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Abstract 
 
This paper presents everything you need to know about Black-Scholes model which is 
truly single most important revolutionary work in the history of quantitative finance. 
Although BS model has its flaws such as the normally distributed (i.e. zero skewness and 
zero excess kurtosis) log return density and the assumption of constant volatility across 
strike prices and the time to maturity, it outperforms more (so-called) advanced models in 
numerous cases. 
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[1] Standard Brownian Motion: Building Block of BS Model 
 
A standard Brownian motion  is a real valued stochastic process defined on a 
filtered probability space  satisfying: 

[0, )( tB∈ ∞ )

[0, )( , , )t∈ ∞Ω F P
 
(1) Its increments are independent. In other words, for 1 20 ... nt t t≤ < < < < ∞ : 
 

0 1 0 2 1 1
( ... )

n nt t t t t t tB B B B B B B
−

− − −∩ ∩ ∩ ∩P  
                                   

0 1 0 2 1
( ) ( ) ( )... ( )

n nt t t t t t t 1
B B B B B B B

−
= − − −P P P P . 

 
(2) Its increments are stationary (time homogeneous): i.e. for , 0h ≥ t h tB B+ −  has the 
same distribution as hB . In other words, the distribution of increments does not depend 
on t .  
(3) . The process starts from 0 almost surely (with probability 1). 0( 0)B = =P 1
(4) (0, )tB Normal t∼ . Its increments follow a Gaussian distribution with the mean  and 
the variance t . 

0

 
It turns out that a standard Brownian motion  satisfies the following conditions: [0, )( tB∈ ∞ )
 
(1) The process is stochastically continuous: 0ε∀ > , 

0
lim ( ) 0t h th

X X ε+→
− ≥ =P . 

(2) Its sample path (trajectory) is continuous in t  (i.e. continuous∈  rcll) almost surely.  
 
For more details about Brmwoan motion, consult Matsuda (2005) “Introduction to 
Brownian Motion”. 
 
[2] Black-Scholes’ Distributional Assumptions on a Stock Price 
 
In traditional finance literature almost every financial asset price (stocks, currencies, 
interest rates) is assumed to follow some variations of Brownian motion with drift 
process. BS (Black-Scholes) models a stock price increment process in an infinitesimal 
time interval  as a log-normal random walk process: dt
 
                                                      t t tdS S dt S dBtµ σ= + ,                                                  (1) 
 
where the drift is tSµ  which is a constant expected return on a stock µ  proportional to a 
stock price  and the volatility is tS tSσ  which is a constant stock price volatility σ  
proportional to a stock price . The reason why the process (1) is called a log-normal 
random walk process will be explained very soon. Alternatively, we can state that BS 
models a percentage change in a stock price process in an infinitesimal time interval dt  
as a Brownian motion with drift process: 

tS
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                                     t
t

t

dS dt dB
S

µ σ= + ,                                                                        (2) 

2

22

( / )1( ) exp[
22

t t

t

dS dS S dt
S ddt

µ
σπσ

−
= −P ]t

t
. 

 
Let  be a random variable whose dynamics is given by an Ito process: S
 

( , ) ( , )dS a S t dt b S t dB= + , 
 
and V  be a function dependent on a random variable  and time . The dynamics of 

 is given by an Ito formula: 
S t

( , )V S t
 

                                            
2

2
2

1
2

V V VdV dt dS b dt
t S S

∂ ∂ ∂
= + +
∂ ∂ ∂

,                                       (3) 

 
or in terms of a standard Brownian motion process B : 
 

( )
2

2
2

1
2

V V VdV dt adt bdB b dt
t S S

∂ ∂ ∂
= + + +
∂ ∂ ∂

, 

                                     
2

2
2

1
2

V V V VdV a b dt b dB
t S S S

⎛ ⎞∂ ∂ ∂ ∂
= + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

.                               (4) 

 
Dynamics of a log stock price process  can be obtained by applying (4) to (1) as: ln tS
 

2
2 2

2

ln ln ln ln1ln
2

t t t
t t t t

t t

S S S Sd S S S dt S dB
t S S S

µ σ σ
⎛ ⎞∂ ∂ ∂ ∂

= + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
t

t
t

. 

 

Substituting ln 0tS
t

∂
=

∂
, ln 1t

t t

S
S S

∂
=

∂
, and 

2

2

ln 1t

t t

S
S S

∂
= −

∂ 2  yields: 

 

                                               21ln
2td S dt dBµ σ σ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
t ,                                           (5) 

 
or: 
 

2
0 0

1ln ln ( 0) ( )
2t tS S t B Bµ σ σ⎛ ⎞− = − − + −⎜ ⎟

⎝ ⎠
 

                                     2
0

1ln ln
2tS S t tBµ σ σ⎛ ⎞= + − +⎜ ⎟

⎝ ⎠
.                                                 (6) 
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The equation (6) means that BS models a log stock price l  as a Brownian motion with 
drift process whose probability density is given by a normal density: 

n tS

 

                         

2
2

0

22

1ln ln ( )
21(ln ) exp[ ]

22

t

t

S S t
S

tt

µ σ

σπσ

⎧ ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝⎩ ⎭= −P ⎠ .                     (7) 

 
Alternatively, the equation (6) means that BS models a log return ( )0ln /tS S  as a 
Brownian motion with drift process whose probability density is given by a normal 
density: 
 

                       ( ) 2
0

1ln /
2t tS S t Bµ σ σ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
, 

                       ( )( )
( )

2
2

0

0 22

1ln /
21ln / exp[ ]

22

t

t

S S t
S S

tt

µ σ

σπσ

⎧ ⎫⎛ ⎞− −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭= −P .                 (8) 

 
An example of BS normal log return ( )0ln /tS S  density of (8) is illustrated in Figure 1. 
Of course, BS log return density is symmetric (i.e. zero skewness) and have zero excess 
kurtosis because it is a normal density. 

-1 -0.5 0 0.5 1
log return lnH ê LSt S0

0

0.5

1

1.5

2

2.5

ytisneD

 
Figure 1: An Example of BS normal log return ln(St/S0) Density. Parameters and 
variables fixed are µ  = 0.1, σ  = 0.2, and t  = 0.5. 
 
Let y  be a random variable. If the log of y  is normally distributed with mean  and 
variance  such that , then 

a
2b 2ln ( , )y N a b∼ y  is a log-normal random variable whose 

density is a two parameter family ( , : )a b
 

2
2 2

1
22( , ( 1

a b a b by Lognormal e e e
+ + ))−∼ , 
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                                          ( ) { }2

22

ln1 exp[ ]
22

y a
y

by bπ

−
= −P . 

 
From the equation (6), we can state that BS models a stock price  as a log-normally 
distributed random variable whose density is given by: 

tS

 

                         ( )

2
2

0

22

1ln ln ( )
21 exp[ ]

22

t

t

t

S S t
S

tS t

µ σ

σπσ

⎧ ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝⎩ ⎭= −P ⎠ .                    (9) 

 
Its annualized moments are calculated as: 
 
                                  0[ ]tMean S S eµ= , 

                                  ( )22 2
0[ ] 1tVariance S S e eσ µ= − , 

                                  ( )2 2

[ ] 2 1tSkewness S e eσ σ= + − , 
2 22 3 [ ] 6 3 2tExcess Kurtosis S e e e

24σ σ σ= − + + + . 
 
An example of BS log-normal stock price density of (9) is illustrated in Figure 2. Notice 
that BS log-normal stock price density is positively skewed. 

20 30 40 50 60 70 80
Stock price St

0
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Figure 2: An Example of BS Log-Normal Density of a Stock Price. Parameters and 
variables fixed are  = 50, 0S µ  = 0.1, σ  = 0.2, and t  = 0.5. 
 

Table 1 
Annualized Moments of BS Log-Normal Density of A Stock Price in Figure 2 

 
 Mean                     Standard Deviation                    Skewness                    Excess Kurtosis 
 
55.2585                          11.1632                               0.614295                         0.678366 
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From the equation (6), we can obtain an integral version equivalent of (1): 
 

2
0

1exp[ln ] exp[ln ]
2t tS S tµ σ σ⎛ ⎞= + − +⎜ ⎟

⎝ ⎠
B  

                                     2
0

1exp[ln ]exp
2t tS S tµ σ σB⎡ ⎤⎛ ⎞= −⎜ ⎟ +⎢ ⎥⎝ ⎠⎣ ⎦

 

                                     2
0

1exp
2tS S t Bµ σ σ t

⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
.                                               (10) 

 
Equation (10) means that BS models a stock price dynamics as a geometric (i.e. 
exponential) process with the growth rate given by a Brownian motion with drift process: 
 

21
2 tt Bµ σ σ⎛ ⎞− +⎜ ⎟

⎝ ⎠
. 

 
[3] Traditional Black-Scholes Option Pricing: PDE Approach by Hedging 
 
Consider a portfolio  of the one long option position V S  on the underlying stock  
written at time  and a short position of the underlying stock in quantity  to derive 
option pricing function.  

P ( , )t

t

S
t ∆

 
                                                        ( , )t tP V S t S= −∆ .                                                   (11) 
 
Portfolio value changes in a very short period of time  by: dt
 
                                                     ( , )t tdP dV S t dSt= −∆ .                                                (12) 
 
Stock price dynamics is given by a log-normal random walk process of the equation 
(7.1): 
 
                                                     t t tdS S dt S dBtµ σ= + .                                                 (13) 
                                                          
Option price dynamics is given by applying Ito formula of the equation (3): 
 

                                       
2

2 2
2

1
2t t

t t

V V VdV dt dS S dt
t S S

σ∂ ∂ ∂
= + +
∂ ∂ ∂

.                                   (14) 

 
Now the change in the portfolio value can be expressed as by substituting (13) and (14) 
into (12): 
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2

2 2
2

1
2t t t

t t

V V VdP dt dS S dt dS
t S S

σ∂ ∂ ∂
= + + −∆
∂ ∂ ∂ t .                             (15) 

 
Setting  (i.e. delta hedging) makes the portfolio completely risk-free (i.e. the 
randomness  has been eliminated) and the portfolio value dynamics of the equation 
(15) simplifies to: 

/ tV S∆ = ∂ ∂

tdS

 

                                                
2

2 2
2

1
2t t

t

VdP S dt
t S

σ
⎛ ⎞∂ ∂

= +⎜ ∂ ∂⎝ ⎠

V
⎟ .                                         (16) 

 
Since this portfolio is perfectly risk-free, assuming the absence of arbitrage opportunities 
the portfolio is expected to grow at the risk-free interest rate :  r
 
                                                            [ ]t tE dP rPdt= .                                                     (17) 
 
After substitution of (11) and (16) into (17) by setting / tV S∆ = ∂ ∂ , we obtain: 
 

2
2 2

2

1
2 t t

t t

V V VS dt r V S
t S S

σ
⎛ ⎞ ⎛∂ ∂ ∂

+ = −⎜ ⎟ ⎜∂ ∂ ∂⎝ ⎠ ⎝
dt
⎞
⎟
⎠

. 

 
After rearrangement, Black-Scholes PDE is obtained: 
 

                       
2

2 2
2

( , ) ( , ) ( , )1 ( , ) 0
2

t t t
t t

t t

V S t V S t V S tS rS rV S
t S S

σ∂ ∂ ∂
+ + −

∂ ∂ ∂ t t =

2
t

.                   (18) 

 
BS PDE is categorized as a linear second-order parabolic PDE. The equation (18) is a 
linear PDE because coefficients of the partial derivatives of  (i.e.  and 

) are not functions of  itself. The equation (18) is a second-order PDE because 
it involves the second-order partial derivative

( , )tV S t 2 2 / 2tSσ

trS ( , )tV S t
2 ( , ) /tV S t S∂ ∂ . Generally speaking, a PDE 

of the form: 
 

2 2 2

2 2 0V V V V Va b c d e g
t S S t t S

∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂ ∂
, 

 
is said to be a parabolic type if: 
 
                                                               4g de 0− = .                                                      (19) 
 
The equation (18) is a parabolic PDE because it has 0g =  and 0e =  which satisfies the 
condition (19). 
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BS solves PDE of (18) with boundary conditions: 
 

(max ,0TS K− )
)
 for a plain vanilla call, 

(max ,0TK S−  for a plain vanilla put, 
 
and obtains closed-form solutions of call and put pricing functions. Exact derivation of 
closed-form solutions by solving BS PDE is omitted here (i.e. the original BS approach). 
Instead we will provide the exact derivation by a martingale asset pricing approach (this 
is much simpler) in the next section. 
 
[4] Traditional Black-Scholes Option Pricing: Martingale Pricing Approach 
 
Let { ;0 }tB t T≤ ≤  be a standard Brownian motion process on a space ( , , )Ω PF . Under 
actual probability measure , the dynamics of BS stock price process is given by 
equation (9) in the integral form (i.e. which is a geometric Brownian motion process):  

P

 

                                             2
0

1exp
2tS S t Bµ σ σ t

⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
.                                       (20) 

 
BS model is an example of a complete model because there is only one equivalent 
martingale risk-neutral measure  under which the discounted asset price process 

 becomes a martingale. BS finds the equivalent martingale risk-neutral 
measure  by changing the drift of the Brownian motion process while keeping 
the volatility parameter 

∼Q P
{ ;0rt

te S t T− ≤ ≤ }
PBS ∼Q

σ  unchanged: 
 

                                            2
0

1exp
2

BS
tS S r t Bσ σ t

⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
Q .                                     (21) 

 
Note that BS

tBQ  is a standard Brownian motion process on ( , , )BSΩ QF  and the 
discounted stock price process { ;0rt

te S t T− }≤ ≤  is a martingale under  and with 
respect to the filtration { . Then, a plain vanilla call option price  
which has a terminal payoff function 

BSQ
;0 }t t T≤ ≤F ( , )tC t S

( )max ,0TS K−  is calculated as: 
 
                                     ( )( )( , ) max ,0BSr T t

t TC t S e E S K− −
t⎡ ⎤= −⎣ ⎦

Q F .                               (22) 
 
Let  (drop the subscript BS for simplicity) be a probability density function of  
in a risk-neutral world. From the equation (9), a terminal stock price  is a log-normal 
random variable with its density of the form:  

( )TSQ TS

TS
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                       ( )

2
2

22

1ln ln ( )
21 exp[ ]

22

T t

T

T

S S r
S

S

σ τ

σ τπσ τ

⎧ ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝⎩ ⎭= −Q ⎠ .                 (23) 

 
Using (23), the expectation term in (22) can be rewritten as: 
 

( ) ( ) ( ) ( ) ( )
0

max ,0 0
K

T t T T t T T tK
E S K S K S dS S

∞
⎡ ⎤− = − +⎣ ⎦ ∫ ∫Q Q QF F TdSF  

             ( ) ( ) ( )max ,0T t T T tK
E S K S K S

∞
⎡ ⎤− = −⎣ ⎦ ∫Q QF F TdS . 

 
Using this, we can rewrite (22) by setting T tτ ≡ −  as: 
 

                                        ( ) ( )( , ) r
t T T tK

C S e S K S dSττ
∞−= −∫ Q F T .                                 (24) 

 
Since  is a log-normal random variable with its density given by the equation (23): TS
 

                                 2 21ln ln ( ) ,
2T t tS Normal m S r σ τ σ τ⎛ ⎞≡ + −⎜ ⎟

⎝ ⎠
∼F .                         (25) 

 
For the notational simplicity, let ln lnT t TS ≡F S . We use a change of variable technique 
from a log-normal random variable  to a standard normal random variable TS Z  through: 
 

                    (
21ln ln ( )

ln2 0,1
T t

T

S S r
S mZ N

σ τ

σ τ σ τ

⎧ ⎫− + −⎨ ⎬ −⎩ ⎭≡ ≡ ∼ )ormal ,                    (26) 

 
with: 
 

( )
21 exp[ ]

22
ZZ

π
= −Z . 

 
From (26): 
 
                                                      ( )expTS Zσ τ= m+ .                                              (27) 

 
We can rewrite (24) as: 
 

( )( ) ( )
(ln ) /

( , ) expr
t K m

C S e Z m K Z dZτ

σ τ
τ σ τ

∞−

−
= + −∫ Z , 
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and we express this with more compact form as:  
                          
                                                          1( , )tC S C C2τ = − ,                                                 (28) 
 
where ( ) ( )1 (ln ) /

expr

K m
C e Z m Z dZτ

σ τ
σ τ

∞−

−
= +∫ Z  and ( )2 (ln ) /

r

K m
C Ke Z dZτ

σ τ

∞−

−
= ∫ Z . 

 
Consider : 1C
 
               ( ) ( ) ( )1 (ln ) /

exp expr

K m
C e Z m Z dZτ

σ τ
σ τ

∞−

−
= ∫ Z  

( ) ( ) ( )2
1 (ln ) /

1exp exp ln ( ) exp
2t K m

C r S r Z Z
σ τ

τ σ τ σ τ
∞

−

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠ ∫ Z dZ  

               ( ) ( )2
1 (ln ) /

1exp ln exp
2t K m

C S Z Z
σ τ

σ τ σ τ
∞

−

⎛ ⎞= −⎜ ⎟
⎝ ⎠ ∫ Z dZ     

               ( )
2

2
1 (ln ) /

1 1exp ln exp exp[ ]
2 22t K m

ZC S Z
σ τ

σ τ σ τ
π

∞

−

⎛ ⎞= − −⎜ ⎟
⎝ ⎠ ∫ dZ     

               
2

2
1 (ln ) /

1 1 2exp ln exp[ ]
2 22t K m

Z ZC S
σ τ

σ τσ τ
π

∞

−

−⎛ ⎞= − −⎜ ⎟
⎝ ⎠ ∫ dZ     

               
( )2 2

2
1 (ln ) /

1 1exp ln exp[ ]
2 22t K m

Z
C S

σ τ

σ τ σ τ
σ τ

π
∞

−

− −⎛ ⎞= − −⎜ ⎟
⎝ ⎠ ∫ dZ     

               
( )2

2 2
1 (ln ) /

1 1 1exp ln exp exp[ ]
2 2 22t K m

Z
C S

σ τ

σ τ
σ τ σ τ

π
∞

−

−⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ∫ dZ     

               ( )
( )2

1 (ln ) /

1exp ln exp[ ]
22t K m

Z
C S

σ τ

σ τ

π
∞

−

−
= −∫ dZ     

               
( )2

1 (ln ) /

1 exp[ ]
22t K m

Z
C S dZ

σ τ

σ τ

π
∞

−

−
= −∫ .                                                (29) 

 
Use the following relationship: 
 

( )2 21 1exp[ ] exp[ ]
2 22 2

b b c

a a c

Z c ZdZ dZ
π π

−

−

−
− = −∫ ∫ . 

 
Equation (29) can be rewritten as: 
 

                                       
2

1 (ln ) /

1 exp[ ]
22t K m

ZC S dZ
σ τ σ τ π

∞

− −
= ∫ − .                                (30) 
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Let  be the standard normal cumulative density function. Using the symmetry of a 
normal density, (30) can be rewritten as: 

( )N

 
2(ln ) /

1
1 exp[ ]

22
K m

t
ZC S dZ

σ τ σ τ

π
− − +

−∞
= −∫  

                                      1
ln

t
K mC S N σ τ

σ τ
− +⎛

= ⎜
⎝ ⎠

⎞
+ ⎟ .                                                  (31) 

 
From (25), substitute for m . The equation (31) becomes: 
 

            
2

1

1ln ln ( )
2t

t

K S r
C S N

σ τ
σ τ

σ τ

⎛ ⎞− + + −⎜ ⎟
= +⎜ ⎟

⎜ ⎟
⎝ ⎠

 

            

2 2 2

1

1 1ln ( ) ln ( )
2 2

t t

t t

S Sr r
K KC S N S N

σ τ σ τ σ τ

σ τ σ τ

⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞+ − + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜= =

⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎟
⎠

             (32) 

 
Next, consider  in (28): 2C
 

( ) ( )
(ln ) /

2 (ln ) /

K mr r

K m
C Ke Z dZ Ke Z dZ

σ ττ τ

σ τ

∞ − −− −

− −∞
= =∫ ∫Z Z  

                        2
lnr K mC Ke Nτ
σ τ

− − +⎛
= ⎜

⎝ ⎠

⎞
⎟ .                                                                     (33) 

 
From (25), substitute for m . The equation (33) becomes: 
 

          
2 2

2

1 1ln ln ( ) ln ( )
2 2

t
t

r r

SK S r r
KC Ke N Ke Nτ τ

σ τ σ

σ τ σ τ
− −

⎛ ⎞⎛ ⎞− + + − + −⎜ ⎟⎜ ⎟
= = ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

τ
.        (34) 

 
Substitute (32) and (34) into (28) and we obtain BS plain vanilla call option pricing 
formula: 
 
                                            ( ) ( )1( , ) r

t tC S S N d Ke N dττ −= − 2 ,                                      (35) 
 

where 

2

1

1ln ( )
2

tS r
Kd

σ τ

σ τ

⎛ ⎞ + +⎜ ⎟
⎝ ⎠=  and 

2

2 1

1ln ( )
2

tS r
Kd d

σ τ
σ τ

σ τ

+ −
= = − . 
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Following the similar method, BS plain vanilla put option pricing formula can be 
obtained as: 
 
                                            ( ) ( )2( , ) r

tP S Ke N d S N dττ −
1t= − − − .                                  (36) 

 
We conclude that both PDE approach and martingale approach give the same result. This 
is because in both approaches we move from a historical probability measure  to a risk-
neutral probability measureQ . This is very obvious for martingale method. But in PDE 
approach because the source of randomness can be completely eliminated by forming a 
portfolio of options and underlying stocks, this portfolio grows at a rate equal to the risk-
free interest rate. Thus, we switch to a measure . For more details, we recommend 
Neftci (2000) pages 280-282 and 358-365.  

P

Q

 
[5] Alternative Interpretation of Black-Scholes Formula: A Single Integration 
Problem 
 
Under an equivalent martingale measure  under which the discounted asset price 
process { ;  becomes a martingale, a plain vanilla call and put option price  
which has a terminal payoff function 

∼Q P
0rt

te S t T− ≤ ≤ }

( )max ,0TS K−  and ( )max ,0TK S−  are calculated 
as: 
 
                                       ( )( )( , ) max ,0r T t

t TC t S e E S K− −
t⎡ ⎤= −⎣ ⎦

Q F ,                               (37) 

                                       ( )( )( , ) max ,0r T t
tP t S e E K S− −

T t⎡ ⎤= −⎣ ⎦
Q F .                               (38)   

 
Note that an expectation operator [ ]E  is under a probability measure Q  and with 

respect to the filtration . Let tF ( T tSQ F )  be a conditional probability density function of 

a terminal stock price . For the notational simplicity we use TS ( ) ≡ ( )T t TS SQFQ  and 
T tτ ≡ − . The expected terminal payoffs in the equations (37) and (38) can be rewritten 

as: 
 
 

( ) ( ) ( )max ,0T t T TK
E S K S K S

∞
⎡ ⎤− = −⎣ ⎦ ∫Q QF TdS , 

                                ( ) ( ) ( )
0

max ,0
K

T t T TE K S K S S⎡ ⎤− = −⎣ ⎦ ∫Q QF TdS

T

. 

                                                        
Using these, we can rewrite (37) and (38) as: 
 

                                          ,                                    (39) ( ) ( )( , ) r
t T TK

C S e S K S dSττ
∞−= −∫ Q
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                                          .                                   (40)               ( ) ( )
0

( , )
Kr

t TP S e K S S dSττ −= −∫ Q T T

 
BS assumes that a terminal stock price  is a log-normal random variable with its 
density of the form:  

TS

 

( )

2
2

22

1ln ln ( )
21 exp[ ]

22

T t

T

T

S S r
S

S

σ τ

σ τπσ τ

⎧ ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭= −Q . 

 
Therefore, BS option pricing formula comes down to a very simple single integration 
problem: 
 

    ( )

2
2

22

1ln ln ( )
21( , ) exp[ ]

22

T t
r

t T TK
T

S S r
C S e S K dS

S
τ

σ τ
τ

σ τπσ τ

∞−

⎧ ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭= − −∫ ,    (41) 

    ( )

2
2

220

1ln ln ( )
21( , ) exp[ ]

22

T t
Kr

t T T

T

S S r
P S e K S dS

S
τ

σ τ
τ

σ τπσ τ
−

⎧ ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭= − −∫ .    (42) 

 
This implies that as far as a risk-neutral conditional density of the terminal stock price 

( T tSQ F )  is known, plain vanilla option pricing reduces to a simple integration problem.  
 
[6] Black-Scholes Model as an Exponential Lévy Model 
 
The equation (10) tells us that BS models a stock price process as an exponential 
Brownian motion with drift process: 
 

2
0

1exp
2t tS S t Bµ σ σ⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, 

 
which means: 
 

0 e tL
tS S= , 

 
where the stock price process { : 0 }tS t T≤ ≤  is modeled as an exponential of a Lévy 
process { . Black and Scholes’ choice of the Lévy process is a Brownian 
motion with drift (continuous diffusion process): 

;0 }tL t T≤ ≤
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                                                    21
2t tL t Bµ σ σ⎛ ⎞≡ − +⎜ ⎟

⎝ ⎠
.                                              (43) 

 
The fact that an stock price  is modeled as an exponential of Lévy process  means 

that its log-return 

tS tL

0

ln( )tS
S

 is modeled as a Lévy process such that: 

 
2

0

1ln( )
2

t
t t

S L t
S

Bµ σ σ⎛ ⎞= = − +⎜ ⎟
⎝ ⎠

. 

 
BS model can be categorized as the only continuous exponential Lévy model apparently 
because a Brownian motion with drift process is the only continuous (i.e. no jumps) Lévy 
process. This indicats that the Lévy measure of a Brownian motion with drift process is 
zero:  
 

( ) 0dx =A , 
 
and obviously its arrival rate of jumps is zero: 
 

( ) 0dx =∫ A . 
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