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Abstract 
 
This paper presents the basic knowledge of a standard Brownian motion which is a 
building block of all stochastic processes. A standard Brownian motion is a subclass of 1) 
continuous martingales, 2) Markov processes, 3) Gaussian processes, and 4) Itô diffusion 
processes. It is also a subclass of Lévy processes although we will not discuss this in this 
sequel.  
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[1] Brownian Motion 
 
[1.1] Standard Brownian Motion 
 
Definition 1.1 Standard Brownian motion (Standard Wiener process)     A standard 
Brownian motion  is a real valued stochastic process defined on a filtered 
probability space  satisfying: 

[0, )( tB∈ ∞ )

[0, )( , , )t∈ ∞Ω F P
 
(1) Its increments are independent. In other words, for 1 20 ... nt t t≤ < < < < ∞ : 
 

0 1 0 2 1 1
( ... )

n nt t t t t t tB B B B B B B
−

− − −∩ ∩ ∩ ∩P  
                                   

0 1 0 2 1
( ) ( ) ( )... ( )

n nt t t t t t t 1
B B B B B B B

−
= − − −P P P P . 

 
(2) Its increments are stationary (time homogeneous): i.e. for , 0h ≥ t h tB B+ −  has the 
same distribution as hB . In other words, the distribution of increments does not depend 
on t .  
(3) . The process starts from 0 almost surely (with probability 1). 0( 0)B = =P 1
(4) (0, )tB Normal t∼ . Its increments follow a Gaussian distribution with the mean  and 
the variance t . 

0

 
Definition 1.2 Standard Brownian motion with starting point      Let  be a real 
valued constant or a random variable independent of a standard Brownian motion 

.  Then, a standard Brownian motion with starting point  is a real valued 
stochastic process defined on a filtered probability space

c c

[0, )( tB∈ ∞ ) c

[0, )( , , )t∈ ∞Ω F P : 
 

[0, )( )tc B∈ ∞+ . 
 
Theorem 1.1 Standard Brownian motion     A standard Brownian motion process 

 defined on a filtered probability space [0, )( tB∈ ∞ ) [0, )( , , )t∈ ∞Ω F P  satisfies the following 
conditions: 
 
(1) The process is stochastically continuous: 0ε∀ > , 

0
lim ( ) 0t h th

X X ε+→
− ≥ =P . 

(2) Its sample path (trajectory) is continuous in t  (i.e. continuous∈  rcll) almost surely.  
 
Proof 
 
Consult Karlin (1975). We have to remind you that this proof is not that simple. 
 
[1.2] Brownian Motion with Drift 
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Definition 1.3 Brownian motion with drift     Let  be a standard Brownian 
motion process defined on a filtered probability space

[0, )( tB∈ ∞ )

[0, )( , , )t∈ ∞Ω F P . Then, a Brownian   
motion with drift is a real valued stochastic process defined on a filtered probability 
space  as: [0, )( , , )t∈ ∞Ω F P
 

[0, ) [0, )( ) (t tX t B )µ σ∈ ∞ ∈ ∞≡ + , 
 
where µ ∈R  is called a drift and σ +∈R  is called a diffusion (volatility) parameter. A 
Brownian motion with drift satisfies the following conditions: 
 
(1) Its increments are independent. In other words, for 1 20 ... nt t t≤ < < < < ∞ : 
 

1n n−0 1 0 2 1
( ... )t t t t t t tX X X X X X X− − −∩ ∩ ∩ ∩P

0 1 0 2 1 1
( ) ( ) ( )... ( )

n nt t t t t t tX X X X X X X
−

− −P P P P
 

                                   = − . 
 
(2) Its increments are stationary (time homogeneous): i.e. for , 0h ≥ t h tX X+ −  has the 
same distribution as hX . In other words, the distribution of increments does not depend 
on t .  
(3) 2( , )t tX t B Normal t tµ σ µ≡ + ∼ σ . Its increments follow a Gaussian distribution with 
the mean tµ  and the variance 2tσ . 
(4) Its sample path (trajectory) is continuous in t  (i.e. continuous∈  rcll) almost surely. 
 
[1.3] Sample Paths Properties of Brownian Motion 
 
Before discussing the sample paths properties of Brownian motion, take a look at 
simulated sample paths of a standard Brownian motion on Panel (A) in Figure 1.1 and 
those of a Brownian motion with drift on Panel (B) and (C). 
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A) Sample Paths of a Standard Brownian Motion. 
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B) Sample Paths of a Brownian Motion with Drift. Different drifts and same diffusion 
parameters. 
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C) Sample Paths of a Brownian Motion with Drift. Zero drifts and different diffusion 
parameters. 
 
Figure 1.1 Simulated Sample Paths of Brownian Motion 
 
Theorem 1.2 Sample paths properties of Brownian motion with drift     Consider a 
real valued Brownian motion with drift [0, ] [0, )( ) (t T tX t B )µ σ∈ ∈ ∞≡ +  defined on a filtered 
probability space . Then, the sample paths of  possess following 
properties: 

[0, )( , , )t∈ ∞Ω F P [0, ]( t TX ∈ )

 
(1) Sample paths are continuous with probability 1.  
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(2) Sample paths are of infinite variation on any finite interval [0 . In other words, the 
total variation on any finite interval [0  of a sample path of a Brownian motion with 
drift is infinite with probability 1 in the limit  (as the partition becomes finer and 
finer): 

, ]t
, ]t

n →∞

 

1
1

lim ( ) lim sup ( ) ( ) 1
n

i in n i
T X X t X t −→∞ →∞

=

⎛ ⎞
= − = ∞⎜ ⎟

⎝ ⎠
∑P = . 

 
Intuitively speaking, the infinite variation property means highly oscillatory sample 
paths. 
(3) The quadratic variations of sample paths of Brownian motions with drift  are 

finite on any finite interval [0  and converge to 
[0, ]( )t TX ∈

, ]t 2tσ  with probability 1 in the limit 
 (as the partition becomes finer and finer): n →∞

 
22 2

1
1

lim ( ) lim sup ( ) ( ) 1
n

i in n i
T X X t X t tσ−→∞ →∞

=

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
∑P < ∞ =

)

)
)

. 

 
For more details and proofs about theorem 1.2, consult Sato (1999) page 22 – 28 and 
Karatzas and Shreve (1991) section 1.5 and 2.9. We also recommend Rogers and 
Williams (2000) chapter 1. 
 
[1.4] Equivalent Transformations of Brownian Motion 
 
Theorem 1.3 Equivalent transformations of Brownian motion     If  is a real 
valued standard Brownian motion defined on a filtered probability space , 
then, it satisfies the four conditions: 

[0, )( tB∈ ∞

[0, )( , , )t∈ ∞Ω F P

 
(1) A standard Brownian motion  is symmetric. In other words, the process 

 is also a standard Brownian motion: 
[0, )( tB∈ ∞

[0, )( tB∈ ∞−
 

[0, ) [0, )( )  (t tB d B∈ ∞ ∈ ∞ )− . 
 
(2) A standard Brownian motion  has a time shifting property. In other words, 

the process 
[0, )( tB∈ ∞ )

( )t A AB B+ −  is also a standard Brownian motion for A +∀ ∈R : 
 

[0, )( )  (t A A tB B d B+ ∈ )∞− . 
 
(3) Time scaling property of a standard Brownian motion. For any nonzero , the 

process 

c∈R

/( )t ccB  or 1( ct )B
c

 is also a standard Brownian motion: 
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/ [0
1( )  ( )  (ct t c tB d cB d B
c ∈ ∞, ) ) . 

 
(4) Time inversion property of a standard Brownian motion (i.e. a variant of (3)). The 
process defined as: 
 

[0, )
1/

0   if   0
( )

( )   if 0t
t

t
B

tB t∈ ∞

=⎧
= ⎨ < < ∞⎩

� , 

 
is also a standard Brownian motion: 
 

[0, ) [0, )( )  ( )t tB d B∈ ∞ ∈ ∞
� . 

 
Proof 
 
These are easy exercises for readers. For the proof of the continuity of  at 0, 
consult Rogers and Williams (2000) page 4. 

[0, )( tB∈ ∞
� )

)

 
[1.5] Characteristic Function of Brownian Motion 
 
Consider a real valued Brownian motion with drift process [0, ) [0, )( ) (t tX t Bµ σ∈ ∞ ∈ ∞≡ +  
defined on a filtered probability space [0, )( , , )t∈ ∞Ω F P . Its characteristic function can be 
obtained by the direct use of the definition of a characteristic function (i.e. Fourier 
transform of the probability density function with Fourier transform parameters ): (1,1)
 

                                   [ ]( ) ( ) ( )
t

i x
X x e x dωφ ω

∞

−∞
≡ ≡ ∫F P P x  

( )2

22

1( ) exp
22t

i x
X

x t
e d

tt
ω µ

φ ω
σπσ

∞

−∞
x

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∫  

                                   
2 2

( ) exp( )
2tX
ti t σ ωφ ω µ ω= − . 

 
[2] Brownian Motion as a Subclass of Continuous Martingale 
 
Definition 2.1 Continuous martingale     A continuous stochastic process  
defined on a filtered probability space

[0, )( )tX ∈ ∞

[0, )( , , )t∈ ∞Ω F P  is said to be a continuous martingale 
with respect to the filtration  and under the probability measure  if it satisfies the 
following conditions: 

tF P

 
(1) tX  is nonanticipating. 
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(2) [ ]tE X < ∞  for . Finite mean condition.   [0,  ]t∀ ∈ T

(3) [ ]u t tE X X=�F  for . u t∀ >
 
In other words, if a stochastic process is a martingale, then, the best prediction of its 
future value is its present value. Note that the definition of martingale makes sense only 
when the underlying probability measure  and the filtration  have been specified.  P tF
 
The fundamental property of a martingale process is that its future variations are 
completely unpredictable with the filtration :  tF
 

0,  [ ] [ ] [ ] 0t u t t t u t t t t tu E x x E x E x x x+ +∀ > − = − = − =F F F . 
 
Finite mean condition (2) is necessary to ensure the existence of the conditional 
expectation. 
 
[2.1] A Continuous Martingale Property of Standard Brownian Motion  
 
Theorem 2.1 Standard Brownian motion is a continuous martingale     Let  
be a standard Brownian motion process defined on a filtered probability space 

. Then,  is a continuous martingale with respect to the filtration 
 and the probability measure .  

[0, )( )tB∈ ∞

[0, )( , , )t∈ ∞Ω F P [0, )( tB∈ ∞ )

)

[0, )t∈ ∞F P
 
Proof 
 
By definition,  is a nonanticipating process (i.e. [0, )( tB∈ ∞ [0, )t∈ ∞F - adapted process) with 

the finite mean [ ] 0tE B = < ∞  for [0, )t∀ ∈ ∞ . For 0 t u∀ ≤ ≤ < ∞ : 
 

                                                          
u

u t t vB B dB= + ∫ .                                                      (1) 

 
Using the equation (1) and the fact that a Brownian motion is a nonanticipating process, 
i.e. [ ]t t tE B B=F : 
 

[ ] [ ] [ ] [ ]
u

u t t u t t t t v tt
E B B E B E B E B dB− = − = + −∫F F F F tB  

                        [ ] [ ] [ ]
u

u t t t t v tt
E B B E B E dB B− = + −∫F F F t  

                        [ ] 0u t t t tE B B B B− = + −F 0= , 
  
or in other words: 
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[ ] [ ] [ ] [ ]
u u

u t t v t t t v t tt t
E B E B dB E B E dB B= + = + = +∫ ∫� � � �F F F F 0  

                     [ ]u t tE B B=�F , 
 
which is a martingale condition. 

,  
 
Theorem 2.2 Squared standard Brownian motion 2

tB  is not a continuous martingale     
Let  be a standard Brownian motion defined on a filtered probability 

space . Then, 
[0, )( tB∈ ∞ )

[0, )( , , )t∈ ∞Ω F P 2
tB  is not a continuous martingale with respect to the 

filtration  and the probability measure .  [0, )t∈ ∞F P
 
Proof 
 
Using the equation (1) and independent increments condition, for 0 t u≤ ≤ < ∞ : 
 
 
 
 

                          2 2[ ] [( )
u

u t t v tt
E B E B dB= + ∫� �F F ]  

                          2 2[ ] [ 2
u u

u t t t v v tt t
E B E B B dB dB= + +∫ ∫� �F F2 ]  

2 2 2[ ] [ ] [2 ] [
u u

u t t t t v t v tt t
E B E B E B dB E dB= + +∫ ∫� � �F F F ]�F  

                           2 2[ ] [ ] [
u

u t t t v tt
E B E B E dB= + ∫� �F F 2 ]�F  

                           2 2[ ] (u t tE B B u t= + −�F ) , 
 
which violates a martingale condition. 

,  
 
Theorem 2.3 Squared standard Brownian motion minus time 2

tB t−  is a continuous 
martingale     Let  be a standard Brownian motion defined on a filtered 

probability space . Then, 
[0, )( tB∈ ∞ )

[0, )( , , )t∈ ∞Ω F P 2
tB t−  is a continuous martingale with respect to 

the filtration  and the probability measureP .  [0, )t∈ ∞F
 
Proof 
 
Using the equation (1) and independent increments condition, for 0 t u≤ ≤ < ∞ : 
 

                           2 2 2[ ] [( ) {( ) ( )}
u

u t t vt
E B u E B t dB u t− = − + − −∫� �F F ]t  
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2 2 2[ ] [( ) ] [( ) ( ) ]
u

u t t t vt
E B u E B t E dB u t− = − + − −∫� �F F t�F  

                           2 2 2[ ] [( ) ] (
u

u t t v tt
E B u B t E dB u t− = − + − −∫� �F F )  

                           2 2[ ] ( ) ( )u t t tE B u B t u t u t B t− = − + − − − =�F
2 −

)

, 
 
which satisfies a martingale condition. 

,  
 
Theorem 2.4 Converse of theorem 2.3     Let  be a continuous martingale 
defined on a filtered probability space

[0, )( tX ∈ ∞

[0, )( , , )t∈ ∞Ω F P . Then, the process  is a 
standard Brownian motion if and only if it satisfies: 

[0, )( )tX ∈ ∞

 
(1) . The process starts from zero. 0 0X =

(2) 2
tX t−  is a martingale with respect to the filtration [0, )t∈ ∞F  and the probability 

measure .  P
 
[2.2] Nonmartingale Property of a Brownian Motion with Drift 
 
Theorem 2.5 Brownian motion with drift is not a continuous martingale     Let 

 be a standard Brownian motion process defined on a filtered probability space 
. Then, a Brownian motion with drift 

[0, )( tB∈ ∞ )
)[0, )( , , )t∈ ∞Ω F P [0, ) [0, )( ) (t tX t Bµ σ∈ ∞ ∈ ∞≡ +  is not a 

continuous martingale with respect to the filtration [0, )t∈ ∞F  and the probability measure .  P
 
Proof 
 
By definition,  is a nonanticipating process (i.e. [0, )( tX ∈ ∞ ) [0, )t∈ ∞F - adapted process) with 
the finite mean [ ] [ ]t tE X E t B tµ σ µ= + = < ∞  for [0, )t∀ ∈ ∞  and µ ∈R . For 

: 0 t u∀ ≤ ≤ < ∞
 

                                                         
u

u t t
X X dX= + v∫ .                                                     (2) 

 
Using the equation (2) and the fact that a Brownian motion with drift is a nonanticipating 
process, i.e. [ ]t t tE X X=F : 
 

[ ] [ ] [ ] [
u u

u t t v t t t v tt t
E X E X dX E X E dX= + = +∫ ∫� � �F F F ]�F  

                          [ ] (u t tE X X u tµ= + −�F ) , 
 
which violates a martingale condition.  

,  
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Theorem 2.6 Detrended Brownian motion with drift is a continuous martingale     
Let  be a standard Brownian motion process defined on a filtered probability 
space . Then, a detrended Brownian motion with drift defined as: 

[0, )( tB∈ ∞ )

)t

[0, )( , , )t∈ ∞Ω F P
 

[0, ) [0, ) [0, )( ) ( ) (t tX t t B t Bµ µ σ µ σ∈ ∞ ∈ ∞ ∈ ∞− ≡ + − ≡ , 
 
is a continuous martingale with respect to the filtration [0, )t∈ ∞F  and the probability 
measure .  P
 
Proof 
              
For : 0 t u∀ ≤ ≤ < ∞
 

                        [ ] [( ) (
u u

u t t vt t
E X u E X t dX dvµ µ µ− = − + −∫ ∫� �F F) ]t  

[ ] [( ) ] [( ) ]
u u

u t t t vt t
E X u E X t E dX dvµ µ µ− = − + −∫ ∫� �F F t�F  

                         [ ] ( ) (u t tE X u X t u t u tµ µ µ µ− = − + − −�F )−  

                         [ ]u t tE X u X tµ µ− = −�F , 
 
which satisfies a martingale condition.  

,  
 
[2.3] A Continuous Martingale Property of Exponential Standard Brownian Motion  
 
Theorem 2.7 Exponential of a standard Brownian motion is a continuous martingale     
Let  be a standard Brownian motion process defined on a filtered probability 
space . Then, for any

[0, )( tB∈ ∞ )

[0, )( , , )t∈ ∞Ω F P θ ∈R , the exponential of a standard Brownian motion 
defined as: 
 

                                                      21exp( )
2t tZ B tθ θ= − ,                                                 (3) 

 
is a continuous martingale with respect to the filtration [0, )t∈ ∞F  and the probability 
measure .  P
 
Proof 
 
We first prove the often used proposition. 
 
Proposition 2.1     Note that if 2( , )X Normal t tµ σ∼ , then for anyθ ∈R : 
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                                            2 21[exp( )] exp( )
2

E X t tθ θµ θ σ= + .                                        (4) 

 
Proof 
 

2

22

1 ( )[exp( )] exp( ) exp{ }
22

X tE X X
tt
µθ θ

σπσ

∞

−∞

−
= −∫ dX  

                    
2 2 2 2

22

1 2 2exp{ }
22

X t X X t t dX
tt

θ σ µ µ
σπσ

∞

−∞

− + − +
= −∫  

                    
2 2 2 2

22

1 2( )exp{ }
22

X t t X t dX
tt

θσ µ µ
σπσ

∞

−∞

− + +
= −∫  

                    
2 2 2 2 2 2

22

1 ( ( )) ( )exp{ }
22

X t t t t t dX
tt

θσ µ θσ µ µ
σπσ

∞

−∞

− + − + +
= −∫  

                    
2 2 2 2 2 2

2 22

1 ( ( )) ( )exp{ }exp{ }
2 22

X t t t t t dX
t tt

θσ µ θσ µ µ
σ σπσ

∞

−∞

− + + −
= −∫  

                    
2 2 2 2 2 2

2 22

( ) 1 ( ( ))exp{ } exp{ }
2 22

t t t X t t dX
t tt

θσ µ µ θσ µ
σ σπσ

∞

−∞

+ − − +
= −∫  

                    
2 2 2 2 2 4 2 2

2 2

( ) 2exp{ } exp{ }
2 2

t t t t t t
t t

θσ µ µ θ σ θσ µ
σ σ

+ − +
= =  

                    2 21exp{ }
2

t tθµ θ σ= +  

,  
 
Now we are ready to prove the Brownian exponential defined by the equation (3) is a 
martingale. 
 
Firstly, the process  is nonanticipating because a standard Brownian motion 

 is nonanticipating. 
[0, )( tZ ∈ ∞ )

)[0, )( tB∈ ∞

 
Secondly, it satisfies the finite mean condition, since [ ] 1tE Z = < ∞ : 
 

                                             21[ ] [exp( )]
2t tE Z E B tθ θ= −  

                                             21[ ] [exp( ) exp( )]
2t tE Z E B tθ= − θ                             

21[ ] exp( ) [exp( )]
2t tE Z t Eθ θ= − B , 

 

using the proposition 2.1, 21[exp( )] exp( )
2tE B tθ θ= : 
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2 21 1[ ] exp( ) exp( ) 1

2 2tE Z t tθ θ= − = . 

 
For , by the definition of0 t t h∀ ≤ ≤ + < ∞ tZ : 
 

21[ ] [exp{ ( )}
2t h t t h tE Z E B t hθ θ+ += − +F F ] . 

 
The trick is to multiply 0exp( ) 1t tB B eθ θ− = =  inside the expectation operator: 
 

           21[ ] [exp( )exp{ ( )} ]
2t h t t t t h tE Z E B B B t hθ θ θ θ+ += − − +F F  

2 21 1[ ] [exp( )exp( )exp( ) exp( ) exp( ) ]
2 2t h t t t t h tE Z E B B B t hθ θ θ θ θ+ += − − −F F  

           2 21 1[ ] [exp( )exp{ ( ) } ]
2 2t h t t t h t tE Z E B t B B hθ θ θ θ+ += − − −F F . 

 
Since Brownian increments are independent: 
 

2 21 1[ ] [exp( ) ] [exp{ ( ) } ]
2 2t h t t t t h t tE Z E B t E B B hθ θ θ θ+ += − − −F F F , 

 
and since tB  is -adapted: tF
 

2 21 1[ ] exp( ) [exp{ ( ) }]
2 2t h t t t h tE Z B t E B Bθ θ θ θ+ += − − −F h . 

 
By the definition of tZ : 
 

21[ ] [exp{ ( )}exp( )]
2t h t t t h tE Z Z E B Bθ θ+ += − −F h , 

 

and since 21exp( )
2

hθ−  is a constant: 

 
21[ ] exp( ) [exp{ ( )}]

2t h t t t h tE Z Z h E B Bθ θ+ += − −F . 

 
Use the proposition 2.1 because (0, )t h tB B Normal h+ − ∼ : 
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2 21 1[ ] exp( )exp( )
2 2t h t tE Z Z hθ θ+ = −F h  

                                        [ ]t h t tE Z Z+ =F .                
,  

 

 
Figure 2.1 Brownian motion as a subclass of continuous martingales 
 
[3] Brownian Motion as a Subclass of Gaussian Processes 
 
Definition 3.1 Gaussian process     A stochastic process  on  (i.e. this 
means that 

[0, )( )tX ∈ ∞
dR

tX  is a -dimensional vector) defined on a filtered probability 
space  is said to be a Gaussian process, if, for any increasing sequence of 
time , the law of any finite dimensional vector 

 of the process is multivariate normal. 

d

[0, )( , , )t∈ ∞Ω F P

1 20 ... kt t t≤ < < < < ∞

( 1 2( ), ( ),..., ( )kX t X t X t )
 
Because all finite dimensional multivariate normal distributions are uniquely determined 
by their means and covariance function, Gaussian processes can be defined in an alternate 
way. 
 
Definition 3.2 Gaussian process     A stochastic process  on  (i.e. this 
means that 

[0, )( )tX ∈ ∞
dR

tX  is a -dimensional vector) defined on a filtered probability 
space  is said to be a Gaussian process, if the law of the process  is 
uniquely determined by: 

d

[0, )( , , )t∈ ∞Ω F P [0, )( )tX ∈ ∞

 
(1) Means . [ ]tE X
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(2) Covariance functions  for 
, 

( , ) [{ ( )}{ ( )} ]T
t u t t u uCov X X E X E X X E X= − −

0 t u∀ ≤ ≠ < ∞
 
where T  is a transposition operator. 
 
Theorem 3.1 A standard Brownian motion     A standard Brownian motion  is 
a one dimensional Gaussian process with: 

[0, )( )tB∈ ∞

 
(1) Zero mean . [ ] 0tE B =
(2) Covariance function ( , ) min{ , }t uCov B B t u t u= ∧ = . 
 
Proof 
 
By the definition of a standard Brownian motion. For more details, we recommend Karlin 
and Taylor (1975) page 376-377.  
 
The converse of the theorem 3.1 is also true. 
 
Theorem 3.2 A standard Brownian motion     A real valued one dimensional Gaussian 
stochastic process  defined on a filtered probability space[0, )( tX ∈ ∞ ) [0, )( , , )t∈ ∞Ω F P  is a 
standard Brownian motion with drift, if its mean and covariance function satisfy: 
 
(1) . [ ] 0tE X =
(2)  ( , ) min{ , }t uCov X X t u t u= ∧ =
 
Proof 
 
By the definition of a standard Brownian motion. 
 

 
 
Figure 3.1 Brownian motion as a subclass of Gaussian processes 
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[4] Brownian Motion as a Subclass of Markov Processes 
 
We first introduce the definitions and terminologies used in the study of Markov 
processes. 
 
Definition 4.1 Transition function     Consider a continuous time nonanticipating 
stochastic process  defined on a filtered probability space [0, )( tX ∈ ∞ ) [0, )( , , )t∈ ∞Ω F P  which 
takes values in a measurable space ( ,  (i.e. )B B ( )B∈B R ).  is called a state space 
of the process and the process is said to be 

( , )B B
B - valued. Consider an increasing sequence 

of time 0 . A real valued transition function t u v≤ ≤ ≤ < ∞ , ( , )t v x BP  with  and 
 is a mapping which satisfies the following conditions: 

x∈R
( )B∈B R

 
(1) , ( , )t v x BP  is a probability measure which maps every fixed  into B. x
(2) , ( , )t v x BP  is - measurable for everyB ( )B∈B R . 
(3) , ( , ) ( )t t x B Bδ=P . 

(4) , , ,( , ) ( , ) ( , )t v t u u vx B x dy y= ∫RP P P B . 

 
The condition (4) is called the Chapman-Kolmogorov identity. Chapman-Kolmogorov 
identity means that the transition probability , ( , )t v x BP  of moving from a state  at time 

 to a state 
x

t B  at time v  can be calculated as a sum (i.e. integral) of the product of the 
transition probabilities via an intermediate time t u v≤ ≤ , i.e. , ( , )t u x dyP  and . In 
the general cases, transition functions are dependent on the states and time. 

, ( , )u v y BP

 
Definition 4.2 Time homogeneous (temporary homogeneous or stationary) transition 
function     Consider an increasing sequence of time 0 t u v≤ ≤ ≤ < ∞ . A real valued 
transition function , ( , )t v x BP  with x∈R  and ( )B∈B R  is said to be time homogeneous if 
it satisfies: 
 

, 0,( , ) ( , ) ( , )t v v t v tx B x B x− − B= =P P P , 
 
which indicates that the transition function , ( , )t v x BP  of moving from a state  at time  
to a state 

x t
B  at time  is equivalent to the transition function v 0, ( , )v t x B−P  of moving from 

a state  at time 0  to a state x B  at time v t− . In other words, the transition function is 
independent of the time t  and depends only on the interval of time v t− .  
 
Definition 4.3 Chapman-Kolmogorov identity for the time homogeneous transition 
function     Consider an increasing sequence of time 0 t u≤ ≤ < ∞ . Chapman-
Kolmogorov identity for the time homogeneous transition function is: 
 

0, 0,( , ) ( , ) ( , ) ( , ) ( , )t u t u t ux dy y B x dy y B x B+= =∫ ∫R R
P P P P P . 
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Definition 4.4 Markov Processes (less formal)     Consider a continuous time 
nonanticipating stochastic process  defined on a filtered probability space 

. Then, the process  is said to be a Markov process if it satisfies, 
for every increasing sequence of time

[0, )( tX ∈ ∞ )
)[0, )( , , )t∈ ∞Ω F P [0, )( tX ∈ ∞

1 20 ... nt t t t u< ≤ ≤ ≤ ≤ ≤ < ∞ : 
 

1 20( ) ( , , ,..., , ) ( )
nu t u t t t t u tX X X X X X X X X= =FP P P , 

 
Informally, Markov property means that the probability of a random variable uX  at time 

 (tomorrow) conditional on the entire history of the stochastic process u t≥ [0, ] [0, ]t tX≡F  
is equal to the probability of a random variable uX  at time  (tomorrow) conditional 
only on the value of a random variable at time t  (today). In other words, the history 
(sample path) of the stochastic process  is of no importance in that the way this 
stochastic process evolved or the dynamics does not mean a thing in terms of the 
conditional probability of the process. This property is sometimes called a memoryless 
property. 

u t≥

[0, ]tF

 
Definition 4.5 Markov Processes (formal)     Consider a continuous time 
nonanticipating stochastic process  defined on a filtered probability space 

 which takes values in a measurable space .  is called a state 
space of the process and the process is said to be 

[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P ( , )B B ( , )B B
B - valued. Then, the process  

is said to be a Markov process if it satisfies, for an increasing sequence of time 
: 

[0, )( )tX ∈ ∞

0 t u v≤ ≤ ≤ < ∞ 0 t u< ≤ < ∞
 

[ ] [v t v tE X E X X=F ] , 
 
with the transition function: 
 

, , ,( , ) ( , ) ( , )t v t u u vx B x dy= ∫RP P P y B

)

. 

 
Now we are ready to characterize a standard Brownian motion as a subclass of Markov 
processes. 
 
Theorem 4.1 A standard Brownian motion process     A standard Brownian motion 

 defined on a filtered probability space[0, )( tB∈ ∞ [0, )( , , )t∈ ∞Ω F P  satisfies the followings: 
 
(1) It is a time homogeneous Markov process. In other words, for any bounded Borel 
function  and for : :f →R R 0 t u∀ ≤ ≤ < ∞
 

0,[ ( ) ] ( ) ( )u t u t t u t tE f B f B f B− −= =F P P . 
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(2) Its transition function  is given by: u t h− ≡P P
 

21 (( , ) exp
22h

x yx y
ttπ

)⎧ ⎫−
= −⎨ ⎬

⎩ ⎭
P . 

 

(3) 
( )   if   0

( )
( , ) ( )    if   0h

h

f x t
f x

x y f y dy t
∞

−∞

=⎧⎪= ⎨
>⎪⎩∫

P
P

. 

 
Proof 
 
Markov property is a result of independent increments property of Brownian motion. Let 

 be a standard Brownian motion defined on a filtered probability space 
. Consider an increasing sequence of time 

[0, )( tB∈ ∞ )

[0, )( , , )t∈ ∞Ω F P 1 20 ... nt t t t u< < < < < < < ∞  
where t  is the present. As a result of independent increments condition: 
 
                                      

1 2 10( , ,..., )
nu t t t t t tX X X X X X X X− − − −P  

                                  1 2 1

1 2 1

0

0

( , ,..., )
( , ,..., )

n

n

u t t t t t t

t t t t t

X X X X X X X X
X X X X X X

− − − −
=

− − −

∩P
P

 

1 2 1

1 2 1

0

0

( ) ( , ,..., )
( , ,..., )

n

n

u t t t t t t

t t t t t

X X X X X X X X
X X X X X X

− − − −
=

− − −

P P
P

 

                                  ( )u tX X= −P , 
 
which means that there is no correlation (probabilistic dependence structure) on the 
increments among the past, the present, and the future.  
 
Using the simple relationship ( )u u t tX X X X≡ − +  for an increasing sequence of time 

: 1 20 ... nt t t t u< < < < < < < ∞
 

1 2 1 20 0( , , ,..., , ) (( ) , , ,..., , )
n nu t t t t u t t t t t tX X X X X X X X X X X X X X= − +P P  

                                                             ( )u tX X= P , 
 
which holds because an increment ( )u tX X−  is independent of tX  by definition and the 
value of tX  depends on its realization ( )tX ω .  

,  
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Figure 4.1 Brownian motion as a subclass of Markov processes 
 
[5] Brownian Motion as a Subclass of Itô Diffusion Processes 
 
Definition 5.1 Itô diffusion processes     An Itô diffusion process is a real valued 
stochastic process  defined on a filtered probability space [0, )( tX ∈ ∞ ) [0, )( , , )t∈ ∞Ω F P  whose 
dynamics (or motion) is governed by a stochastic differential equation of the form: 
 

( , ) ( , )t t tdX b t X dt t X dBtσ= + , 
 
where  is called a drift and ( , )tb t X ∈R ( , )tt Xσ  which is a nonnegative real valued 
constant is called a diffusion parameter. In the general case,  and ( , )tb t X ( , )tt Xσ  are 
functions of both time and space. As usual, tB  stands for a standard Brownian motion. 
The solution of the above stochastic differential equation is given by: 
 

0 0 0
( , ) ( , )

t t

t sX X b s X ds s X dBσ= + +∫ ∫ s s

)

. 

 
Definition 5.2 Time homogeneous (temporary homogeneous or stationary) Itô 
diffusion processes     A time homogeneous Itô diffusion process is a real valued 
stochastic process  defined on a filtered probability space [0, )( tX ∈ ∞ [0, )( , , )t∈ ∞Ω F P  whose 
dynamics (or motion) is governed by a stochastic differential equation of the form: 
 

( ) ( )t t tdX b X dt X dBtσ= + , 
 
where a drift  and a diffusion parameter ( )tb X ∈R ( ) 0tXσ ≥  are independent of the time 

 and depend only on the space.  t
 
Theorem 5.1 Time homogeneous Itô diffusion processes are a subclass of time 
homogeneous Markov processes     A time homogeneous Itô diffusion process  [0, )( )tX ∈ ∞
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defined on a filtered probability space [0, )( , , )t∈ ∞Ω F P  is a time homogeneous Markov 
process. In other words, for any bounded Borel function  and for 

: 
:f →R R

0 t u∀ ≤ ≤ < ∞
 

0,[ ( ) ] ( ) ( )u t u t t u t tE f B f B f B− −= =F P P , 
 
where  is a time homogeneous transition function given by: u t h− ≡P P
 

( )   if   0
( )

( , ) ( )    if   0h
h

f x t
f x

x y f y dy t
∞

−∞

=⎧⎪= ⎨
>⎪⎩∫

P
P

. 

 
Proof 
 
Consult Oksendal (2003) pages 115-116. 
 
Theorem 5.2 A standard Brownian motion     A standard Brownian motion  
defined on a filtered probability space 

[0, )( )tB∈ ∞

[0, )( , , )t∈ ∞Ω F P  is a time homogeneous Itô diffusion 
process  (a time homogeneous Markov process) whose dynamics (or motion) is 
governed by a stochastic differential equation of the form: 

[0, )( tX ∈ ∞ )

 
t tdX dB= . 

 
In other words, a standard Brownian motion  is a time homogeneous Itô 
diffusion process with the zero drift 

[0, )( tB∈ ∞ )
( , ) 0tb t X =  and the unit diffusion parameter 

( , ) 1tt Xσ = . 
 
Proof 
 
By the definition of a standard Brownian motion. 
 
For more details about Itô diffusion processes, consult an excellent book Oksendal (2003) 
chapter 3 and 7. 
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Figure 5.1 Brownian motion as a subclass of Markov processes 
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