) 

 14



© 2004 Kazuhisa Matsuda   All rights reserved. 
 

 
An example of Lévy measure  for the log-return ( )dxA 0ln( / )t tx S S=  in MJD model is 
plotted in Figure 5. Each Lévy measure is symmetric (i.e. 0µ =  is used) with total mass 
1, 2, and 4 respectively. 

-0.4 -0.2 0 0.2 0.4
log−return xt

0
2.5

5
7.5

10
12.5

15

ytisneD

λ=4

λ=2

λ=1

 
Figure 5: Lévy Measures  for the Log-Return ( )dxA 0ln( / )t tx S S=  in MJD Model for 
Different Values of Intensityλ . Parameters used are 0µ =  and 0.1δ = .  
 
[5] Option Pricing: PDE Approach by Hedging 
 
Consider a portfolio  of the one long option position  on the underlying asset  
written at time  and a short position of the underlying asset in quantity  to derive 
option pricing functions in the presence of jumps: 

P ( , )V S t S
t ∆

 
                                                        ( , )t tP V S t St= −∆ .                                                   (14) 
 
Portfolio value changes by in a very short period of time: 
 
                                                     ( , )t tdP dV S t dSt= −∆ .                                                (15) 
 
MJD dynamics of an asset price is given by equation (1) in the differential form as: 
 

                                     ( ) ( 1)t
t t

t

dS k dt dB y dN
S

α λ σ= − + + − t

t t

, 

                                     ( ) ( 1)t t t t tdS k S dt S dB y S dNα λ σ= − + + − .                              (16) 
 
Itô formula for the jump-diffusion process is given as (Cont and Tankov (2004)): 
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2 2

2

( , ) ( , ) ( , )( , )
2

t t t
t t

tf X t f X t f X tdf X t dt b dt dt
t x x

σ∂ ∂ ∂
= + +

∂ ∂ ∂
 

                                        ( , ) [ ( ) ( )]t
t t t t

f X t dB f X X f Xtx
σ − −

∂
+ + + ∆ −

∂
, 

 
where  corresponds to the drift term and tb tσ  corresponds to the volatility term of a 

jump-diffusion process 0 0 0
1

tNt t

t s s s
i

iX X b ds dB Xσ
=

= + + + ∆∑∫ ∫ . Apply this to our case of 

option price function : ( , )V S t
 

2 2 2

2( , ) ( )
2

t
t t

t t

SV V VdV S t dt k S dt dt S dB
t S S

σα λ σ∂ ∂ ∂
= + − + +
∂ ∂ ∂ t t

t

V
S
∂
∂

t

 

                                  .                                                             (17) [ ( , ) ( , )]t t t tV y S t V S t dN+ −
 
The term [  describes the difference in the option value when a 
jump occurs. Now the change in the portfolio value can be expressed as by substituting 
(16) and (17) into (15): 

( , ) ( , )]t t t tV y S t V S t dN−

 
    ( , )t tdP dV S t dS= −∆

2 2 2

2( ) [ ( , ) ( , )]
2

t
t t t t t t

t t t

SV V V VdP dt k S dt dt S dB V y S t V S t dN
t S S S

σα λ σ∂ ∂ ∂ ∂
= + − + + + −
∂ ∂ ∂ ∂ t t

t

 

         {( ) ( 1) }t t t t tk S dt S dB y S dNα λ σ−∆ − + + −  

   
2 2 2

2( ) ( )
2

t
t t t t

t t t

SV V V VdP k S k S dt S S dB
t S S S

σα λ α λ σ σ
⎧ ⎫∂ ∂ ∂ ∂

= + − + −∆ − + −∆⎨ ⎬ ⎜ ⎟∂ ∂ ∂ ∂⎩ ⎭
t t

⎛ ⎞

⎝ ⎠
 

         { }( , ) ( , ) ( 1)t t t t t tV y S t V S t y S dN+ − −∆ − .                                                               (18) 
 
If there is no jump between time 0 and t  (i.e. 0tdN = ), the problem reduces to Black-
Scholes case in which setting  makes the portfolio risk-free leading to the 
following (i.e. the randomness  has been eliminated): 

/ tV S∆ = ∂ ∂

tdB
 

2 2 2

2( ) ( )
2

t
t t t t

t t t t t

SV V V V V VdP k S k S dt S S dB
t S S S S S

σα λ α λ σ σ
⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂

= + − + − − + −⎨ ⎬ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭
t t

⎛ ⎞

⎝ ⎠
 

  
2 2 2

22
t

t
t

SV VdP dt
t S

σ⎧ ⎫∂ ∂
= +⎨ ⎬∂ ∂⎩ ⎭

. 

 
This in turn means that if there is a jump between time 0 and t  (i.e. ), setting 

 does not eliminate the risk. Suppose we decided to hedge the randomness 
caused by diffusion part  in the underlying asset price (which are always present) and 

0tdN ≠
/ tV S∆ = ∂ ∂

tdB
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not to hedge the randomness caused by jumps  (which occur infrequently) by setting 
. Then, the change in the value of the portfolio is given by from equation 

(9.18):  

tdN
/ tV S∆ = ∂ ∂

 
2 2 2

2( ) ( )
2

t
t t t t

t t t t t

SV V V V V VdP k S k S dt S S dB
t S S S S S

σα λ α λ σ σ
⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂

= + − + − − + −⎨ ⎬ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭
t t

⎛ ⎞

⎝ ⎠
 

        ( , ) ( , ) ( 1)t t t t t t
t

VV y S t V S t y S dN
S

⎧ ⎫∂
+ − − −⎨ ⎬∂⎩ ⎭

, 

  
2 2 2

2 ( , ) ( , ) ( 1)
2

t
t t t t

t t

SV V VdP dt V y S t V S t y S dN
t S S

σ⎧ ⎫ ⎧∂ ∂ ∂
= + + − − −⎨ ⎬ ⎨∂ ∂ ∂⎩ ⎭ ⎩

t t t

⎫
⎬
⎭

.                      (19) 

 
Merton argues that the jump component ( ) of the asset price process  is 
uncorrelated with the market as a whole. Then, the risk of jump is diversifiable (non-
systematic) and it should earn no risk premium. Therefore, the portfolio is expected to 
grow at the risk-free interest rate :  

tdN tS

r
 
                                                            [ ]t tE dP rPdt= .                                                     (20) 
 
After substitution of (14) and (19) into (20) by setting / tV S∆ = ∂ ∂ : 
 

2 2 2

2[ ( , ) ( , ) ( 1) ] { ( , ) }
2

t
t t t t t t t t

t t

SV V VE dt V y S t V S t y S dN r V S t S dt
t S S

σ⎧ ⎫ ⎧ ⎫∂ ∂ ∂
+ + − − − = −⎨ ⎬ ⎨ ⎬∂ ∂ ∂⎩ ⎭ ⎩ ⎭

∆  

2 2 2

2( ) [ ( , ) ( , ) ( 1) ] [ ] { ( , ) }
2

t
t t t t t t t t

t t

SV V V Vdt E V y S t V S t y S E dN r V S t S dt
t S S S

σ∂ ∂ ∂ ∂
+ + − − − = −

∂ ∂ ∂ ∂ t
2 2 2

2( ) [ ( , ) ( , ) ( 1) ] { ( , ) }
2

t
t t t t t t t

t t

SV V V Vdt E V y S t V S t y S dt r V S t S dt
t S S S

σ λ∂ ∂ ∂ ∂
+ + − − − = −

∂ ∂ ∂ ∂ t

 

2 2 2

2 [ ( , ) ( , ) ( 1) ] { ( , ) }
2

t
t t t t t t t

t t

SV V V VE V y S t V S t y S r V S t S
t S S S

σ λ∂ ∂ ∂ ∂
+ + − − − = −

∂ ∂ ∂ ∂ t

 

 
Thus, the MJD counterpart of Black-Scholes PDE is: 
 

    
2 2 2

2 [ ( , ) ( , )] [ 1] 0
2

t
t t t t t

t t t

SV V V VrS rV E V y S t V S t S E y
t S S S

σ λ λ∂ ∂ ∂ ∂
+ + − + − − −

∂ ∂ ∂ ∂ t = .     (21) 
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where the term  involves the expectation operator and [ ( , ) ( , )]t t tE V y S t V S t−
21

2[ 1] 1tE y e k
µ δ+

− = − ≡  (which is the mean of relative asset price jump size). Obviously, 
if jump is not expected to occur (i.e. 0λ = ), this reduces to Black-Scholes PDE:2  
 

2 2 2

2 0
2

t
t

t t

SV V VrS rV
t S S

σ∂ ∂ ∂
+ + −

∂ ∂ ∂
= . 

 
Merton’s simple assumption that the absolute price jump size is lognormally distributed 
(i.e. the log-return jump size is normally distributed, 2ln( ) ( , )t tY y N µ δ≡ ∼ ) makes it 
possible to solve the jump-diffusion PDE to obtain the following price function of 
European vanilla options as a quickly converging series of the form: 
 

                                            
0

( ) ( , , , )
!

i

BS t i i
i

e V S T t r
i

λτ λτ τ σ
−∞

=

= −∑ ,                                    (22) 

 

where 
21

2(1 )k e
µ δ

λ λ λ
+

= + = , 

           
2

2 2
i

iδσ σ
τ

= + , 

           
2

2
1
2

1( )ln(1 ) 2( 1)i

ii kr r k r e
µ δ

µ δ
λ λ

τ τ
+

++
= − + = − − + , 

and  is the Black-Scholes price without jumps.  BSV
 
Thus, MJD option price can be interpreted as the weighted average of the Black-Scholes 
price conditional on that the underlying asset price jumps i  times to the expiry with 
weights being the probability that the underlying jumps i  times to the expiry. 
 
[6] Option Pricing: Martingale Approach 
 
Let { ;0 }tB t T≤ ≤  be a standard Brownian motion process on a space . Under 
actual probability measure , the dynamics of MJD asset price process is given by 
equation (6) in the integral form:  

( , , )Ω PF
P

 
2

0
1

exp[( ) ]
2

tN

t t
k

S S k t B Yσα λ σ
=

= − − + + k∑ . 

 

                                                 
2 This equation not only contains local derivatives but also links together option values at discontinuous 
values in S. This is called non-local nature. 
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We changed the index from  to 
1

tN

i
i

Y
=
∑

1

tN

k
k

Y
=
∑ . This is trivial but readers will find the reason 

soon. MJD model is an example of an incomplete model because there are many 
equivalent martingale risk-neutral measures  under which the discounted asset 
price process { ;  becomes a martingale. Merton finds his equivalent 
martingale risk-neutral measure  by changing the drift of the Brownian motion 
process while keeping the other parts (most important is the jump measure, i.e. the 
distribution of jump times and jump sizes) unchanged: 

∼Q P
0rt

te S t T− ≤ ≤ }
PM ∼Q

 

                            
2

0
1

exp[( ) ]
2

t
M

N

t t
k

r k t B Yσ λ σ
=

= − − + + kS S ∑Q
MQ   under .                   (23) 

 
Note that M

tBQ  is a standard Brownian motion process on ( , , )MΩ QF  and the process 
 is a martingale under{ ;0rt

te S t T− ≤ ≤ } MQ . Then, a European option price  
with payoff function  is calculated as: 

( , )Merton
tV t S

( )TH S
 
                                            ( )( , ) [ ( ) ]MMerton r T t

tV t S e E H S− −= Q FT t

t

.                                 (24) 
 
Standard assumption is , thus: t S=F
 

2
( )

1
( , ) [ ( exp[( )( ) ]) ]

2

T t
M M

N
Merton r T t

t t T t
k

V t S e E H S r k T t B Y Sσ λ σ
−

− −
−

=

= − − − + +∑Q Q
k t  

          
2

( )

1
( , ) [ ( exp[( )( ) ])]

2

T t
M M

N
Merton r T t

t t T t
k

V t S e E H S r k T t B Yσ λ σ
−

− −
−

=

= − − − + ∑Q Q
k+ .       (25) 

 
Poisson counter is (we would like to use index i  for the number of jumps): 
 

0,1, 2,...T tN i− = ≡ . 
 
And the compound Poisson process is distributed as: 
 

2

1
( , )

T tN

k
k

Y Normal i iµ δ
−

=
∑ ∼ . 

 
Thus,  can be expressed as from equation (25) (i.e. by conditioning on i ): ( , )Merton

tV t S
 
          ( , )Merton

tV t S
2

( )

0 1
( ) [ ( exp[( )( ) ])]

2
M M

i
r T t

M T t t T t k
i k

e N i E H S r k T t Bσ λ σ− −
− −

≥ =

= = − − − +∑ ∑Q QQ Y+ . 
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Use T tτ = − : 
 
  ( , )Merton

tV t S

 
2

2
/ 2

0 1

( ) exp[{ ( 1)} ]
! 2

M M

i i
r

t k
i k

ee E H S r e B
i

λτ
τ µ δ

τ
λτ σ λ τ σ

−
− +

≥ =

⎡ ⎤⎛ ⎞
= − − − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑Q Q Y+ .        (26) 

 
Inside the exponential function is normally distributed: 
 

                    
2

2
/ 2

1
{ ( 1)}

2
M

i

k
k

r e Bµ δ
τ

σ λ τ σ+

=

− − − + + Y∑Q   

                                         
2

2
/ 2 2 2{ ( 1)} ,

2
Normal r e i iµ δσ λ τ µ σ τ δ+⎛ ⎞

− − − + +⎜ ⎟
⎝ ⎠

∼ . 

 
Rewrite it so that its distribution remains the same: 
 

                    
2

2 2
/ 2{ ( 1)}

2

2
M

ir e iµ δ
τ

σ σλ τ µ
τ

+ +
− − − + + QBτ δ  

                                         
2

2
/ 2 2 2{ ( 1)} ,

2
Normal r e i iµ δσ λ τ µ σ τ δ+⎛ ⎞

− − − + +⎜ ⎟
⎝ ⎠

∼ . 

 
Now we can rewrite equation (24) as (we can do this operation because a normal density 
is uniquely determined by only two parameters: its mean and variance): 
 

( , )Merton
tV t S  

2
2 2

/ 2

0

( ) exp[{ ( 1)} ]
! 2

M M

i
r

t
i

e ie E H S r e i
i

λτ
τ µ δ

τ
λτ σ σ τ δλ τ µ

τ

−
− +

≥

⎡ ⎤⎛ ⎞+⎢ ⎥= − − − + +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ Q Q

2

B
.
 

 

We can always add 
2 2

( )
2 2
i iδ δ
τ τ
− = 0  inside the exponential function: 

 

( , )Merton
tV t S

0

( )
!

i
r

i

ee
i

λτ
τ λτ−

−

≥

= ×∑  

2
2 2 2 2

/ 2 2exp[{ ( ) ( 1)} ]
2 2 2

M M
t

i i iE H S r e i Bµ δ
τ

σ δ δ δλ τ µ σ
τ τ τ

+
⎡ ⎤⎛ ⎞
⎢ ⎥− + − − − + + +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Q Q  

( , )Merton
tV t S

0

( )
!

i
r

i

ee
i

λτ
τ λτ−

−

≥

= ×∑  
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2
2 2 2

2 / 2 21exp[{ ( ) ( 1)} ]
2 2

M M
t

i i iE H S r e i Bµ δ
τ

δ δ δσ λ τ µ σ
τ τ τ

+
⎡ ⎤⎛ ⎞
⎢ ⎥− + + − − + + +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Q Q  

 

Set 
2

2 2
i

iδσ σ
τ

= +  and rearrange: 

 
( , )Merton

tV t S  

2
2

2 / 2

0

( ) 1exp[{ ( 1)} ]
! 2 2

M M

i
r

t i i
i

e ie E H S r e i
i

λτ
τ µ δ

τ
λτ δσ λ τ µ σ

τ

−
− +

≥

⎡ ⎤⎛ ⎞
= − + − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ Q QB+ +  

2
2

/ 2 2

0

( ) 1exp{ ( 1) }exp{( ) }
! 2 2

M M

i
r

t i
i

e ie E H S i e r B
i

λτ
τ µ δ

τ
λτ δµ λ τ σ τ σ

−
− +

≥

⎡ ⎤⎛ ⎞
= + − − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ Q Q

i+ . 

 
Black-Scholes price can be expressed as: 
 

21( , ; ) [ { exp( ) }]
2

BS BSBS r
t tV T t S e E H S r Bτ

ττ σ σ τ σ−= − = − +Q Q . 

 
Finally, MJD pricing formula can be obtained as a weighted average of Black-Scholes 
price conditioned on the number of jumps i : 
 
      ( , )Merton

tV t S

     
2

2 2
/ 2 2

0

( ) ( , exp{ ( 1) }; )
! 2

i
BS

i t i
i

e iV S S i e
i

λτ
µ δ iλτ δτ µ λ τ σ σ δ

τ

−
+

≥

= ≡ + − − ≡∑ + .         (27) 

 
Alternatively: 
 

( , )Merton
tV t S  

2
2

/ 2 2

0

( ) / 2 1exp{ ( 1) }
! 2

M M

i
r

t i
i

e i ie E H S r e B
i

λτ
τ µ δ

τ
λτ µ δλ σ

τ

−
− +

≥

⎡ ⎤⎧ ⎫⎛ ⎞+⎪ ⎪= − − + −⎢ ⎥⎨ ⎬⎜ ⎟
⎪ ⎪⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦

∑ Q Q
iτ σ+  

2
2 2

2 / 2

0

( ) / 2( , ; , ( 1) )
!

i
BS

t i i
i

e iV S r r e
i

λτ
µ δλτ δ µ δτ σ σ λ

τ τ

−
+

≥

+
= ≡ + ≡ − − +∑ i i .               (28) 

 

where
21

2(1 )k e
µ δ

λ λ λ
+

= + = . As you might notice, this is the same result as the option 
pricing formula derived from solving a PDE by forming a risk-free portfolio in equation 
(22). PDE approach and Martingale approach are different approaches but they are 
related and give the same result.  
 
[7] Option Pricing Example of Merton Jump-Diffusion Model 
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In this section the equation (22) is used to price hypothetical plain vanilla options: current 
stock price = 50, risk-free interest rate = 0.05, continuously compounded dividend 
yield q = 0.02, time to maturity 

tS r
τ = 0.25 years.  

 
We need to be careful about volatilityσ . In the Black-Scholes case, the t -period standard 
deviation of log-return tx  is: 
 
                                         BSStandard Deviation ( )t BSx tσ= .                                       (29) 
 
Equation (10) tells that the -period standard deviation of log-return t tx  in the Merton 
model is given as: 
 
                           2 2 2

MertonStandard Deviation ( ) ( )t Mertonx tσ λδ λµ= + + .                     (30) 
 
This means that if we set BS Mertonσ σ= , MJD prices are always greater (or equal to) than 
Black-Scholes prices because of the extra source of volatility λ  (intensity), µ  (mean 
log-return jump size), δ  (standard deviation of log-return jump) (i.e. larger volatility is 
translated to larger option price): 
 

BS MertonStandard Deviation ( ) Standard Deviation ( )t tx x≤  

                                                         2 2 2( )BS Mertont tσ σ λδ λµ≤ + + . 
 
This very obvious point is illustrated in Figure 6 where diffusion volatility is 
set 0.2BS Mertonσ σ= = . Note the followings: (1) In all four panels MJD price is always 
greater (or equal to) than BS price. (2) When Merton parameters (λ , µ , and δ )  
are small in Panel A, the difference between these two prices is small. (3) As intensity λ  
increases (i.e. increased expected number of jumps per unit of time), the t -period Merton 
standard deviation of log-return tx  increases (equation (30)) leading to the larger 
difference between Merton price and BS price as illustrated in Panel B. (4) As Merton 
mean log-return jump sizeµ  increases, the -period Merton standard deviation of log-
return 

t

tx  increases (equation (30)) leading to the larger difference between Merton price 
and BS price as illustrated in Panel C. (5) As Merton standard deviation of log-return 
jump sizeδ  increases, the t -period Merton standard deviation of log-return tx  increases 
(equation (30)) leading to the larger difference between Merton price and BS price as 
illustrated in Panel D. 
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A) Merton parame : ters λ = 1, µ = -0.1, and δ = 0.1. 
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B) Merton parame : ters λ = 5, µ = -0.1, and δ = 0.1. 
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C) Merton parame : ters λ = 1, µ = -0.5, and δ = 0.1. 
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D) Merton parameters: λ = 1, µ = -0.1, and δ = 0.5. 
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Figure 6: MJD Call Price vs. BS Call Price When Diffusion Volatility σ  is same. 
Parameters and variables used are = 50, r = 0.05, = 0.02, tS q τ = 0.25, and 

0.2BS Mertonσ σ= = . 
 
Next we consider a more delicate case where we restrict diffusion volatilities BSσ  and 

Mertonσ  such that standard deviations of MJD and BS log-return densities are the same: 
 

BS MertonStandard Deviation ( ) Standard Deviation ( )t tx x= , 
2 2 2( )BS Mertont tσ σ λδ λµ= + + . 

 
Using the Merton parameters λ = 1, µ = -0.1, and δ = 0.1 and BS volatility 0.2BSσ = , 
Merton diffusion volatility is calculated as Mertonσ = 0.141421. In this same standard 
deviation case, call price function is plotted in Figure 7 and put price function is plotted 
in Figure 8. It seems that MJD model overestimates in-the-money call and underestimates 
out-of-money call when compared to BS model. And MJD model overestimates out-of-
money put and underestimates in-the-money put when compared to BS model.  
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B) Range 42 to 52. 
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Figure 7: MJD Call Price vs. BS Call Price When Restricting Merton Diffusion 
Volatility Mertonσ . We set 0.2BSσ =  and Mertonσ = 0.141421. Parameters and variables used 
are = 50, = 0.05, = 0.02, tS r q τ = 0.25. 
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Figure 8: MJD Put Price vs. BS Put Price When Restricting Merton Diffusion 
Volatility Mertonσ . We set 0.2BSσ =  and Mertonσ = 0.141421. Parameters and variables used 
are = 50, = 0.05, = 0.02, tS r q τ = 0.25. 
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