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Dynamics of Risk-Neutral Densities Implied By Option 

Prices 
 

ABSTRACT 
 

This paper investigates the dynamics of future price movements of the underlying 
financial assets contained in option prices. Two widely used but different methods for 
estimating option implied risk-neutral probability density functions (RNDs) of the 
underlying asset price on the expiration are employed. One is an implied volatility 
interpolation method by Shimko (1993), and the other is a mixture of two lognormals 
method by Bahra (1997). A daily time evolution of RNDs of S&P 500 index on 
December 19 2003 is estimated spanning December 23 2002 through December 18 2003 
using the time series of S&P 500 futures option prices with December 2003 maturity. We 
find that the option implied dynamics of RNDs possesses well-documented features, 
negative skewness and excess kurtosis for asset prices relative to Black-Scholes 
lognormal dynamics of RNDs. This negative skewness and excess kurtosis generally 
increase as the maturity of the option approaches but within approximately 15 days to 
maturity excess kurtosis may decrease. A goodness of fit test reveals that the benchmark 
Black-Scholes lognormal RNDs do not come from the option implied RNDs for 
approximately one-third of the sample period at 5% significance level.  
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1. Introduction 

       Market participants’ expectations of the future underlying asset price moves can be 

recovered from option prices because option prices depend on the market participants’ 

expectations of the future underlying asset price moves. This option implied dynamics of 

risk-neutral probability density functions (RNDs) of future underlying asset price provide 

valuable information for risk managers in making investment decisions which is very 

different from the information provided by Benchmark Black-Scholes lognormal 

dynamics of RNDs. Previous studiesa show that Black-Scholes assumption of constant 

volatility of the underling’s return fails to capture the true dynamics of volatility and this 

leads to the failure of the Black-Scholes to capture the true dynamics of the expectation 

of future asset price move. For example, negatively sloped Black-Scholes implied 

volatilities across exercise prices on any trading day indicate the negatively skewed RND 

of underlying asset price. This means that option prices reveal that the likelihood of an 

extreme downward price move of the underlying is greater than that of an extreme 

upward move. Also the smile or sneer pattern of the Black-Scholes implied volatilities 

across exercise prices indicates that option prices reveal the likelihood of extreme move 

of the future underling’s price is much greater than that allowed by the Black-Scholes. 

Thus obtaining the evolution in time of RNDs of financial asset prices from option prices 

can provide the dynamic behavior of market’s assessment of risks.  

       Among numerous techniques to estimate the RND of underlying asset price on the 

option’s maturity date using option prices, two popular but different classes of methods 

have been developed.   

        
                                                 
a For example, Rubinstein (1994), Dumas, Fleming, and Whaley (1998), and Cont and da Fonseca (2002). 
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       The first class of method is based on the relationship that the RND of the underlying 

asset price at the option’s maturity date can be obtained by twice differentiating the call 

price function with respect to the strike price discovered by Breeden and Litzenberger 

(1978). In order to take the second derivative of the call price function, a continuous call 

price function is necessary. Obviously, no options are traded at continuous strike price, 

rather they are traded at very limited number of strike prices. Thus, this method basically 

comes down to a method of interpolation and extrapolation. Bates (1991) employs a 

cubic spline (a peace-wise third order polynomials) to interpolate the observed call option 

prices subject to constraints. This approach requires a relatively large number of degrees 

of freedom because of the complex form of the call price function. Ait-Sahalia and Lo 

(1998) use a non-parametric kernel regression to estimate the call price function. This 

approach is not practical to implement because of its data-intensive nature. We need to 

make assumptions simply to reduce the dimensionality of the problem since this approach 

involves a large number of regressors. Instead of directly interpolating call option prices, 

Shimko (1993) first interpolates Black-Scholes implied volatilities by fitting a quadratic 

function across strike prices. Then this volatility smile is inverted to obtain a continuous 

call pricing function as a function of strike price through the Black-Scholes formula. 

Campa, Chang, and Reider (1998) interpolates Black-Scholes implied volatilities by 

fitting a cubic spline.  

       This type of semiparametric method imposes no specific dynamics on the underlying 

asset price and makes no assumptions about the parametric form of the RND. But the 

shortcoming is that the different methods of interpolation produce very different results in 

the form of RNDs.  
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       The second class of method starts from imposing a particular parametric form on the 

RND and then recovers its parameters by the minimization between the observed option 

prices and model prices generated by the assumed parametric form.b Melick and Thomas 

(1997) use a mixture of three lognormals. Bahra (1997) uses a mixture of two lognormals. 

This is a more restrictive method than the first class.  

       Contrast to option implied methods to recover RND, the traditional methods start 

from imposing strong assumptions on the dynamics of underlying financial asset price. 

These strong assumptions enable RND to be estimated in closed form. Typically, 

geometric Brownian motion of the underlying asset price is assumedc which results in the 

benchmark Black-Scholes lognormal distribution of terminal asset price. This is the most 

restrictive case. 

       The goal of this paper is to assess the difference of the dynamics of RNDs between 

option implied methods and the benchmark Black-Scholes. None of the previous studies 

examined the difference in the dynamics of RNDs throughout the life of an option from 

the start till the end between the option implied and the traditional Black-Scholes.  

       A time series of S&P 500 futures option prices with December 2003 maturity traded 

on the Chicago Mercantile Exchange (CME) for the period of approximately one year 

between December 23 2002 and December 18 2003 is used. For each day in the sample, 

RND of underlying S&P 500 index on the option’s expiration date December 19 2003 is 

estimated. The resulting dynamics of RNDs for the entire life of the option is plotted. 

                                                 
b Melick and Thomas (1997) points out that this approach is more general than specifying the dynamics of 
the underlying asset price. Because a particular dynamics gives a unique RND but a particular RND is 
consistent with many different dynamics of underlying asset price. 
c Together with the constant volatility of asset price return and the constant risk-free interest rate. 
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       We find that the option implied dynamics of RNDs is characterized by the well-

documented features of negative skewness and excess kurtosis of the underlying asset 

price relative to Black-Scholes lognormal RNDsd. This feature becomes more 

pronounced as the maturity of the option approaches but may become less pronounced at 

very near maturity.  

       We examine the goodness of fit of the benchmark Black-Scholes lognormal 

dynamics to the option implied dynamics. Kolmogorov-Smirnov test (KS-test) concludes 

at the 5% significance level that the Black-Scholes RNDs do not come from the option-

implied RNDs for approximately one-third of the sample period. The author attributes the 

observed pattern of the increasing deviation between the option-implied RNDs and the 

Black-Scholes RNDs when the maturity of the option is far and near to the use of 

volatility surface by the option-implied RNDs. This highlights the shortcoming of the 

Black-Scholes assumption of the constant volatility. 

       The remainder of the paper is organized as follows. Section 2 describes the 

methodology for estimating RNDs of financial asset price. Section 3 explains the data set 

of S&P 500 futures option prices with December 2003 maturity obtained from CME and 

presents the estimated dynamics of RNDs. We document the term structures of mean, 

standard deviation, skewness, and kurtosis for each of three different methods. Section 4 

examines the goodness of fit of the Black-Scholes lognormal dynamics to the option 

implied dynamics of RNDs. Section 5 concludes.  

       We should be aware of the fact that the estimated RND is a risk-neutral distribution, 

not the actual distribution throughout this literature. 

                                                 
d Rubinstein (1994) and Dumas, Fleming, and Whaley (1998). 
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2. Option Implied Method and Traditional Method to Estimate Risk-Neutral 
Density (RND) of Financial Asset Price 

 
2.1 Volatility Interpolation (VI) Method of Shimko (1993) 

       Under Black-Scholes assumptions, the price of European call and put options at date 

 maturing at date T tt τ≡ + , written on a stock with the price  at date t , and the strike 

price 

tS

K  can be written as the present value of the expected future payoffs following 

Cox, Ross, Rubinstein (1979): 

                                       
                             (1) ( ) ( ) (call , r

T T
K

K T t e S K f S dSττ
∞

−= − = −∫ ) T

) T

                                       
                             (2) ( ) ( ) (

0

put ,
K

r
T TK T t e K S f S dSττ −= − = −∫

where the present value is calculated with respect to the risk-free interest rate . The 

expectation is calculated with respect to 

r

( )Tf S  which is the risk-neutral density (RND) 

of the stock at date T . 

       The explicit expression of RND can be obtained from option prices following 

Breeden and Litzenberger (1978). Rearrange the equation (1) as: 

                                                              (3) ( ) ( ) ( )call , [ ]r
T T T T T

K K

K e S f S dS K f S dSττ
∞ ∞

−= −∫ ∫

The partial derivative of call option price function (3) with respect to the strike price K  

becomes: 

  
 

( ) ( ) ( ) ( )call ,
1r r r

T T T T T
K K

K
e f S dS e f S dS e F S K

K
τ τ ττ ∞ ∞

− − −⎡ ⎤∂
⎡ ⎤= − = − = − − =⎢ ⎥ ⎣ ⎦∂ ⎣ ⎦

∫ ∫
           

(4) 
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where  is the risk-neutral cumulative density function of the stock price at date T . ( )TF S

( ) ( )1T T T
K

f S dS F S K
∞

= − =∫  is the probability that the stock price exceeds the strike 

price at the maturity (i.e. call option finishes in the money). The partial derivative of the 

equation (4) with respect to the strike price K  gives the RND of stock price at date T : 

                                                

( ) ( )
2

2

call , r
T

K
e f S K

K
ττ −∂

= =
∂                                           

(5) 

       Taking derivatives requires continuous call option pricing functions. Instead of 

directly interpolating call option prices,e Shimko (1993) first interpolates Black-Scholes 

implied volatilities using a quadratic function across strike prices.f Then this volatility 

smile is inverted to obtain a continuous call pricing function as a function of strike price 

through the Black-Scholes formula.g  

       A method of normalization is necessary for the recovered RND to behave nicely. 

This is for the RND to have an integral of one, for the tails of the RND to decline 

monotonically and decay quickly. For this purpose, lognormal probability density is 

grafted for strike prices outside the observed range by matching the density and 

cumulative density of the option implied density function with a lognormal probability 

density in both lower and upper tail.h  

2.2 Mixture of Two Lognormals Method (2LN) of Bahra (1997) 

       This method begins by specifying the parametric form of RND directly as a mixture 

of two lognormal distributions. Bahra shows that the negative skewness and the excess 

                                                 
e Directly interpolating call prices can produce inaccurate RND because small price errors can be 
transformed into large errors in the estimated RND, especially in the tails. 
f Campa, Chang, and Reider (1998) interpolates the implied volatilities using cubic splines. 
g Black-Scholes formula is merely used as a means of mapping option prices in terms of implied volatilities.  
h This means that the implied volatilities are constant outside the range of traded strike prices. 
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kurtosis of the data are well captured by this parametric form and this parametric form 

ensures for the tails of the RND to decline monotonically and decay quickly. The RND is 

then estimated by minimizing the distance of the model-generated prices to the market 

option prices.  

       The RND is given a mixture of two-lognormal distributions:  

                                     ( ) ( ) ( ) ( )1 1 2 2, ; 1 , ;T T Tf S L S L Sπ µ σ π µ σ= + −                             (6) 

where ( ), ;i i TL µ σ S  is the probability density function of lognormal distribution meaning 

that whose logarithm is normal with mean iµ  and standard deviation iσ . π  is the weight 

assigned to each lognormal distributions. The mean and standard deviation parameters for 

each lognormal distribution iµ  and iσ  together with the weight assigned to each π  

determines the overall shape of the RND. 

       By substituting (6) into (1) and (2), now the call and put option pricing functions (1) 

and (2) can be written as: 

                (7) ( ) ( ) ( ) ( ) (1 1 2 2call , , ; 1 , ;r
T T

K

K T t e L S L S S K dSττ π µ σ π µ σ
∞

− ⎡ ⎤= − = + − −⎣ ⎦∫ )T T

)T T                 (8) ( ) ( ) ( ) ( ) (1 1 2 2
0

put , , ; 1 , ;
K

r
T TK T t e L S L S K S dSττ π µ σ π µ σ− ⎡ ⎤= − = + − −⎣ ⎦∫

Next substitute the density functions of lognormal distributions: 

                                   ( ) ( )2
1

1 1 2
11

ln1, ; exp[
22
T

T
T

S
L S

S
µ

µ σ
σσ π
−

= − ]                                (9) 

                                 ( ) ( )2
2

2 2 2
22

ln1, ; exp[ ]
22
T

T
T

S
L S

S
µ

µ σ
σσ π
−

= −                              (10) 

 9



Bahra (1997) demonstrated that using change of variables twice allows a transformation 

from lognormal distributions to normal distributions.i Equations (7) and (8) have closed 

form solutions: 

( )
( ) ( )

( ) ( ) ( )

2
1 1 1 2

2
2 2 3 4

1exp[ ]
2

call ,
11 exp[ ]
2

r

N d N d
K e

N d KN d

τ

π µ σ
τ

π µ σ

−

⎧ ⎫⎡ ⎤+ − +⎪ ⎪⎢ ⎥⎪ ⎣ ⎦ ⎪= ⎨ ⎬
⎡ ⎤⎪ ⎪− + −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

                                      (11) 

 ( )
( ) ( )

( ) ( ) ( )

2
1 1 1 2

2
1 1 3 4

1exp[ ]
2

put ,
11 exp[ ]
2

r

N d KN d
K e

N d KN d

τ

π µ σ
τ

π µ σ

−

⎧ ⎫⎡ ⎤− + − + − +⎪ ⎪⎢ ⎥⎪ ⎣ ⎦ ⎪= ⎨ ⎬
⎡ ⎤⎪ ⎪− − + − + −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

                              (12)                               

where 
2

1 1
1

1

ln TSd µ σ
σ

− + +
= , 2 1 1

2
2 2

3
2

ln TSd µ σ
σ

− + +
= 2d d σ= − , and 4 3d d σ= − . , 

       The RND is then estimated by minimizing the sum of squared errors between the 

fitted option prices by the model and market option prices across all exercise prices. The 

minimization problem is: 

          
( ) ( )

( )

1 2 1 2

2 2market market

, , , , 1 1

2 2
1 1 2 2

   call , call  + put , put

1 1                         exp[ ] 1 exp[ ]
2 2

Min
n n

i i i
i i

r
t

K K

e S

µ µ σ σ π

τ

τ τ

π µ σ π µ σ

= =

⎡ ⎤ ⎡ i ⎤− − +⎣ ⎦ ⎣

⎡ ⎤+ + − + −⎢ ⎥⎣ ⎦

∑ ∑ ⎦

0

              (13) 

subject to 1 2,σ σ >  and 0 1π≤ ≤ , over the range of observed strike prices 

. The mean of the RND should equal the forward price of the stock 1 2, ,....., nK K K

r
t tF S e τ= . 

2.3 Traditional Method 

                                                 
i See Mathematical Appendix.  
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       Traditional method is presented using general notations first and then it is applied to 

this paper’s purpose. 

       Suppose that the value of variable  follows the general stochastic differential 

equation 

x

                                                    ( , ) ( , )dx A x t dt B x t dw= +                                             (14) 

where the drift coefficient ( , )A x t  and the diffusion coefficient ( , )B x t  are functions of 

the variable  and date t  and is a Wiener process. Probabilistic behavior of the 

variable  is represented by its conditional probability 

x dw

x ( , , )T tp x T x t  in which tx  is the 

current value of variable  and  is the current date while x t Tx  being the value of the 

variable  at some future date T . Fokker-Planck (FP) equation x j k

              
2 2

2

( , , ) ( ( , ) ( , , )) ( ( , ) ( , , ))1
2

T t T T t T T t

T T

p x T x t A x T p x T x t B x T p x T x t
T x x

∂ ∂ ∂
= − +

∂ ∂
     (15) 

gives the evolution of the probability density function of the variable  in time. FP 

equation is an equation of motion for the distribution function of stochastic variable . It 

is parabolic in the sense that it involves a second derivative with respect to one variable 

x

x

Tx , and a first derivative with respect to the other variable T .l  

       Solving this linear second-order partial differential equation of parabolic type 

requires an initial condition and boundary conditions.  

                                                 
j Also known as forward Kolmogorov equation. 
k See Mathematical Appendix for its derivation. 
l Equations of this type are known as heat or diffusion equations. 
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       Consider a futures contract on a stock. The relationship between the futures price and 

the spot price ism  

                                                              ( )( )r q T t
t tF S e − −=                                                   (16) 

where  is the futures price at date ,  is the spot price at t , q  is the rate of dividend 

yield, and T is the maturity date of the futures contract. Assume that the risk-neutral 

process for the spot price is given by geometric Brownian motion: 

tF t tS

                                                      ( )t tdS r q S dt S dwtσ= − +                                           (17) 

Applying Ito’s lemma produces the futures price dynamics: 

                                                                t tdF F dwσ=                                                     (18) 

This means that in a risk-neutral world the futures price follows geometric Brownian 

motion with zero drift coefficient and diffusion coefficient of tFσ .  

       Then the Fokker-Planck equation which describes the dynamics of the RND becomes 

                                       
2 2 2

2

( , , ) ( ( , , ))1
2

T t T T t

T

p F T F t F p F T F t
T F

σ∂ ∂
=

∂
                             (19) 

       Note that at the maturity of the futures the futures price is equal to the asset’s spot 

price T TF S= . 

       Utilizing the initial condition,  

                                                  ( , , ) ( )T t T tp F t F t F Fδ= −                                               (20) 

the equation (19) can be solved as:                                                                                                   

                                                 
m Under the usual assumptions that the risk-free interest rate is constant and equal to  for all maturities 
and the forward price for a contract with a certain delivery date is equal to the futures price for a contract 
with the same delivery date. 

r
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2 2

2

1[ln( / ) ( )]1 2( , , ) exp[ ]
2 ( )2 ( )

t T

T t
T

F F T t
p F T F t

T tF T t

σ

σσ π

− −
= −

−−
                 (21) 

This is the benchmark Black-Scholes lognormal RND.  

3. Estimating the Dynamics of RNDs from S&P 500 Futures Options Data 
 
       To compare difference in the dynamics of RNDs obtained from three different 

estimators, an application to the data set of futures option prices on S&P 500 index is 

presented. 

3.1 Data Set 

       Our data consist of daily settlement prices of futures options on the S&P 500 index 

with December 2003 maturity obtained from Chicago Mercantile Exchange (CME) Daily 

Bulletin for the period December 23, 2002, through December 18, 2003. The time to 

maturity ranges from 0.9918 years (362 days) to 0.0027 years (1 day). Two filters are 

applied. Options with prices less than 0.125 are eliminated. In the money options are 

eliminated because they are illiquid. Thus all options used are out of money options: for 

moneyness = strike price / futures price greater than 1 call prices are used and for 

moneyness less than 1 put prices are used. LIBOR in US dollars with nearest maturity is 

used as an appropriate risk-free interest rate.    

       Since these are American-style options, we use Barone-Adesi and Whaley (1987) 

quadratic approximation method to adjust for the early exercise premium.n

3.2 Dynamics of RND Estimates 

       To implement volatility interpolation (VI) method Black-Scholes implied volatilities 

are calculated and interpolated by a quadratic function across the range of strike prices on 

                                                 
n See Mathematical Appendix for this procedure.  

 13



each day. The resulting implied volatility surface is shown in Figure 1 as a function of the 

moneyness = strike price / futures price of the option and time to maturity. Figure 1 

illustrates the well-documented feature of the implied volatility’s dependence on 

moneyness and time-to-maturityo. On any single trading day the implied volatility is not 

constant over a range of moneyness and the shape of implied volatility curve changes as 

the time to maturity changes. As the maturity of the option approaches, the curve 

becomes steeper. This implied volatility surface is inverted to continuous call option 

prices through Black-Scholes formula. Twice differentiating this continuous call price 

function yields the RND. The resulting dynamics of RNDs obtained from volatility 

interpolation method is depicted in Figure 2. It captures the evolution in time of RNDs of 

S&P 500 index on the option’s expiration date December 19 2003. As expected, RND 

becomes less dispersed as the option’s expiration date approaches since the outcome 

becomes more certain at near maturity.  

       Mixture of two lognormals method (2LN) recovers the option implied RNDs by 

minimizing the distance between the model prices calculated by equations (11) and (12) 

and the observed option prices according to the criterion function equation (13). The 

resulting dynamics of RNDs is illustrated in Figure 4.  

       Solution of the Fokker-Planck (FP) equation assuming the geometric Brownian 

motion on the underlying asset price dynamics yields the benchmark Black-Scholes 

lognormal RND of equation (21). The annualized historical volatility is calculated in a 

usual fashion: 

2

1

1252 ( )
1

n

i
i

R R
n

σ
=

= × −
− ∑  

                                                 
oRubinstein (1994), Dumas, Fleming, and Whaley (1998), and Cont and da Fonseca (2002). 
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where 
1

ln( )t
i

t

FR
F −

= . 

Using spot futures price  and the historical volatility tF 0.167615335σ =  , the evolution 

of RND in time is depicted in Figure 6. 

3.3 Instantaneous Profile and the Term Structure of Moments 

       Since it is very difficult to notice the difference among Figures 2, 4, and 6, the 

instantaneous profiles of the entire dynamics of RNDs are taken on the following four 

dates, March 18, June 18, September 18, and November 18 2003. These correspond to 

approximately nine-, six-, three-, and one-month to maturity. These are reported in 

Figures 8 through 11 together with their moments on Tables 1 through 4. These 

instantaneous profiles show that the option implied RNDs possess heavier lower tails 

than the Black-Scholes RNDs suggesting that the market assesses the greater likelihood 

of extreme downward move of underlying asset price than allowed by the Black-Scholes. 

       The term structures of mean, standard deviation, skewness, and kurtosis of the RNDs 

are plotted in Figure 12.p Note the several differences between the option implied term 

structure and the Black-Scholes term structure. Although all three methods have same 

means and similar patterns of standard deviations, their skewness and kurtosis are 

remarkably different. The option implied dynamics is characterized by the negative 

skewness and excess kurtosis for asset prices documented by Ait-Sahalia and Lo (1998) 

which generally increase as the maturity of the option approaches. At very near maturity 

of within 15 days to expiration, the volatility interpolation method produces decreasing 

excess kurtosis of the underlying asset price. In contrast, the kurtosis recovered from 

mixture of two lognormals method continues to increase. Obviously, benchmark Black-
                                                 
p Moments are directly computed from the each RND. 
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Scholes lognormal dynamics of RNDs completely fails to capture these dynamic 

behaviors of skewness and kurtosis. 

4. Goodness of Fit Test 

       This paper uses Kolmogorov-Smirnov test (KS-test) to examine the difference 

between the option implied dynamics of RNDs and the Black-Scholes dynamics of RNDs. 

KS-test is one of the best known and widely used goodness of fit test for continuous 

distributions to determine if the empirical distribution function  obtained from a 

sample of observations 

'( )nF x

1 2, ,..., nx x x  comes from the hypothesized known population 

distribution function . We hypothesize that the option implied RND describes the 

true population distribution  and test if Black-Scholes RND which is the empirical 

distribution  calculated using the historical volatility from 249 observations of 

futures option price comes from the . The KS-test statistic  is the maximum 

absolute deviation between  and  across the range of the stochastic 

variable : 

( )F x

( )F x

'( )nF x

( )F x D

'( )nF x ( )F x

x

'( ) ( )nx
D Max F x F x= −  

If the test statistic  is greater than the critical valueD q, the null hypothesis is rejected and 

we conclude that the empirical distribution does not come from the hypothesized 

population distribution. 

       Figure 13 reports the result of KS-test of the Black-Scholes RNDs to the option 

implied RNDs obtained from volatility interpolation method at 5% significance level. 

Null hypothesis is rejected on 80 trading days out of 249 (approximately 32%). Figure 14 
                                                 
q Critical value is calculated by 

1.36
n

 where  is the sample size. n
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reports the result of KS-test of the Black-Scholes RNDs to the option implied RNDs 

obtained from mixture of two lognormals approach and rejects the null on 92 trading days 

out of 249 (approximately 37%). Note that the difference becomes significant when the 

maturity of the option is far and near. In this paper, Black-Scholes dynamics of RNDs is 

obtained using the historical volatility for the sample period. On the other hand, option 

implied dynamics incorporate the volatility surface portrayed in Figure 1. When the 

maturity of the option is far (near), at the money implied volatility is sizably larger 

(smaller) than the historical volatility as reported in Figure 16. The time series of absolute 

deviation between the two is plotted in the Figure 17 which resembles Figures 13 and 14 

in that when the maturity of the option is far and near the difference becomes large. 

       The similarity of the two option implied dynamics is reported in Figure 15. The 

difference is very stable at approximately 2% except for a very short period of time at 

near maturity.   

       In summary, the difference between the option implied dynamics and the Black-

Scholes dynamics of RNDs is attributed to the difference between the use of constant 

volatility by the Black-Scholes and the use of volatility surface by the option implied. 

Volatility surface captures the dependence of volatility on moneyness and the evolution 

of this volatility curve as the time to maturity of the option changes. 

5. Conclusion 

       This paper investigates the dynamics of risk-neutral probability density functions 

(RNDs) of S&P 500 index using a time series of S&P 500 futures options prices. Two 

different methods, volatility interpolation method and mixture of two lognormals method, 

for estimating RNDs from option prices are used. The difference in the dynamic behavior 

 17



of RNDs between the option implied method and the benchmark Black-Scholes 

lognormal method was then examined. 

       We find that the option implied term structure of RNDs is characterized by the 

persistent negative skewness and excess kurtosis which become more pronounced as the 

maturity of the option approaches but may become less pronounced at very near maturity 

of within 15 days to expiration. In contrast, the benchmark Black-Scholes lognormal 

dynamics yields completely different dynamics of skewness and kurtosis, persistent 

positive skewness and time-decreasing kurtosis. 

       Next we performed a goodness of fit test of the benchmark Black-Scholes lognormal 

RNDs to the option implied RNDs. The results from Kolmogorov-Smirnov test suggest 

that at 5% significance level Black-Scholes lognormal RNDs do not come from option-

implied RNDs on approximately one-third of the life of the option. The author attributes 

the observation that the difference between Black-Scholes RNDs and the option implied 

RNDs becomes significant when the maturity of the option is far and near to the use of 

volatility surface by the option implied RNDs.  

       Overall, our results indicate that option prices do not support the Black-Scholes 

world of constant volatility and the lognormal distribution of asset prices at option’s 

expiration. The use of information provided by volatility surface is a key element in 

option pricing. 

 
 
 

 18



0.5

0.75

1

1.25

1.5

Moneyness

0

0.25

0.5

0.75

1

Time

0.2

0.3

0.4

0.5

Vol.

0.5

0.75

1

1.25

1.5

Moneyness

 
 
Figure 1. Implied Volatility Surface. Plot of the dynamics of implied volatility curves 
of futures options on S&P 500 with December 2003 maturity as a function of time to 
maturity in years and moneyness = Strike/Futures for the period between December 23 
2002 and December 18 2003. Quadratic function is used as a method of interpolation.  
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Figure 2: Dynamics of Risk-Neutral Densities Obtained from Volatility 
Interpolation Method. Plot of the dynamics of risk-neutral densities of futures options 
on S&P 500 with December 2003 maturity obtained from volatility interpolation method 
for the period between December 23 2002 and December 18 2003. Time to maturity is 
measured in years. Range of the density plotted is between 0 and 0.01. 
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Figure 3: Dynamics of Cumulative Risk-Neutral Densities Obtained from Volatility 
Interpolation Method. Plot of the dynamics of cumulative risk-neutral densities of 
futures options on S&P 500 with December 2003 maturity obtained from volatility 
interpolation method for the period between December 23 2002 and December 18 2003. 
Time to maturity is measured in years.  
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Figure 4: Dynamics of Risk-Neutral Densities Obtained from Mixture of Two 
Lognormals Method. Plot of the dynamics of risk-neutral densities of futures options on 
S&P 500 with December 2003 maturity obtained from mixture of two lognormals method 
for the period between December 23 2002 and December 18 2003. Time to maturity is 
measured in years. Range of the density plotted is between 0 and 0.01. 
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Figure 5: Dynamics of Cumulative Risk-Neutral Densities Obtained from Mixture 
of Two Lognormals Method. Plot of the dynamics of cumulative risk-neutral densities 
of futures options on S&P 500 with December 2003 maturity obtained from mixture of 
two lognormals method for the period between December 23 2002 and December 18 
2003. Time to maturity is measured in years.  
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Figure 6: Dynamics of Risk-Neutral Densities Obtained from a Benchmark Black-
Scholes Lognormal RND. Plot of the dynamics of risk-neutral densities of futures 
options on S&P 500 with December 2003 maturity obtained from a benchmark Black-
Scholes lognormal RND for the period between December 23 2002 and December 18 
2003. Time to maturity is measured in years. Range of the density plotted is between 0 
and 0.01. 
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Figure 7: Dynamics of Cumulative Risk-Neutral Densities Obtained from a 
Benchmark Black-Scholes Lognormal RND. Plot of the dynamics of cumulative risk-
neutral densities of futures options on S&P 500 with December 2003 maturity obtained 
from a benchmark Black-Scholes lognormal RND for the period between December 23 
2002 and December 18 2003. Time to maturity is measured in years.  
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Figure 8: Risk-Neutral Density Estimates with 9-Month to Maturity. Plot of risk-
neutral density estimates of futures options on S&P 500 with December 2003 maturity on 
March 18 2003 obtained from three different methods.  
 

Table 1 
Moments of RND Estimates with 9-Month to Maturity 

Moments of RND recovered from volatility interpolation (VI), mixture of two lognormals 
(2LN), and the benchmark Black-Scholes lognormal (BS) methods. This table quantifies 
the difference of RND estimates among three methods with respect to their first four 
moments. The estimates are based on CME settlement prices of futures options on S&P 
500 index with December 2003 maturity on March 18, 2003.  
 
     RND Estimator         Mean           Standard Deviation        Skewness               Kurtosis 
 
VI                                 864.779                  183.395                   -0.1901                  3.0095 
2LN                              863.474                  185.57                     -0.1834                  2.9894 
BS                                863.4                      127.000                     0.4445                  3.3533 
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Figure 9: Risk-Neutral Density Estimates with 6-Month to Maturity. Plot of risk-
neutral density estimates of futures options on S&P 500 with December 2003 maturity on 
June 18 2003 obtained from three different methods.  
 

Table 2 
Moments of RND Estimates with 6-Month to Maturity 

Moments of RND recovered from volatility interpolation (VI), mixture of two lognormals 
(2LN), and the benchmark Black-Scholes lognormal (BS) methods. This table quantifies 
the difference of RND estimates among three methods with respect to their first four 
moments. The estimates are based on CME settlement prices of futures options on S&P 
500 index with December 2003 maturity on June 18, 2003.  
 
     RND Estimator         Mean           Standard Deviation        Skewness               Kurtosis 
 
VI                                1006.465                 137.243                   -0.5682                  3.5095 
2LN                             1006.305                 136.252                   -0.4972                  3.5004 
BS                               1006.4                     120.654                     0.3614                  3.2331 
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Figure 10: Risk-Neutral Density Estimates with 3-Month to Maturity. Plot of risk-
neutral density estimates of futures options on S&P 500 with December 2003 maturity on 
September 18 2003 obtained from three different methods.  
 

Table 3 
Moments of RND Estimates with 3-Month to Maturity 

Moments of RND recovered from volatility interpolation (VI), mixture of two lognormals 
(2LN), and the benchmark Black-Scholes lognormal (BS) methods. This table quantifies 
the difference of RND estimates among three methods with respect to their first four 
moments. The estimates are based on CME settlement prices of futures options on S&P 
500 index with December 2003 maturity on September 18, 2003.  
 
     RND Estimator         Mean           Standard Deviation        Skewness               Kurtosis 
 
VI                                1037.345                100.405                    -0.7738                  5.2039 
2LN                             1037.014                  98.8                        -0.7555                  4.4533 
BS                               1037.3                      88.463                      0.2565                  3.1172 
  
 
 
 
 
 
 

 28



800 900 1000 1100 1200
S&P 500

0

0.002

0.004

0.006

0.008

ytisneD

BS

2LN

VI

 
 
Figure 11: Risk-Neutral Density Estimates with 1-Month to Maturity. Plot of risk-
neutral density estimates of futures options on S&P 500 with December 2003 maturity on 
November 18 2003 obtained from three different methods.  
 

Table 4 
Moments of RND Estimates with 1-Month to Maturity 

Moments of RND recovered from volatility interpolation (VI), mixture of two lognormals 
(2LN), and the benchmark Black-Scholes lognormal (BS) methods. This table quantifies 
the difference of RND estimates among three methods with respect to their first four 
moments. The estimates are based on CME settlement prices of futures options on S&P 
500 index with December 2003 maturity on November 18, 2003.  
 
     RND Estimator         Mean           Standard Deviation        Skewness               Kurtosis 
 
VI                                1033.045                  56.118                    -0.7328                  5.0895 
2LN                             1032.409                  55.536                    -1.0367                  6.4456 
BS                               1032.8                      51.181                      0.1488                  3.0394 
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Figure 12: Term Structure of Moments of Risk-Neutral Density Estimates. Plot of 
the term structure of mean, standard deviation, skewness, and kurtosis of risk-neutral 
density estimates of futures options on S&P 500 with December 2003 maturity for the 
period between December 23 2002 and December 18 2003.  
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Figure 12 (Continued): Term Structure of Moments of Risk-Neutral Density 
Estimates. Plot of the term structure of mean, standard deviation, skewness, and kurtosis 
of risk-neutral density estimates of futures options on S&P 500 with December 2003 
maturity for the period between December 23 2002 and December 18 2003. 
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Figure 13: Kolmogorov-Smirnov Test of Risk-Neutral Density Estimates between 
Volatility Interpolation and Benchmark Black-Scholes Lognormal Methods. Plot of 
the largest absolute deviation of the cumulative distribution functions in A and the 
absolute deviation across index value in B obtained from volatility interpolation and 
Black-Scholes lognormal methods for the period between December 23 2002 and 
December 18 2003. Critical value is 0.0861865. 
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B. Plot of 2( ) ( )BS LNF x F x−  

 
Figure 14: Kolmogorov-Smirnov Test of Risk-Neutral Density Estimates between 
Mixture of Two Lognormals and Benchmark Black-Scholes Lognormal Methods. 
Plot of the largest absolute deviation of the cumulative distribution functions in A and the 
absolute deviation across index value in B obtained from mixture of two lognormlas and 
Black-Scholes lognormal methods for the period between December 23 2002 and 
December 18 2003. Critical value is 0.0861865. 
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A. Plot of Test Statistic D Value 2( ) ( )VI LNMax F x F x−  
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B. Plot of 2( ) ( )VI LNF x F x−  

 
Figure 15: Kolmogorov-Smirnov Test Statistic of Risk-Neutral Density Estimates 
between Volatility Interpolation and Mixture of Two Lognormals Methods. Plot of 
the largest absolute deviation of the cumulative distribution functions in A and the 
absolute deviation across index value in B obtained from volatility interpolation and 
mixture of two lognormals methods for the period between December 23 2002 and 
December 18 2003. Critical value is 0.0861865. 
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Figure 16: Historical Volatility and At the Money Implied Volatility. Plot of the 
historical volatility used to obtain the benchmark Black-Scholes lognormal dynamics and 
at the money implied volatilities incorporated in the option implied dynamics for the 
sample period between December 23 2002 and December 18 2003. 
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Figure 17: Absolute Deviation between Historical Volatility and At the Money 
Implied Volatility. Plot of the absolute value of the difference between historical 
volatilities used to obtain the benchmark Black-Scholes lognormal dynamics and at the 
money implied volatilities incorporated in the option implied dynamics for the sample 
period between December 23 2002 and December 18 2003. 
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Mathematical Appendix 
 

A. Derivation of Closed form Option Pricing Formula (10) and (11) in a Mixture 
of Two Lognormals Model of Bahra (1997) 

 
       Under Black-Scholes assumptions, Cox, Ross, and Rubinstein (1979) show that the 
price of European call and put options is the present value of the expected future payoffs: 
 

                                       
                           (a1) ( ) ( ) (call , r

T T
K

K T t e S K f S dSττ
∞

−= − = −∫ ) T

) T

                                       
                           (a2) ( ) ( ) (

0

put ,
K

r
T TK T t e K S f S dSττ −= − = −∫

 
Risk-neutral density (RND) of the stock price at date T , ( )Tf S  is directly specified as a 
mixture of two lognormals: 
 

                                      ( ) ( ) ( ) ( )1 1 2 2, ; 1 , ;T T Tf S L S L Sπ µ σ π µ σ= + −                          (a3) 
 

where ( ) ( )2

2

ln1, ; exp[ ]
22
T i

i i T
iT i

S
L S

S
µ

µ σ
σσ π
−

= − .                                                    (a4) 

 
Substitution of (a3) into (a1) produces the following call option price function: 
 

                        (a5) ( ) ( ) ( ) ( ) ( )1 1 2 2call , { , ; 1 , ;r
T T

K

K e L S L S S K dττ π µ σ π µ σ
∞

− ⎡ ⎤= + −⎣ ⎦∫ T TS−

T TS

TS

 
Separate equation (a5) into two integrals: 
 

                                (a6) ( ) ( ) ( ) ( ) ( )1 1 2 2call , , ; 1 , ;r
T T

K

K e L S L S S dττ π µ σ π µ σ
∞
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                                      A B≡ −  
 
Component A: 
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K
T TA e L S L S S dτ π µ σ π µ σ

∞
− ⎡ ⎤= + −⎣ ⎦∫ S  
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Use a technique of a change of a variable, ln Tv S= , 
 
                                                          v

TS e=  and                                          (a8) v
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Use a technique of completing a square for the exponential terms: 
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Term A  is now expressed as a mixture of two normal distributions: 
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Perform a second change of variable 
2( )i i

i
i

vz µ σ
σ

− +
= : 

 
                                                                 2

i i i iv zσ µ σ= + +   
 
                                                                 1 1 2 2dv dz dzσ σ= =                                         (a12) 
 
Thus, the term A  is now expressed as a mixture of two standard normal distributions: 
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Let  be the cumulative density function of a standard normal distribution. Use 
the symmetric nature of the normal distribution:  

( )Normal x
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Therefore, the term A  becomes: 
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Component B: 
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Perform a change of variable, ln T i
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Using  for the cumulative density function of a standard normal distribution 
and due to the symmetric nature of the normal distribution 

( )Normal x
B  is now represented as: 
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Substitution of (a14) and (a16) into (a6) yields the closed form solution: 
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1 1

1 1

ln ( ) ln1call , [exp( ) ( ) ( )]
2

r K KK e N KNτ µ σ µτ π µ σ
σ σ

− − + + − +
= + −  

                 
2

2 2 2 2
2 2

2 2

ln ( ) ln1(1 )[exp( ) ( ) ( )]
2

r K Ke N KNτ µ σ µπ µ σ
σ σ

− − + + − +
+ − + −      (a18) 

Finally, 
 

                                 ( ) 2
1 1 1 2

1call , [ {exp( ) ( ) ( )}
2

rK e N dττ π µ σ−= + − KN d  

                                            2
2 2 3 4

1(1 ){exp( ) ( ) ( )}]
2

N d KN dπ µ σ+ − + −                       (a19) 

 

where   
2

1 1
1

1

ln ( )Kd µ σ
σ

− + +
= , 2 1 1d d σ= − , 

2
2 2

3
2

ln ( )Kd µ σ
σ

− + +
=

2

, and    

4 3d d σ= − .  
 
        Closed form solution to the European put option pricing function can be obtained in 
a similar manner. 
 

B. Derivation of Fokker-Planck (Forward Kolmogorov) Equationr  
 
       A stochastic process ( )tξ  is said to be continuous if there is only a small probability 
that ( )tξ  will take on an appreciable increment in a short interval of time. This means 
that for any positive constant δ : 
 

                                              
0

1lim ( , ; , ) 0
T

T t

x T tt
x x

d F x T x t
t δ

∆ →
− ≥

=
∆ ∫                                    (a20) 

 
where . Make the following assumptions: t T t∆ = −
 

1) The partial derivatives ( , ; , )T t

t

F x T x t
x

∂
∂

 and 
2

2

( , ; , )T t

t

F x T x t
x

∂
∂

 exist and are 

continuous for arbitrary values of , T t , t > tx , and Tx . 
2) For any 0δ > , the following limits exist and the convergence is uniform in tx .s 

 

                                   
0

1lim ( ) ( , ; , ) ( , )
T

T t

T t x T t tt
x x

x x d F x T x t a t x
t δ

∆ →
− <

−
∆ ∫ =

                                                

                        (a21) 

 

 
r This is based on Gnedenko. 
s The left –hands sides of equations (a21) and (a22) depend on δ . 
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                                   2

0

1lim ( ) ( , ; , ) ( , )
T

T t

T t x T t tt
x x

2x x d F x T x t b t x
t δ

∆ →
− <

−
∆ ∫ =                     (a22) 

 
3) A probability density function exists: 

 

                                                   ( , ; , )( , ; , ) T t
T t

T

F x T x tf x T x t
x

∂
=

∂
                                   (a23) 

 
4) The following derivatives exist and are continuous: 

 

                                                             ( , ; , )T tf x T x t
T

∂
∂

 

                                                   [ ( , ) ( , ; , )]T T t
T

a T x f x T x t
x
∂
∂

                                        (a24) 

                                                   
2

2 [ ( , ) ( , ; , )]T T t
T

b T x f x T x t
x
∂
∂

 

 
The Fokker-Planck Equation (Forward Kolmogorov Equation): 
For any continuous stochastic process without after effect satisfying conditions 1) 
through 4), the probability density function ( , ; , )T tf x T x t is a solution of the equation: 
 

              
2 2

2

( , ; , ) ( ( , ) ( , ; , )) ( ( , ) ( , ; , ))1
2

T t T T t T T t

T T

f x T x t a x T f x T x t b x T f x T x t
T x X

∂ ∂ ∂
= − +

∂ ∂ ∂
   (a25) 

 
Derivation:   Let c  and  ( ) denote certain numbers and d c d< ( )TR x  a nonnegative 
continuous function having continuous first- and second-order derivatives. Assume: 
 
                                             for     ( ) 0TR x = Tx c<       and      Tx d> .               
 
Due to the condition that the function ( )TR x  and its derivatives are continuous, 
 
                                   ( ) ( ) '( ) '( ) ''( ) ''( )R c R d R c R d R c R d= = = = =                             (a26) 
 
Note: 
 

                            ( , ; , ) ( ) ( , ; , ) ( )
d d

T t
T T T t T T

c c

f x T x t R x dx f x T x t R x dx
T T

∂ ∂
=

∂ ∂∫ ∫  

                                
0

( , ; , ) ( , ; , )lim ( )T t T t
TT

f x T T x t f x T x t
TR x dx

T∆ →

+ ∆ −
=

∆∫                     (a27) 

 
Apply the generalized Markov equation: 
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                                  ( , ; , ) ( , ; , ) ( , ; , )T t t Tf x T T x t f z T x t f x T T z T+ ∆ = + ∆∫  
 
Thus, the equation (a27) can be written down as: 
 

( , ; , ) ( )
d

T t
T T

c

f x T x t R x dx
T

∂
∂∫  

0

1lim [ ( , ; , ) ( , ; , ) ( ) ( , ; , ) ( ) ]t T T T T t TT Tf z T x t f x T T z T R x dzdx f x T x t R x dx
T∆ →

= + ∆ −
∆ ∫∫ ∫  

0

1lim [ ( , ; , ) ( , ; , ) ( ) ( , ; , ) ( ) ]t T T T T t TT Tf z T x t f x T T z T R x dx dz f x T x t R x dx
T∆ →

= + ∆ −
∆ ∫ ∫ ∫  

0

1lim ( , ; , )[ ( , ; , ) ( ) ( )]T t T TT Tf x T x t f z T T x T R z dz R x dx
T∆ →

= + ∆
∆ ∫ ∫ −                                (a28) 

 
First, the order of integration is interchanged. Second, the notation for the variables of 
integration is changed (Replace Tx  by  and  by z z Tx ). 
 
By Taylor’s theorem: 
 

2 21( ) ( ) ( ) '( ) ( ) ''( ) [( )
2T T T T T TR z R x z x R x z x R x z xο= + − + − + − ]  

 
By the bounded nature of the function ( )R z  and the condition 1): 
 
                                    ( , ; , ) ( ) ( )

T

T
x z

f z T T x T R z dz T
δ

ο
− ≥

+ ∆ =∫ ∆  

                                   ( , ; , ) ( ) 1 ( )
T

T
x z

f z T T x T R z dz T
δ

ο
− ≤

+ ∆ = +∫ ∆  

 
It follows that: 
 

( , ; , ) ( ) ( ) '( ) ( ) ( , ; , )
T

T T T
x z

Tf z T T x T R z dz R x R x z y f z T T x T dz
δ− <

+ ∆ − = − + ∆∫ ∫ ∫  

2 21 ''( ) [( ) (( ) )] ( , ; , ) ( )
2

T

T T T T
x z

R x z x z x f z T T x T dz
δ

ο ο
− <

+ − + − + ∆∫ T+ ∆ . 

 
Thus, 
 

( , ; , ) ( )
d

T t
T T

c

f x T x t R x dx
T

∂
=

∂∫  
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0

1lim ( , ; , ){ '( ) ( ) ( , ; , )
T

T t T TT
x z

f x T x t R x z y f z T T x T dz
T δ

∆ →
− <

− + ∆
∆ ∫ ∫  

2 21 ''( ) [( ) (( ) )] ( , ; , ) ( )}
2

T

T T T T
x z

TR x z x z x f z T T x T dz T d
δ

ο ο
− <

+ − + − + ∆ + ∆∫ x . 

 
Let . Following the assumption that the limits in 2) and 3) are uniform in 0t∆ → tx , the 
limit equation of the above can be expressed as: 
 

2( , ; , ) 1( ) ( , ; , )[ ( , ) '( ) ( , ) ''( )]
2

d
T t

T T T t T T T T
c

f x T x t
TR x dx f x T x t a T x R x b T x R x dx

T
∂

= +
∂∫ ∫  

 
Because  for '( ) ''( ) 0T TR x R x= = Tx c≤  and Tx d≥ : 
 

2( , ; , ) 1( ) ( , ; , )[ ( , ) '( ) ( , ) ''( )]
2

d d
T t

T T T t T T T T
c c

f x T x t
TR x dx f x T x t a T x R x b T x R x dx

T
∂

= +
∂∫ ∫      (a29) 

 
Use integration by parts and the equation (a26), 
 

( , ; , ) ( , ) '( ) ( ) [ ( , ) ( , ; , )]
d d

T t T T T T T T t
Tc c

Tf x T x t a T x R x dx R x a T x f x T x t dx
x
∂

= −
∂∫ ∫  

2
2 2

2( , ; , ) ( , ) ''( ) ( ) [ ( , ) ( , ; , )]
d d

T t T T T T T T t
Tc c

Tf x T x t b T x R x dx R x b T x f x T x t dx
x
∂

=
∂∫ ∫  

 
Substitute these expressions to the equation (a29): 
 

( , ; , ) ( )
d

T t
T T

c

f x T x t R x dx
T

∂
∂∫  

2
2

2

1{ [ ( , ) ( , ; , )] [ ( , ) ( , ; , )]} ( )
2

d

T T t T T t T
T Tc

a T x f x T x t b T x f x T x t R x dx
x x
∂ ∂

= − +
∂ ∂∫ T . 

 
This equation can be written in the following form: 
 

                          ( , ; , ){ [ ( , ) (
d

T t
T T t

Tc

f x T x t a T x f x T x t
T x

∂ ∂
+

∂ ∂∫ , ; , )]  

                                               
2

2
2

1 [ ( , ) ( , ; , )]} ( ) 0
2 T T t T T

T

b T x f x T x t R x dx
x
∂

− =
∂

             (a30) 

 
Fokker-Planck equation follows from (a30) since the function ( )TR x  is arbitrary.  
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C. Barone-Adesi and Whaley (1987) Quadratic Approximation Method to 
Adjust for the Early Exercise Premiumt 

 
       Consider a portfolio  of the one long (European or American) option position 

 on a stock  with continuously compounded dividend yield  written at time  
and a short position of the stock in quantity 

P
( , )V S t S q t

∆ : 
 
                                                            ( , )P V S t S= − ∆                                                 (a20) 
 
The underlying asset price dynamics follows usual geometric Brownian motion: 
 
                                                     ( )dS q Sdt SdWµ σ= − +                                           (a21) 
 
Portfolio value changes by 
 
                                                            dP dV dS= −∆                                                   (a22) 
 
From Ito’s lemma, the change in the value of the option is written as  
 

                               
2

2 2
2

1( ( ) )
2

V V V VdV q S S dt SdW
S t S S

µ σ∂ ∂ ∂ ∂
= − + + +

∂ ∂ ∂ ∂
σ                 (a23)   

 
Substitution of (a21) and (a23) into (a22) gives the change in the portfolio value as: 
 

2
2 2

2

1( ( ) ) {( )
2

V V V VdP q S S dt SdW q Sdt SdW
S t S S

µ σ σ µ∂ ∂ ∂ ∂
= − + + + −∆ − +

∂ ∂ ∂ ∂
}σ  

 
After rearrangement: 
 

                           
2

2 2
2

1[( )( ) ] ( )
2

V V V VdP q S S dt SdW
S t S S

µ σ∂ ∂ ∂ ∂
= −∆ − + + + −∆

∂ ∂ ∂ ∂
σ     (a24) 

 

Choosing V
S

∂
∆ =

∂
 makes the portfolio risk-free since randomness  is eliminated: dW

 

                                                   
2

2 2
2

1(
2

V VdP S dt
t S

σ∂ ∂
= +

∂ ∂
)

                                                

                                        (a25) 

 

 
t This is based on Hull and Shaw. 
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In an infinitesimal time interval dt , the portfolio holder earns capital gains equal to  
and loses dividends on the stock position (since the portfolio holder has short position in 
stock): 

dP

 

                                                                VqS dt
S

∂
∂

                                                       (a26) 

 
This portfolio is expected to grow at the risk-free interest rate : r
 

                                        
2

2 2
2

1( )
2

V V VS dt qS dt rPdt
t S S

σ∂ ∂ ∂
+ −

∂ ∂ ∂
=                               (a27) 

 
Substitution of (a20) into (a27) yields Black-Scholes PDE: 
 

                                           
2

2 2
2

1( )
2

V V Vr q S S rV
t S S

σ∂ ∂ ∂
+ − + =

∂ ∂ ∂
                                (a28) 

 
Let ρ  denote an early exercise premium which is the difference between American style 
and European style option price written on the same underlying with same maturity. ρ  
satisfies the Black-Scholes PDE because both American style and European style option 
price satisfy it: 
 

                                             
2

2 2
2

1( )
2

r q S S r
t S S
ρ ρ ρσ ρ∂ ∂ ∂
+ − + =

∂ ∂ ∂
                               (a29) 

 
The “quasi-stationary method” is a standard method for obtaining approximate solutions 
to differential equations of this type. Apply a change of variable technique of the 
following, set ( ) ( , )h g S hρ τ= , and ignore the time-dependence ( / 0tρ∂ ∂ = ): 
 
 

                                    T tτ = − , ( ) 1 rh e ττ −= − , 1 2

2rk
σ

= , 2 2

2( )r qk
σ
−

=                     

 
Equation (a29): 
 

                                               
2

2 2
2

1 ( )
2

S r r q S
S S
ρ ρσ ρ∂ ∂ 0− + − =

∂ ∂
 

 
can now be written down as: 
 

                                         
2

2 1
22 (1 ) 0k gg g gS k S h k

S S h h
∂ ∂ ∂

1+ − − − =
∂ ∂ ∂

                              (a30) 
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With quasi-stationary approximation 1(1 ) 0gh k
h
∂

− =
∂

:u

 

                                               
2

2 1
22 0k gg gS k S

S S h
∂ ∂

+ − =
∂ ∂

                                             (a31) 

 
Equation (a31) is an equation of homogeneous type, which is easily solved in terms of a 
power of .S v Let  and  denote the American style call and put 
option prices. Let  and  denote the European style call and put option 
prices. After applying boundary conditions

( , )AmeriC S t ( , )AmeriP S t
( , )EuroC S t ( , )EuroP S t

w to a solution of equation (a31): 
 

                    
2 *

2 *

*

( , ) ( )    if   
( , )

                           if                      

Euro
Ameri

SC S t A S B
C S t B

S K S B

γ⎧ + <⎪= ⎨
⎪ − ≥⎩

      (a32) 

 

                    
1 **

1 **

**

( , ) ( )    if   
( , )

                           if                      

Euro
Ameri

SP S t A S B
P S t B

K S S B

γ⎧ + >⎪= ⎨
⎪ − ≤⎩

      (a33) 

                                                                                                            
*B  is the critical stock price above which the call option should be exercised and **B  is 

the critical stock price below which the put option should be exercised. These can be 
estimated by solving the following equations: 
 

                                 
*

* * ( ) *
1

2

( , ) [1 ( ( ))]q T t
Euro

BB K C B t e N d B
γ

− −− = + −                           (a34) 

                              
**

** ** ( ) **
1

1

( , ) [1 ( ( ))]q T t
Euro

BK B P B t e N d B
γ

− −− = − − −                        (a35) 

 
Note in above equations: 
 

                                                2 1
1 2 2

41 (1 (1 ) )
2

KK K
h

γ = − − − +               

                                                2 1
2 2 2

41 (1 (1 ) )
2

KK K
h

γ = − + − +  

                                                 
u When τ  is large, 1  is close to zero. When h− τ  is small, /g h∂ ∂  is close to zero. 
v The solution is 1

1( / )tg A S B γ= . 
w For call, 

0
( , ) 0lim

S
S tρ

→

= . For put, ( , ) 0lim
S

S tρ
→∞

= . 
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**

( ) **
1

1

( )[1 ( ( ))q T tBA e N d
γ

− −= − − − 1 ]B                                (a36) 

                                                 
*

( ) *
2 1

2

( )[1 ( ( ))q T tBA e N d
γ

− −= − ]B  

                                             
2

1
ln( / ) ( 2)( )( ) S K r q T td S

T t
σ

σ
+ − + −

=
−
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