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Abstract 
 
This paper presents the basic knowledge of the inverse Gaussian distribution.  
 
 
 
© 2005 Kazuhisa Matsuda   All rights reserved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1

mailto:maxmatsuda@hotmail.com


© 2005 Kazuhisa Matsuda   All rights reserved. 

[1] Inverse Gaussian Distribution: JKB (1994) Parameterization 
 
There are many different parameterizations of the inverse Gaussian distribution which 
can be really confusing to beginners. In this section, basic properties of the inverse 
Gaussian distribution is presented following Johnson, Kotz, and Balakrishnan (1994)’s 
parameterization of the equation (15.4a).  
 
The probability density function of the inverse Gaussian distribution is a two parameter 
family: 
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where  and .  µ +∈R λ +∈R
 
By Fourier transforming the IG probability density (1), its characteristic function ( )Zφ ω  
is calculated as: 
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Simplifying the equation (2) yields: 
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The characteristic exponent (i.e. cumulant generating function) ( )Zψ ω  of the IG 
distribution is: 
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Using (4), the first four cumulants defined by 0
( )1( )

n
Z

n n ncumulant Z
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ψ ω
ω =

∂
≡

∂
 are 

calculated as the follows: 
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                                                      5 2

3 3 /cumulant µ λ= , 
7 3

4 15 /cumulant µ λ= . 
 
Using the above cumulants, the mean, variance, skewness, and excess kurtosis of the IG 
random variable Z  are obtained as (consult Table 4.1 of Matsuda (2004)): 
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                                                3[ ] /Variance Z µ λ= , 
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[ ] 15 /Excess Kurtosis Z µ λ= . 
 
The moment generating function ( )ZM ω  of the IG distribution can be expressed as: 
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where the Laplace exponent ( )Zξ ω  is given by: 
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Using the moment generating function ( )ZM ω  with (6), first four raw moments (i.e. 
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Note tha  form of centered moments of (5) tells us that the IG probability density is 
always positively skewed and the excess kurtosis is always positive. Figure 1 illustrates 
the shape of the IG distribution with varying parameters. In Panel A, as 

t the

λ  increases, its 
variance, wness, and excess kurtosis decreases. In Panel B, as  ske µ  rises holding λ  
constant, all moments rise. 
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A) µ  = 1 and varying λ  
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B) Varying µ  and λ  = 1 
 
Figure 1 Plot of IG probability density 
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Probably, the most important property of the IG distribution is its infinite divisibility. Let 
Z  be an IG random variable with µ +∈R  and λ +∈R . Then, there exist  pieces of  

 random variable 
n

. . .i i d 1 2, ,..., nZ Z Z  each from the IG distribution with  and 
 such that: 

/ nµ +∈R
/ nλ +∈R

 
1 2  ... nZ d Z Z Z+ + + , 

 
which is the definition 3.3 of Matsuda (2005). This indicates that the IG distribution 
generates a class of increasing Lévy processes (subordinators). 
                                          
[2] Inverse Gaussian Distribution: Barndorff-Nielsen (1998) Parameterization 
 
In this section, basic properties of the inverse Gaussian distribution is presented 
following Barndorff-Nielsen (1998)’s parameterization.  
 
Reparameterize the IG probability density (1) using /µ δ γ=  and 2λ δ= : 
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where  and . δ +∈R γ +∈R
 
By Fourier transforming the IG probability density (7), its characteristic function ( )Zφ ω  
is calculated as: 
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The characteristic exponent (i.e. cumulant generating function) ( )Zψ ω  of the IG 
distribution is: 
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Using the above cumulants, the mean, variance, skewness, and excess kurtosis of the IG 
random variable Z  are obtained as (consult Table 4.1 of Matsuda (2004)): 
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The moment generating function ( )ZM ω  of the IG distribution can be expressed as: 
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where the Laplace exponent ( )Zξ ω  is given by: 
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Note that the form of centered moments of (10) tells us that the IG probability density is 
always positively skewed and the excess kurtosis is always positive. Figure 2 illustrates 
the shape of the IG distribution with varying parameters. In Panel A, as γ  increases 
holding δ  constant, all the standardized moments decrease. In Panel B, as δ  rises 
holding γ  constant, the mean and variance rise while the skewness and excess kurtosis 
fall. 
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A) δ  = 1 and varying γ  
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B) Varying δ  and γ  = 1 
 
Figure 2 Plot of IG probability density 
 
Probably, the most important property of the IG distribution is its infinite divisibility. Let 
Z  be an IG random variable with µ +∈R  and λ +∈R . Then, there exist  pieces of  

 random variable 
n

. . .i i d 1 2, ,..., nZ Z Z  each from the IG distribution with  and 
 such that: 

/ nµ +∈R
/ nλ +∈R

 
1 2  ... nZ d Z Z Z+ + + , 

 
which is the definition 3.3 of Matsuda (2005). This indicates that the IG distribution 
generates a class of increasing Lévy processes (subordinators). 
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