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Abstract

This sequel is designed as an introduction to Fourier transform option pricing for readers
who have zero previous knowledge of Fourier transform. First part of this sequel is
devoted for the basic understanding of Fourier transform and discrete Fourier transform
using numerous examples and providing important properties. Second part of this sequel
applies FT and DFT option pricing approach for three exponential Lévy models: Classic
Black-Scholes model which is the only continuous exponential Lévy model, Merton
jump-diffusion model (1976) which is an exponential Lévy model with finite arrival rate
of jumps, and variance gamma model by Madan, Carr, and Chang (1998) which is an
exponential Lévy model with infinite arrival rate of jumps. Some readers may question
that what the need for FT option pricing is since all three models above can price options
with closed form formulae. The answer is that these three models are special cases of
more general exponential Lévy models. Options cannot be priced with general
exponential Lévy models using the traditional approach of the use of the risk-neutral
density of the terminal stock price because it is not available. Therefore, Carr and Madan
(1999) rewrite the option price in terms of a characteristic function of the log terminal
stock price by the use of FT. The advantage of FT option pricing is its generality in the
sense that the only thing necessary for FT option pricing is a characteristic function of the
log terminal stock price. This generality of FT option pricing speeds up the calibration
and Monte Carlo simulation with various exponential Lévy models. It is no doubt to us
that FT option pricing will be a standard option pricing method from now on.
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[1] Introduction

Many of the option pricing models assume that a stock price process {S,;0<t<T}
follows an exponential (geometric) Lévy process:

S, =S,e",

where {L,;0<t<T} isa Lévy process. The reason of the popularity of exponential

(geometric) Lévy models is its mathematical tractability which comes from the
independent and stationary increments of Lévy processes. Classic Black-Scholes (BS)
model chooses a Brownian motion with drift process which is the only continuous Lévy
process as their choice of a (risk-neutral) Lévy process:

1
L, :(r—562)t+08t,

where {B,;0<t <T} is a standard Brownian motion process. This specification leads to a
normally distributed conditional risk-neutral log return density:

, {In(ST/SO)—(r—;aij}z

Q(ln(ST/SO)|F‘)):WeXp — 20-2T

BS call price can be simply calculated as the discounted value of the expected terminal
payoff under risk-neutral measure Q :

(S, T) =€ [ (S —K)Q(S( |5 )ds,, (1.1)
_ . -
. {In S, —(In SO+(r—202)Tj}
where Q(S, |7)= exp| — ST which is a

S;N270°T

lognormal density.

But even before BS model was developed, researchers knew that the empirical log return
density is not normal, it shows excess kurtosis and skewness. Thus, all the option pricing
models after BS (so called beyond BS) try to capture excess kurtosis and negative
skewness of the risk-neutral log return density by the use of different techniques.



This sequel deals with Merton jump-diffusion model (we call it Merton JD model) and
variance gamma model by Madan, Carr, and Chang (1998) (we call it VG model). These
are both exponential Lévy models of different types. Merton’s choice of Lévy process is
a Brownian motion with drift process plus a compound Poisson jump process which has a
continuous path with occasional jumps:

2 N,
L, =(r—%—/ik)t+aBt+ZYi.

i=1

Merton JD model can be categorized as a finite activity exponential Lévy model because
the expected number of jumps per unit of time (i.e. intensity A ) is finite and small. In
other words, the Lévy measure /(dx) of Merton JD model is finite:

je(dx)<oo.

The only but important difference between the BS and the Merton JD model is the
addition of a compound Poisson jump process ziN:‘lYi . Merton introduces three extra

parameters A (intensity of the Poisson process), # (mean log stock price jump size), and

o (standard deviation of log stock price jump size) to the original BS framework and
controls the (negative) skewness and excess kurtosis of the log return density.

Choice of Lévy process by Madan, Carr, and Chang (1998) is a VG process plus a drift:

L = {r +£In(l—0x— GZK]}t+VG(Xt;9,O',K).
K 2

A VG process VG (xt;e,a, K) is defined as a stochastic process {X,;0<t<T} created by
random time changing (i.e. subordinating) a Brownian motion with drift process 6t + o B,
by a tempered O-stable subordinator (i.e. a gamma subordinator) {S,;0 <t <T} with unit
mean rate:

X, =6(S,)+ 0B .
A VG process VG (xt;e,a, K) is characterized as a pure jump Lévy process with infinite
arrival rate of jumps. In other words, the Lévy measure of a VG process has an infinite
integral:

f;z(x)dx — 0.

This means that a VG process has infinitely many small jumps but a finite number of
large jumps. VG model introduces two extra parameters: One is variance rate parameter



x which controls the degree of the randomness of the subordination and the larger «
implies the fatter tails of the log return density. The other is the drift parameter of the
subordinated Brownian motion process € which captures the skewness of the log return
density.

Continuous Exponential Lévy models: No Jumps
Example: BS Model

Exponential Finite Activity Exponential Lévy Models: Continuous with
Lévy Models Occasional Discontinuous Paths
Example: Merton JD Model

Infinite Activity Exponential Lévy Models: Pure Jump Process
Example: VG Model

Traditionally, both Merton JD call price and VG call price have been expressed as BS
type closed form function using the conditional normality of both models. Merton JD call
price can be expressed as the weighted average of the BS call price conditional on that
the underlying stock price jumps i times to the expiry with weights being the probability
that the underlying jumps i times to the expiry. Because of the subordination structure
X, =0(S,)+ 0B, of the VG process{X;0<t<T}, the probability density of VG

process can be expressed as the conditionally normal by conditioning on the fact that the
realized value of the random time change by a gamma subordinator S, with unit mean

rate isS, =g:

1 —0q)°
VG (xJt=S, :g):mexp{_ (&2623) }

Using this conditional normality of VG process, the conditional call price can be obtained
as a BS type formula after lengthy and tedious process of numerous changes of variables.

The fact that a call price can be expressed as a BS type formula implies that the model
has a closed form expression for the log return density@(ln(sT /SO)|]-“O) . Merton JD

model has a log return density of the form:

- e (At)
|

2
Quveron (IS5 /80)|72) = 2= N(In(sT/so);(r—%—ﬂk)tnu,o%nazj



1
27b

log return density of the form:

0 T1 20_2
v 2k 4 X 2 +92
ﬁexp(o_z XT) X-|-2 \/ T P

Ko\l (T/x) 20° e T2 o’ 1
K

2
-a
where N(x;a,b)= exp {%} which is a normal density. VG model has a

Qus (In(ST /So)|~7:o) =

2
JZKj}t . The existence of the closed form

where x; =1In(S; /S,) —{r +£In (1—91(—
K

expression for the log return density @(In(sT /SO)|]-“O) enables the use of the equation
(1.1) to calculate a call price.

But Merton JD model and VG model are special cases of exponential Lévy models in the
sense that more general exponential Lévy models do not have closed form log return
densities (@(In(sT /SO)|J—"0) or they cannot be expressed using special functions of
mathematics. Therefore, we cannot price plain vanilla options using the equation (1.1).
How do we price options using general exponential Lévy models? The answer is to use a
very interesting fact that characteristic functions (CF) of general exponential Lévy
processes are always known in closed-forms or can be expressed in terms of special
functions of mathematics although their probability densities are not. There is one-to-one
relationship between a probability density and a CF (i.e. CF is just a Fourier transform of
a probability density with FT parameters (1,1) ) and both of which uniquely determine a
probability distribution. If we can somehow rewrite (1.1) in terms of a characteristic
function of the conditional terminal stock price S; |fgJ (i.e. log of S; |]-"O to be more

precise) instead of its probability density Q(S; |]-"0) , we will be able to price options in
general exponential Lévy models.

The purpose of this sequel is to introduce the basics of Fourier transform option pricing
approach developed by Carr and Madan (1999) to the readers who have no previous
knowledge of Fourier transforms. Carr and Madan (1999)’s contribution was rewriting
the equation (1.1) in terms of a CF of the conditional log terminal stock price

#(Ins;|7):

do. (1.2)

e o e g (0—(a+1)i)
C ,k - ik
(T k) 27 Lﬂe a2+a—a)2+i(2a+1)a)



And approximate the equation (1.2) using DFT (i.e. simply by taking a sample of size
N):
exp(—ak,)exp(izn)exp(-izN/2)

Ak

x%%Wj {exp(i;zj)gyT(a)j)}exp(—i27zjn/N), (1.3)

j=0

C, (k,) ~

which improves significant amount of computational time. This simple operation is
critically important in the pricing with general exponential Lévy models. Why? Because
without Fourier transform pricing approach, we cannot price options in general
exponential Lévy models or we have to spend tremendous amount of energy just to come
up with closed form solution like the VG model. The excellence of FT option pricing is
its simplicity and generality and FT pricing works as long as a CF of the conditional log

terminal stock price S; |}5 is obtained in closed form.

The structure of this sequel is as follows. Chapter 2 provides readers with minimal
necessary knowledge before learning Fourier transform. Chapter 3 defines FT and then,
numerous examples are presented in order to intuitively understand the meaning of FT.
We also present the important properties of FT. These are not necessary for the
beginners, but we believe these will help readers as they proceed to more advanced
integral transform pricing methods. In Chapter 4, a characteristic function is defined and
its properties are discussed. We show, using several examples, how to obtain moments by
using a CF (or characteristic exponent). Moment generating function is also dealt.
Chapter 5 gives an introduction to the discrete Fourier transform which is just an
approximation of FT. This approximation is done by sampling a finite number of points
N of a continuous time domain function g(t) with time domain sampling interval At

(seconds) and sampling a finite number of points N of a continuous FT G(w) with

angular frequency sampling interval Ao Hz. In other words, both the original continuous
time domain function g(t) and the original continuous FT G(w) are approximated by a

sample of N points. The use of DFT improves the computation time by a tremendous
amount. Following Chapter 3, the examples of DFT and its properties are examined. In
Chapter 6, a Lévy process is defined and its properties are discussed. We frequently use
Lévy-Khinchin representation to obtain a CF of a Lévy process. Chapter 7 revisits the
Black-Scholes model as an exponential Lévy model and its basic properties are reviewed.
Chapter 8 gives Carr and Madan (1999)’s general FT call price and our version of general
DFT call price. These general FT and DFT call prices are applied in the BS framework
which shows that the original BS, BS-FT, and BS-DFT call prices are identical as
expected. Chapter 9 illustrates the derivation of Merton JD model, factors which
determine the skewness and the excess kurtosis of the log return density, Lévy measure
of jump-diffusion process, and the traditional (i.e. PDE and martingale approach) option
pricing with Merton JD model. Chapter 10 applies the general FT and DFT call price to
the Merton JD model. This is simply done by substituting the CF of Merton JD log
terminal stock price. Chapter 11 presents the derivation of VG model, factors which



determine the skewness and the excess kurtosis of the log return density, Lévy measure
of VG process, and its closed form and numerical call price. Chapter 12 is an application
of the general FT and DFT call price to the VG model which is simply done by
substituting the CF of VG log terminal stock price. Chapter 13 gives concluding remarks.



[2] Prerequisite for Fourier Transform
In this section we present prerequisite knowledge before moving to Fourier transform.
[2.1] Radian

Radian is the unit of angle. A complete circle has 27 =6.28319 radians which is equal to
360°. This in turn means that one radian is equal to:

360°
2

1 radian = =57.2958° .

[2.2] Wavelength

Wavelength A4 of a waveform is defined as a distance (d ) between peaks or troughs. In
other words, wavelength is the distance at which a waveform completes one cycle:

distance
ﬂ/ =

= . 2.1
1 cycle 1)

Let v be the speed (distance/second), and f be the frequency (cycles/second, explained
soon) of a waveform. These are related by:

v(distance/second)
f (cycles/second)

A(distance/cycle) = (2.2)

Displacement

Distance
Figure 2.1: Illustration of Wavelength A.

[2.3] Frequency, Angular Frequency, and Period of a Waveform

Period T of oscillation of a wave is the seconds (time) taken for a waveform to complete
one wavelength:



seconds
1 wavelength (cycle)

T (2.3)

Period is by definition a reciprocal of a frequency. Let f be the frequency of a wave.
Then:

1
T (seconds/cycle) = : 2.4
( yele) f (cycles/second) 24)
Frequency f of a wave measures the number of times for a wave to complete one
wavelength (cycle) per second:
Fo number of wavelengths (cycles) . (2.5)
1 second
By definition, f is calculated as a reciprocal of the period of a wave:
1
f (cycles/second) = (2.6)

T (seconds/cycle)

Frequency f is measured in Hertz (Hz). 1 Hz wave is a wave which completes one

wavelength (cycle) per second. The frequency of the AC (alternating current) in U.S. is
60 Hz. Human beings can hear frequencies from about 20 to 20,000 Hz (called range of
hearing). Alternatively, frequency can be calculated using the speed v and wavelength A
of a wave as:

v(distance/second)
A(distance/cycle)

f (cycles/second) = (2.7)

Angular frequency (also called angular speed or radian frequency) @ is a measure of
rotation rate (i.e. the speed at which an object rotates). The unit of measurement for o is
radians per 1 second. Since one cycle equals 2z radians, angular frequency @ is
calculated as:

27 (radians)
T (seconds/cycle)

(radians/second) = =27 f (cycles/second) . (2.8)



w=de/dt

de

Figure 2.2: Definition of Angular Frequency.

Consider a sine wave g(t) =sin (271(5)t) which is illustrated in Figure 2.3 for the time

between 0 and 2 seconds. This sine wave has frequency f =5Hz (5 cycles per second)
and angular frequency @ =10z Hz (107 radians per second). Its period is
1

T= T = % =0.2 (seconds/cycle).

0.5

sin (275t)

-0.5

gt

0 1 2
time (seconds )
Figure 2.3: Plot of 5 Hz Sine Wave g(t) =sin(2z(5)t).

[2.4] Sine and Cosine

Let & be an angle which is measured counterclockwise from the x-axis along an arc of a
unit circle. Sine function (sin @) is defines as a vertical coordinate of the arc endpoint.
Cosine function (cos @) is defined as a horizontal coordinate of the arc endpoint. Sine
and cosine functions sin @ and cos # are periodic functions with period 2z as illustrated
in Figure 2.5:

sing =sin(60+2zh),



cosd = cos(6+2zh),

where h is any integer.

N

1

sinB

cos8

Figure 2.4: The Definition of Sine and Cosine Function with Unit Circle

1 ‘ N | ]
/N /
0.5 /]
0]
_O - 5 x\
__:L ‘ \7/* \‘T/ B
-2 7 -7 0 7T 27
Angle ©

Figure 2.5: Sine and Cosine Function sin(0) and cos(0).
Following Pythagorean theorem, we have the identity:

sin@” +cosH” =1. (2.9)
[2.5] Derivative and Integral of Sine and Cosine Function

Let sin(x) and cos(x) be sine and cosine functions for x e R. The derivative of sin(x)
can be expressed as:

d sin(x)
dx

=c0S(X) . (2.10)

The derivative of cos(x) can be expressed as:

10



d cos(x)

—sin(x). (2.11)

dx

The integral of sin(x) can be expressed as:
f sin(x)dx = —cos(x) . (2.12)

Refer to any graduate school level trigonometry textbook for proofs.

[2.6] Series Definition of Sine Function and Cosine Function

ForanyxeR:
3 5 7 o (_1\0
sin(x) = X— 2 X——X—+...=z (=) x> (2.13)
31 51 71 ~(2n+1)!
2 4 6 o (_A\N
cos(x):l—X—+X——X—+...:z( D en. (2.14)
21 41 6l < (2n)!

Refer to any graduate school level trigonometry textbook for proofs.
[2.7] Euler’s Formula

Euler’s formula gives a very important relationship between the complex (imaginary)
exponential function and the trigonometric functions. For any x e R:

e™ = cos(x) +isin(x). (2.15)

From (2.15), variants of Euler’s formula are derived:

e ™ = cos(x) —isin(x), (2.16)
e” +e ™ =2cos(x), (2.17)
e* —e™ =2isin(x). (2.18)

Consider sine and cosine functions with complex arguments z . Then, Euler’s formula
tells:

iz —iz

H iz c 2n+l _ e —€

sinz=Im(e") = §(2n+1)r = (2.19)
oy (D o _€"+e™

cosz = Re(e"”) = Z - )l > (2.20)

11



Refer to any graduate school level trigonometry textbook for proofs.
[2.8] Sine Wave: Sinusoid

Sine wave is generally defined as a function of time t (seconds):
g(t) =asin(2zft+b), (2.21)

where a is the amplitude, f, is the fundamental frequency (cycles/second, Hz), and b

changes the phase (angular position) of a sinusoid. In terms of a fundamental angular
frequency @, (radians/second), a sine wave is defined as (i.e. @, =27 f,):

g(t) =asin(wyt+b). (2.22)

Figure 2.6 illustrates the role of a fundamental frequency f,. When a fundamental

frequency f, doubles from 1 (1 cycle /second) to 2 (cycles/second), its period becomes
half from 1 to 1/2 seconds as illustrated in Panel A.

sin (27 (1) t)

sin (21 (2)t)

time t

A) 1 Hz sine wave sin(2z(1)t) versus 2 Hz sine wavesin(27(2)t).

1F

0.5

0 1 2

B) 30 Hz sine wave sin(27(30)t).

12



Figure 2.6: Plot of a Sine Wave g(t) =sin(2z ft) with Different Fundamental
Frequency f;.

The role of amplitude a is to increase or decrease the magnitude of an oscillation. Figure
2.7 illustrates how magnitude of an oscillation changes for three different amplitudes
a=1/2, 1, and 2. In audio study amplitude a determines how loud a sound is.

—% sin (2rt)
/" J/ \\\ ‘/‘
L e e e
@ NNV 2sin (2t)
) ]
0 1 2 3
time t

Figure 2.7: Plot of a 1 Hz Sine Wave g(t) =asin(2xt) with Different Amplitudes a =
1/2, 1, and 2.

Consider three 1 Hz sine waves sin(2xt), sin(27zt+§) , and sin(Zﬂt—%). A sine wave

sin(2xt) has a phase O, sin(27rt+%) = cos(2xt) has a phase z/2, and sin(27rt—%) has

a phase —z /2. The role of a parameter b is to change the position of a waveform by an
amount b as illustrated in Figure 2.8.

sin (2rt)

1 N\ /N a - T

\\ / 2 [
0.5 / Sin (2rtt+ > )
@05 | \/ / sin (2rt- % )

-1 \/ \/
-1 0 1
time t

Figure 2.8: Plot of a 1 Hz Sine Wave g(t) =sin(2zt+b) with Different Phase b = 0,
/2, and - /2.

13



This means that g(t) =asin(2zf,t) is a sinusoid at phase zero and g(t) = acos(27 f,t)

is a sinusoid at phase 7z /2 . For the purpose of defining a sinusoid, it really does not
matter whether sin( )or cos( ) is used.

14



[3] Fourier Transform (FT)
[3.1] Definition of Fourier Transform

We consider Fourier transform of a function g(t) from a time domain t into an angular

frequency domain @ (radians/second). This follows the convention in physics. In the
field of signal processing which is a major application of FT, frequency f (cycles

/second) is used instead of . But this difference is not important because @ and f are
measuring the same thing (rotation speed) in different units and related by (2.8):

w=2rf. (3.1)
Table 3.1 gives a clear-cut relationship between frequency f and angular frequency .

Table 3.1: Relationship between Frequency f and Angular Frequency @

Frequency f (cycles/second) Angular Frequency @ (radians/second)
1 Hz 271 =360° Hz
10 Hz 2077 =360°x10 Hz
100 Hz 2007 =360°x100 Hz

We start from the most general definition of FT. FT from a function g(t) to a function
G(w) (thus, switching domains from t to @) is defined using two arbitrary constants a
and b called FT parameters as:

G(@)=F[9(0)](@) = (2| ] eaa (32)

Inverse Fourier transform from a function G(w) to a function g(t) (thus, switching
domains from @ to t) is defined as (i.e. the reverse procedure of (3.2)):

g(t)=F"[G(@)](t) =

)¢ G@)o. (33)

For our purpose which is to calculate characteristic functions, FT parameters are set as
(a,b) =(L,1) . Thus, (3.2) and (3.3) become:

G(0) = F[9(1)](e) = j ~e“g(nyt, (34)
9(t) =7 [G(@)] (1) === j eG(o)dw. (3.5)

Euler’s formula (2.15) isforte R :

15



e =cost+isint.

Thus, the FT of (3.4) can be rewritten as:

G(0) = F[9()] (@) = [Z cos(wt)g(t)dt +i [;sin(wt)g(t)dt .

Intuitively speaking, FT is a decomposition of a waveform g(t) (i.e. in time domaint)

into a sum of sinusoids (i.e. sine and cosine functions) of different frequencies (Hz)
which sum to the original waveform. In other words, FT enables any function in time
domain to be represented by an infinite number of sinusoidal functions. Therefore, FT is
an angular frequency representation (i.e. different look) of a function g(t) and G(w)
contains the exact same information as the original function g(t).

We can check if the inverse Fourier transform (3.5) is true:

iﬁo e“'G(w)dw= ij:(ji e g (T)df)ei“"dw
= %J‘i a(r) (Ii eiw(rt)da)) dr

= j“; 9(z)s(r -t)dr
=g(t),

where we used the identity of Dirac’s delta function (3.12) which is proven soon.

Although FT parameters (a,b) = (1,1) are used for calculating characteristic functions,
different pairs of (a,b) are used for other purposes. For example, (a,b) = (1,-1) in pure
mathematics:

G(@)=F[9®](@) =] e“gt)dt,

a(t) = F, [G(@)](t) = % fi e G(w)dw .
Modern physics uses (a,b) = (0,1) :

9(e) = F[a0)@) = [ e gt

o) =% (9]0 = [ & "G,

In the field of signal processing and most of the standard textbooks of FT, FT parameters
(a,b) =(0,—2x) are used (i.e. they use frequency f instead of angular frequency w):

16



g(f)=£[am](f) = e* gt (3.6)
g(t) = F G0 = [ e "G(f)df . (3.7)

We use (3.6) and (3.7) frequently because this definition of FT is mathematically simpler
to handle for the purpose of proofs.

In general, Fourier transform G(w) is a complex quantity:
G(w) = Re(w) +iIm(w) =|G(w)| e, (3.8)

where Re(w) is the real part of the FT G(w), Im(w) is the imaginary part of the FT,
|G(w)| is the amplitude of a time domain function g(t), and (@) is the phase angle of

the FT G(@) . |G(@)| and O(w) can be expressed in terms of Re(w) and Im(w) as:

G(w)| = JRe* (@) + Im? () , (3.9)
0() = tan* ['er—gz)ﬂ . (3.10)

[3.2] Examples of Fourier Transform

Before discussing important properties of FT, we present representative examples of FT
in this section to get the feeling of what FT does.

[3.2.1] Double-Sided Exponential Function
Consider a double-sided exponential function with A, e R :
g(t) = Ae 'l
From (3.4):
— © ot _ ot —a‘t‘ _ 0 iot jat * it f—at
G(w) = I_me g(t)dt= I_we Ae “dt = A(I_we e dt+j0 e“"e dt)

g(a))=A( 1 N 1 j 2Acx

a+tio a-iw) a*+o°

When A=1 anda =3, the time domain function g(t) = e ¥l and its Fourier transform

G(w) = 6

9+ @’

is plotted in Figure 3.1.
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0.8
0.6
©0.4

0.2

-2 -1 0 1 2
t (seconds )

A) Plot of a double-sided exponential function g(t) = et

0.6

0.5
~0.4
3
©0.3

0.2

0.1

-4 =27 0 27 47
Angular Frequency w Hz (radians /second )

B) Plot of FT of g(t) = el in Angular Frequency Domain, G(w).

0.6
0.5
— 0.4
=
©0.3
0.2
0.1

-2 -1 0 1 2
Frequency f Hz (cycles /second )

C) Plot of FT of g(t) = eIl in Frequency Domain, G(f).

Figure 3.1: Plot of Double-Sided Exponential Function ¢(t) and Its Fourier
Transforms G(w) andG(f).

Using the signal processing definition of FT (a,b) = (0,-2x) of the definition (3.6), FT of
g(t) = Ae "I is computed as (which is simply obtained by substituting o = 27 f
intoG(w)):
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2Ax
a’+4r’f?’

g(f)=

When A=1 anda =3, Q(f):TES2f2 which is plotted in Panel C of Figure 3.1.
+4r

[3.2.2] Rectangular Pulse

Consider a rectangular pulse with A, T, e R :

t A T, <t<T,
g()_o t>T,

which is an even function of t (symmetric with respect to t).

From (3.4) and use Euler’s formula (2.18) e* —e™ = 2isin(x)

o

G(w) = e“g(t)dt= Aﬁ gt — A{—(e'“’-‘) —e'wO)}’

B A{Zi sin(a)To)} _ 2Asin(aT,)
- %) - @ '

Using the signal processing definition of FT (a,b) = (0,-27) of the definition (3.6), FT of
a rectangular pulse is computed as:

Asin(27z fT,)
xf '

_ [ —2xift AT oxift gy
g(f)=_|._me g(t)dt_AI_TDe dt =

When A=1 and T, = 2, the time domain function g(t), Fourier transform
(o) = 2sin(2w) sin(4x f) in
[0

in angular frequency, and Fourier transform G(f) = ;
T
frequency domain are plotted in Figure 3.2.
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1.75¢
1.5¢
1.25¢

~

0.75 |
0.5¢
0.25 ¢

0 A A

VAR

-4 -2 0 27 47
Angular Frequency w Hz (radians /second )

B) Plot of the FT of g(t) in Angular Frequency Domain, G(w) .

ar
3

2

-

1
O \/ UA
=2 a 0 1 2

Frequency f Hz (cycles /second )
C) Plot of the FT of g(t) in Frequency Domain, G(f).

Figure 3.2: Plot of Rectangular Pulse g(t) and Its Fourier Transforms G(w) and
g(f).

[3.2.3] Dirac’s Delta Function (Impulse Function)

Consider Dirac’s delta function scaled by a e R™ (Dirac’s delta function is discussed in
detail in section 3.3.1.):
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gt)=as(t).
From (3.4):
Gw)=|" e*gt)dt =" e"as(t)dt=ae" =a.

Using the signal processing definition of FT (a,b) = (0,—2x) of the definition (3.6), FT of
a scaled Dirac’s delta is computed as:

Gg(f)= .[: e Mg (t)dt = J‘: e 2 a5 (t)dt = ae 20 = a.

When a =1 (i.e. pure Dirac’s delta), the time domain function g(t) = 5(t) and Fourier
transforms G(w) =1 and G(f) =1 are plotted in Figure 3.3.
a(t)

5(0)

0
seconds
A) Plotofg(t) =6(t) .
G(w)

1

0

Angular Frequency w Hz (radians/second)
B) Plot of FT of g(t) in Angular Frequency Domain, G(w) =1.
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0
Frequency f Hz (cycles/second)
C) Plot of FT of g(t) in Frequency Domain, G(f)=1.

Figure 3.3: Plot of Dirac’s Delta Function g(t) =(t) and Its Fourier
Transforms G(w) and G(f).

[3.2.4] Gaussian Function

Consider a Gaussian function with Ae R" ;

g(t) = e

From (3.4):
G(@)=[" e"g(dt=]" e dt.
Use Euler’s formula (2.15):

G(w) = j_ie*‘“z {cos(wt) +isin(wt)) dt

- J':D e cos(at)dt +i f e sin(wt)dt

T _ 2 . T2
— _ew/4A+|0: Ze w/4Al
VA \V A

Using the signal processing definition of FT (a,b) = (0,—27z) of the definition (3.6), FT of
a Gaussian function is computed as:

Gg(f)= '[_Z e_Z”iﬁg(t)dt = j: e_z”iﬁe‘Atzdt — \/%e—ﬂzleA'
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When A =2, the time domain function g(t) = e and its Fourier transforms

G(w) = \/%e”’z’g and G(f)= \/ge”zfz’2 are plotted in Figure 3.4. Note that FT of a

Gaussian Function is another Gaussian function.

1r
0.8

0.6

.

©0.4

0.2

0

-3 -2 -1 0] 1 2 3

A) Plot of Gaussian function g(t) = e,

1
0.8
Zo0.6
0.4
0.2

0
-4 =27 0 27 47
Angular Frequency w Hz (radians /second )

B) Plot of FT of g(t) in Angular Frequency Domain, G(w) .

1.2
1
0.8

0.6
O}

0.4
0.2

0

-2 -1 0 1 2
Frequency f Hz (cycles /second )

C) Plot of FT of g(t) in Frequency Domain, G(f).

Figure 3.4: Plot of Gaussian Function g(t) = e?" and Fourier Transforms G(w) and

g(f).
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[3.2.5] Cosine Wave g(t) = Acos(2r f,t) = Acos(w,t)
Consider a sinusoid g(t) = Acos(2x f,t) = Acos(m,t) . Using the signal processing

definition of FT (a,b) = (0,-27) of the definition (3.6), FT of a cosine wave is computed
as:

G(f)=[" e*™g(t)dt =" e Acos(2z ft)dt.
From Euler’s formula (2.17):
o o1, _
f :A e—27z‘|f’[_ elZﬁf0t+e—|2ﬁf0t dt
g( ) J-—ao 2( )
:EA{J'OO e—27riftei27zf0tdt+'[°c e27rifte—i27rf0tdt}
2 U= -
_ 1 ®2mi(f-fo)t @ —2mi(f+fy)t
= EA{LOG dt +j_we dt} .
Use the identity (3.12) of Dirac’s delta function:
1 o -
S(x—a)=—/| e“"?dew.
(x-a)=——]

Therefore, we obtain:
1
Q(f)zaA{d(f —f)+o(f + fo)}

g(f)=§5(f - fo)+§5(f +1,),

which is two impulse functions at f =+f;. Thus, FT of a cosine wave (which is an even
function) is a real valued even function which means G(f) is symmetric about f =0.

Next, in terms of angular frequency @ from (3.4):
G(e)=[" e”gt)dt=]" e Acos(@yt)dt .
From Euler’s formula (2.17):

e” +e ™ =2cos(x).

Therefore:
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G(w) = A[” e cos(ayt)dt = A[ & {% (e + e“‘”f’t)}dt
:AJ-OO ei(uteiwotdt_l_éj'w eia)te—icootdt =AJ'°D ei(anO)tdt-l-AJ.w ei(w—wo)tdt.
2 - 2 2 9 29—
Use the identity of Dirac’s delta function (3.12):
Sy =L [ eI
271 9>
Thus:

G(w) =§27z5(a)+a)0)+§27z5(a)—a)0)

() = Ard (@ + a,) + Ao (0 — ay,)
which is two impulse functions at @ = £@,. Figure 3.5 illustrates a cosine
wave g(t) = Acos(27 f,t) = Acos(a,t) and FTs G(w) = Ard (v + @,) + And (v — w,) and
Q(f)=§§(f - f0)+§§(f i1).

t (seconds )
A) Plot of a Cosine Wave g(t) = Acos(2x f,t) = Acos(m,t) . Amplitude of the wave is
given by A.

25



ATTo(w+w0) ATI8(w-w0)

-w0 w0
Angular Frequency w Hz (radians/second)

B) Plot of FT of g(t) in Angular Frequency Domain, G(®) .
G(f)

SAB(F+0) SAB(F-0)

- f
Frequency f Hz (cycles/second)

C) Plot of FT of g(t) in Frequency Domain, G(f).

Figure 3.5: Plot of a Cosine Wave g(t) = Acos(2x f,t) = Acos(w,t) and Fourier
Transforms G(w) and G(f).

[3.2.6] Sine Wave g(t) = Asin(27 f,t) = Asin(a,t)

Consider a sinusoid g(t) = Asin(27 f,t) = Asin(a,t) . Using the signal processing
definition of FT (a,b) = (0,—2x) of the equation (3.6), FT of a sine wave is computed as:

G(f)=[" e*™g(t)dt=[" e Asin(2x fyt)ct.
From Euler’s formula (2.18):
_ A7 g-2Aift 1 i27 fot —i27 fot
g(f)—AJ:we E(e —e 7 ) dt

:i_A{J‘” e—ZﬁifteiZﬂfotdt_Iw e2nifte—i2ﬂf0tdt}
2i - -
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_ 1 @ 2i(f-fy)t @ —27i(f+fy)t
_EA“@e dt—Loe dt}.
Multiply 1=i/i to the right hand side:

I BN PR R S LA
G(1) =z Al 20t [ et ey

_l © m2xi(fitae [ a-2ai(f-fo)t
— AT e g [ e,
Using the identity (3.12) of Dirac’s delta function, we obtain:
[
g(f):EA{5(f + fo)_5(f - fo)}
A A
=|55(f + fo)—|55(f — ).

which is two complex impulse functions at f ==+ f;, which are not symmetric about
f=0.

Next, in terms of angular frequency @ from (3.4):
G(w) = [" e“g(t)dt = Af " e sin(w,t)dt .
Using Euler’s formula (2.18):

Q(a)) = AJ._O; el {% (ei[”Ot — e‘i‘”ot)}dt = A * gl“taiont gt _A_ ® it giont g

207 217
A (= i(w+ap)t A - i(w-ap)t Ai o i(o+m)t Al (= i(w-ap)t
=—| e dt——| e"™dt=—| e""dt——| e"“ ™’ dt
il il it i)
_AI @ i(w-mp)t AI @ i(w+ay)t
_7Loe dt—7Loe dt
Use the identity (3.12) of Dirac’s delta function:
g(a))=%27r§(a)—a)o)—%27r5(w+wo)

= Aizd (o — w,) — Aird (o + w,) .

Figure 3.6 plots a sine wave g(t) = Asin(2x ft) = Asin(m,t) and its Fourier transforms

G(w) = Aind (o —a,) — Aind(w+a,) andG(f) :i%&(f + fo)—iga(f ~1,).
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t (seconds )
A) Plot of a Sine Wave g(t) = Asin(27 f,t) = Asin(a,t) .

Glw)
Aimd(w-w0)
-w0
w
w0
-Aid{w+w0)
B) Plot of FT of g(t) in Angular Frequency Domain, G(w) .
Gif)
i6(f+0)/2
f0
;
£0
[iB(f-f0)/2

C) Plot of FT of g(t) in Frequency Domain, G(f).

Figure 3.6: Plot of a Sine Wave g(t) = Asin(2z f;t) = Asin(e,t) and Fourier
Transforms G(w) andG(f).
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[3.3] Properties of Fourier Transform

We will discuss important properties of Fourier transform in this section starting from
Dirac’s delta function which is essential to the understanding of properties of Fourier
transform.

[3.3.1] Dirac’s Delta Function (Impulse Function)
Consider a function of the form withne R*:

h(x) =%exp(—n2x2) . (3.11)

This function is plotted in Figure 3.7 for three different values forn. The function h(x)

becomes more and more concentrated around zero as the value of n increases. The
function h(x) has a unit integral:

Jm h(x)dx = jm %exp(—nzxz)dx =1.
- N7

5,
4!
X 3| —n=l
=2 s — n=
ol n=10
o |
2 4 0 1 2

Figure 3.7: Plot of A Function h(x) for n =1, n = 10", and n = 10.

Dirac’s delta function denoted by &(x) can be considered as a limit of h(x) when
n — oo. In other words, §(x) is a pulse of unbounded height and zero width with a unit
integral:

.[:§(x)dx:1.

Dirac’s delta function 6(x) evaluates to O at all x e R other thanx=0:
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5(x) = {5(0) if x :.0

0 otherwise
where 6(0) is undefined. &(x) is called a generalized function not a function because of
undefined &(0). Therefore, 6(x) is a distribution with compact support {0} meaning that
o(x) does not occur alone but occurs combined with any continuous functions f (x) and
is well defined only when it is integrated.

Dirac’s delta function can be defined more generally by its sampling property. Suppose
that a function f(x) is defined atx=0. Applying 5(x) to f(x) yields f (0):

j”; f (x)5(x)dx = (0).

This is why Dirac’s delta function §(x) is called a functional because the use of &(x)
assigns a number f (0) to a function f (x) . More generally forae R :

olx-2)= {g(O) (i)fth;(rv:viZe
and:

IZ f(x)5(x—a)dx = f(a),
or for £>0:

j f(x)5(x—a)dx = f(a).

o(x) has identities such as:

S(ax) = ﬁa‘(x) ,

S(x*—a’) :ﬁ[ﬁ(x+a) +5(x—a)].

Dirac’s delta function 5(x) can be defined as the limit n — oo of a class of delta
sequences:

5(x) = lim s, (x),
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such that:

lim [ 8,00 f (dx=£(0),

where &, (x) is a class of delta sequences. Examples of 6, (x) other than (3.8) are:

n if -1/2n<x<1/2n
o (x)= ) ,
otherwise

1 ¢n .
S, (x) =Ejlnexp(|ux)du ,

1 einx_e—inx
i) =
(%) X 2i

1 sin n+1/2

T sm(x/2)

[3.3.2] Useful Identity: Dirac’s Delta Function

Dirac’s delta function 5(x) has the following very useful identity which we have used

many times before:

5(x—a)si T et g,
27w 7=

PROOF!

(3.12)

First step is to prove a proposition forall d = 2,3,4,...and j=0,1, 2, ..., d—1 (note

that j dependson d):

1E 27 . 1 if j=0
EZGXP(T Jk) =1, ={ )

0 otherwise

First, we deal an informal proof of a proposition (3.13).

When d =2 and j=0

= 27i 13 27i 2ri 2ri
=) exp| — jk exp| — 0k ——00 |+exp| —01
Z ( ’jzkz_o p(z jz{p(z j+ p(z j}

(3.13)

! This is based on “Option Pricing Using Integral Transforms” by Carr, P., Geman, H., Madan, D., and Yor,

M.

31



= %{exp(o) +exp(0)} =1.

When d =2 and j =1:

14 27i 122 27i 1 27i 27i
— —jk ——1k —10 |+ —11
P p( ’j ep( j z{eXp(z ] ep(z j}

= E{exp(0)+exp(i7z)} = %{1—1} =0.

d-1
% exp(@ kj: Zexp(@OkJ

27i 27i
exp| —00 |+ex —01 +exp| —02
p( 3 ) p( 3 j p( 3 j}

{exp(0)+exp(0)+exp(0)} =1,

d-1 3-1
L exp(ﬂ kj:l exp(ﬂlkj
di= d 3 3
= %{exp (@10] +exp (%11} +exp (—12}}
1 2ri Ari
=—<exp(0)+exp| — |+exp| —
3{p() p(s p(sj}
1 .
5{1+(o 866025i —0.5) + (~0.866025i — 0.5)}
=0.

When d =3 and j =2

1 27 . 13 27i
=Y exp| — jk |==) exp| —2k
d p[ da )73 p( 3 j

k=

0
:%{exp(%zo +exp(2gI )+exp[%22}}
%{exp(0)+exp ﬂ]+exp(%)}

3
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= %{1+(—0.866025i —0.5)+(0.866025i —0.5)}
=0.

(Formal) PROOF of a proposition (3.13)

Rewrite as the below:
! 27i 14
—ZeXp(—jkj q il

27l

where § = exp(% Jj When j=0, = exp(Toj =1. Thus, from (3.14):

1 d- 1 d-! 1 d-1
= - ==Y'1=
d Z::; d¥ Z d Z(;
-1
When j = 0, consider the term Z,B which is a geometric series:

k=0

d-1

B =1+B+ B+ 4.t O+

k=0

Multiply g to (3.12):

BS, =B+ A+ BT S B
Subtract (3.16) from (3.15):
(1-p)Sy,=1-p°

S,, = L-p° .
1-.)

Note that for j =0

. d
A =exp(% j] =exp(27ij)=1.

From (3.17):
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From (3.14):

O

Now we have completed the proof of a proposition (3.13) and we use this now. Multiply
d to both sides of a proposition (3.13):

d-1 H
dl_, = Zexp(@ jkj. (3.18)
k0 d
As the limit d — oo and plug j = x—a, (3.18) becomes:
S(x-a) = j_‘” el t-agf | (3.19)

Convert frequency f into angular frequency @ by the equation (3.1) which is

a)=2_|_—”= 27z f . From (3.19):

(0]

§(X _ a) — J‘_O:Oei(u(xfa)d 27[

This completes the proof of an identity (3.12).

O
[3.3.3] Linearity of Fourier Transform
Consider time domain functions f(t) and g(t) which have Fourier transforms F(w)
and G(w) defined by the equation (3.4). Then:
j_“’ {af (1) +bg(t)} e“dt =a j_“’ f (t)edt +b j_“c g(t)e“dt
=aF (w)+bG(w). (3.20)

Or, we can write:

Faf (1) +bg(t)](w) =aF [ f (t)](w) +bF[g(t)](®).
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Linearity means two things: homogeneity and additivity. Homogeneity of Fourier
transform indicates that if the amplitude is changed in one domain by a, the amplitude in
the other domain changes by an exactly the same amount a (i.e. scaling property):

F[af 0)](@) =aF [ f ()] (@).

Additivity of Fourier transform indicates that an addition in one domain corresponds to
an addition in other domain:

FITO+90](@)=F[fO)](@)+F[91)] ().
[3.3.4] FT of Even and Odd Functions
A function g(x) is said to be even if forx e R :
g(x)=9g(-x), (3.21)

which implies that even functions are symmetric with respect to vertical axis. Examples
of even functions are illustrated in Panel A of Figure 3.8.

A function g(x) is said to be odd if forxeR:
—g9(x) =9(-x), (3.22)

which implies that odd functions are symmetric with respect to the origin. Examples of
odd functions are illustrated in Panel B of Figure 3.8.

2 \\
1.5} | —
1 ]
X 0.5 g , % 2
0 ~/ -
-0.5 ] COS (271X)
-1

-2 -1 0] 1 2

A) Even Functions: g(x) =1, g(x) :%x2 ,and g(x) =cos(2zx).
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/'/7
2 ' — X
X 0 N\ 13
(@) P 2
_2 / | -
/ sin (2nx)
-4t ]
-2 -1 1 2

B) Odd Functions: g(x) =x, g(x)==x>,and g(x) =sin(2zx).

0
X
1
2
Figure 3.8: Plot of Even and Odd Functions

There are several important properties of even and odd functions. The sum of even
functions is even and the sum of odd functions is odd. The product of two even functions
is even and the product of two odd functions is also even. The product of an even and an
odd function is odd.

Let even(x) be an even function and odd (x) be an odd function. Integral properties of
even and odd functions are:

[ odd (x)dx=0, (3.23)

J:AA even(x)dx = 2J.OA even(x)dx. (3.24)
Consider FT of an even function g(t) . From the definition (3.4) and use Euler’s formula:

G(w) = jjoeiwtg(t)dt = j”; cos(wt)g(t)dt +i Iisin(a)t)g(t)dt . (3.25)

Since the imaginary part le sin(wt)g(t)dt is zero (because sin(wt)g(t) is odd and use

the integral property (3.23)), FT G(w) is real and symmetric with respecttow=0. In
other words, FT of an even function is also even.

Next, consider FT of an odd function g(t). Since the term J:w cos(wt)g(t)dt in (3.25)
becomes zero (cos(wt)g(t) is odd and the integral property (3.23)), FT is given as:

G(w) = j:ei”‘g(t)dt =i J:sin(a)t)g(t)dt .
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This means that FT of an odd function G(w) is complex and asymmetric with respect
tow=0. This property is also illustrated in the section 3.2.5 and 3.2.6.

[3.3.5] Symmetry of Fourier Transform

By the definition of an inverse Fourier transform (3.5):
() == e Flo)do.
279>

Change the variable in the integration toy :

_i * iyt
fm_hﬁf F(y)dy.
Consider 27z f (-t) :
27t ()= " F(y)dy. (3.26)

We can say that the right hand side of (3.26) is by definition the Fourier transform of a
function F(y) . Replace t by @ and y byt and (3.26) becomes:

2ﬂuﬂm=ﬁfmfmm. (3.27)

The equation (3.27) is called a symmetry property of FT. It means that if a function f (t)
hasa FT F (@), F(t) hasaFT 2z f (—w). In other words, if ( f (t), F(@)) is a FT pair,
(F(t), 27 f (-w)) is another FT pair.

This symmetry property of FT can be shown with mathematically simpler form in the
frequency domain f Hz (cycles/second). By the definition of an inverse FT (3.7):

gmzf&mmnm.
Change the variable in the integrationtoy :

g® =] e™G(y)dy.

Consider g(-t):

37



g(-t) =] e?™G(y)dy. (3.28)

We can say that the right hand side of (3.28) is by definition the FT of a functionG(y) .
Replace t by f and y byt and (3.28) becomes:

g(-f)=[ e*™g(t)dt. (3.29)

We can state in this case that if (g(t),G(f)) isa FT pair, (G(t),g(-f)) is another FT
pair.

[3.3.6] Differentiation of Fourier Transform

By the definition of an inverse Fourier transform (3.5):
() == e“Flo)do.
27 I

Differentiate with respect tot:

@—i ” e _i * L —iat
o —Z”I_wdwf(w) = —Zﬂj_mda)( i0F (w))e

— o[ Fw)edo. (3.30)
27 7

By the definition of an inverse FT (3.5), the equation (3.30) becomes:
IO _ it ). (3.31)
Equation (3.31) tells us that FT of of (t)/ot is equal to a FT of f(t) multiplied by —iw:
Flof (t)/ot](w) =—-ioF [ f(t)](w). (3.32)
Next, consider FT in frequency domain f . By the definition of an inverse FT (3.7):

g(t) = J:ez”‘“g(f)df .

Differentiate with respect tot:

aga—?) = 27if jiezﬂ”tg( f)df = 27ifg(t). (3.33)
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Equation (3.33) tells us that FT of og(t) /ot is equal to a Fourier transform of g(t)
multiplied by 27if :

Flog(t)/at](f)=2xif F[g®)](f).

[3.3.7] Time Scaling of Fourier Transform

Consider a time domain function f(t) and its Fourier transform F(w) by the equation
(3.4):

F(w) = j:eiwt f (t)dt.

Then, FT of a function f (at) (i.e. scaled by a real non-zero constanta) can be expressed
in terms of F(w) as:

ﬁ}"(g) = [ e“f(at)dt. (3.34)

PROOF

Set at=s5. Whena>0:

[ e“f(atydt=]" e (s)d (ij 1 [ e (s)ds
- —° a a“’s
1 o
==F (7).
a a
Whena<0:

J.OO eiwt f (at)dt — JOO ein/a f (S)d (ij — _ljw ei(a)/a)s f (S)ds
) —o0 a a’—

:_E]-“(Q).
a a

Similarly, FT of a function g(at) can be expressed in terms of G(f) in frequency
domain f as:

1 f ®_ —2xift
mg(g) = [ e*g(at)dt.
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[3.3.8] Time Shifting of Fourier Transform

Consider a function f (t) and its Fourier transform F(w) by the definition (3.4):
Fo)=]" e*f ().

Then, FT of a function f(t—t,) (i.e. time t is shifted byt, € R ) can be expressed in
terms of F(w) as:

j_°° e f (t—t,)dt = €' F(w). (3.35)
PROOF

Sett—t, =t*:

[fd“f@—%ﬁh:j”émmwfaﬂda*+%)
:émjféWfaﬂm*

=e'" F(w).
O

Next, consider FT in frequency domain f . FT of a time domain function g(t) is defined
by the definition (3.6) as:

G(f)=]_ e™" gyt

Then, FT of a function g(t—t,) (i.e. time t is shifted byt, € R ) can be expressed in
terms of G(f) as:

[:e”mga—%mtzy”%gu). (3.36)

PROOF

Sett—t, =t*:

[T e ™ g(t—t)dt =" e gty (t*+t,)

= e [ e g(tR)dt* = e P G( f).
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[3.3.9] Convolution: Time Convolution Theorem

Convolution of time domain functions f (t) and g(t) over a finite interval [0,t] is
defined as:

f*ng: f(r)g(t—r7)dz . (3.37)

Convolution of time domain functions f (t) and g(t) over an infinite interval [—oo, 0] is
defined as:

frg=[ f(@)ot-7)dr =] g(@)f(t-r)de. (3.38)

Convolution can be considered as an integral which measures the amount of overlapping
of one function g(t) when g(t) is shifted over another function f (t) . Website by
mathworld provides an excellent description of convolution with animation. For example,
suppose f(t) and g(t) are Gaussian functions:

1 (t— 1)
f(t)= - ,
( ) 272'0-12 exp{ 20—12 }

1
g(t) = =
\ 270, O3

Then, the convolution of two Gaussian functions is calculated as from (3.38):

(t—(+ 1))
2((712 +(722)

fxg= exp{- }

\/272'((712 +0,%)

which is another Gaussian function. The convolution f *g of two Gaussians for the case
=0, u, =0, o, =1,and o, =2 is plotted in Figure 3.8.
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75 5 25 0 25 5 7.5
Figure 3.8: Plot of Two Gaussian functions f and g and their convolution f *g.

Consider time domain functions f(t) and g(t) with Fourier transforms F(w) and
G(w) . FT of the convolution of f(t) and g(t) in the time domain is equal to the
multiplication in the angular frequency domain (called time-convolution theorem):

F(f *g)z;f(j“; f(r)g(t—r)dr):f(a))g(a)). (3.39)
PROOF

f(ng)sfqif@ma—ﬂdﬂzﬁ}mflunmp¢MMt

:1ff@mrUfga—aémm)
Use the time shifting property of Fourier transform of the equation (3.35):

F(1+9)=[" 1@)dr(eG(@)=G(@)[" 1(r)e""dr
=F(o)G(o) .

[3.3.10] Frequency-Convolution Theorem

Consider time domain functions f(t) and g(t) with Fourier transforms F () and G(®) .
Frequency-convolution theorem states that convolution in the angular frequency domain

(scaled byzi) is equal to the multiplication in the time domain. In other words, FT of
T
the product f (t)g(t) in the time domain is equal to the convolution F(w) *G(w) (scaled

byzi) in the angular frequency domain:
T
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FII090)@ =, F@*G@)= [ F@i(o-a)da. (40

PROOF

There are several different ways to prove the frequency convolution theorem. But we
prove this by showing that the inverse FT of the convolution F =G in the angular
frequency domain is equal to the multiplication f (t)g(t) (scaled by 27 ) in the time
domain.

Following the definition of inverse FT (3.5):

£ AF@ @0 = [ e @) Gedo

I e [" F(@)9(0-a)dodo

2

= " doF (@) (i | : e‘i”tg(a)—w)da)j.
o 27 9>
Using the frequency shifting (modulation) property of FT (discussed in section 3.3.11):

FMNF @) *6@)]0) = doF(@)e ™ g()
=9)[ doF(@)e™ =g(t)271 ().

Next, consider FT in the frequency domain f . Following the definition of inverse FT
(3.7):

FAADGN]0=] e F (06D
= [T e [" F(1RG(F - 2)df df
:I_m df *f‘(f*)(."_oo ezniﬁg(f _ f*)df )
Using the frequency shifting (modulation) property of FT (discussed in section 3.3.11):

FFE) =G @) = [ df *F(F5eg(t)
=g df *F (e = f(t)g ().
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[3.3.11] Frequency Shifting: Modulation

Consider time domain function f (t) with Fourier transform 7 (w) . If FT F () is shifted
by @, € R in the angular frequency domain, then the inverse FT f(t) is multiplied

by e :
e f(t)= FHw-a,), (3.41)
Fe™t®)=F(o-a). (3.42)
PROOF

Lets = w—w,. From the definition of an inverse Fourier transform (3.5):

f4@ﬁﬂ%Eé%ﬁ;f“?@%ﬂdezgéﬁ}““wﬁﬂﬁd®+%)

=g ! Zijm e ™ F(s)ds=e "' f (t).
/il

O

Similarly, if FT F(f) is shifted by f, eR in the frequency domain, then the inverse FT

27ifot .

g(t) is multiplied bye

2l g (t) = F ! [g(f - fo)] , (3.43)
f-(eszotg(t)) =G(f—1,). (3.44)

[3.3.12] Parseval’s Relation

Let f(t) and g(t) be L*-complex functions. A L? -function can be informally
considered as a square integrable function (i.e. A function f(t) is said to be square-

integrable if'[_oo |f (t)|2 dt <o) Let F(w) and G(w) be the Fourier transforms of f (t)
and g(t) defined by (3.4):

f@@:jﬁdﬂfamn

(o) =] e“g(t)dt.

Let g(t) be a complex conjugate of f(t) and G (w)be a complex conjugate of (o) *:

2 A complex conjugate of a complex number z=a+bi is Z=a-bi.

44



O] = fOTW),
IF (o) = F(@)G (o).

Then, Parseval’s relation is:

o 2 1l (= )
Jlfof =" |7 ) do.

j " f)g)dt _ 1 j " Fo)§(w)dw. (3.45)
—o 27 7

Parseval’s relation in the case of FT parameters (a,b) = (1,1) indicates that there is a very
simple relationship between the power of a signal function f (t) computed in signal
space t or transform space @ of the form (3.45).

Parseval’s relation becomes simpler when considered in the frequency domain f instead
of angular frequency domainw. Let F(f) and G(f) be the Fourier transforms of f (t)
and g(t) defined by (3.6):

F(f)= Iie‘z””‘ f (t)dt,
G(f)= _[_O:Oe’z””‘g(t)dt .

Let g(t) be a complex conjugate of f(t) and g_( f) be a complex conjugate of 7 (f):

O = O,
[F(F)f =F(H)G(f).
Then, Parseval’s relation is:
[“1f@f dt=["|F(F) of

[” fogmdt=[" F(HG(f)df . (3.46)

This version of Parseval’s relation means that the power of a signal function f (t) is same
whether it is computed in signal space t or in transform space f .

PROOF
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Using inverse Fourier transforms of (3.5):
® 2 (> =3 _ [~ 1 ® _—imt 1 (= o't~ v '
Lo|f(t)| dt—jwf(t)g(t)dt—jw[gj'we f(w)dw}{zjwe g(a))da)}dt
—_ 1 * *© = T 1 ®it(w'-) I
_Ej_wf(w)j_wg(w){gj_we dt}da)da}.
Use the identity of Dirac’s delta function (3.12):
st-a)=—[ ¢ o,
27 I
Thus:
[ If0f dt=—=[" F@)|" G(@)s(@-a)dodo
—o0 272- —00 —0

0 2 1 ¢ = 1 ¢ 2
[ |f@f dt = [ Fo)d(w)do - [ |7 (@) do.

[3.3.13] Summary of Important Properties of Fourier Transform

Table 3.1: Summary of Important Properties of Fourier Transform in Angular
Frequency Domain » Hz (radians/second)

Property Time Domain Function y(t) Fourier Transform F[y(t)]()
Linearity af (t) +bg(t) aF (o) +bG(w)
Even Function f(t) iseven F(w)eR
Odd Function f(t) is odd F(w)el
Symmetry F(t) 27 (—w)
Differentiation ? —loF (o)

d kd:k(t) (-io)* F ()
Time Scaling f (at) i]-"(9)

8" "a
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Time Shifting f(t-t,) e F (o)

Convolution frg= [z f(r)g(t-7)dz F(0)G(w)

Multiplication F ()9 [ Fl@)g(o-o)do
21

Modulation e ' f (1) F(o-a,)

(Frequency Shifting)

Table 3.2: Summary of Important Properties of Fourier Transform in Frequency
Domain f Hz (cycles/second)

Property Time Domain Function y(t) Fourier Transform ]:[y(t)](f)
Linearity af (t) +bg(t) aF(f)+bg(f)
Even Function g(t) iseven G(fleR
Odd Function g(t) is odd G(f)el
Symmetry Gg() g(-r)
Differentiation % 27if G(f)
d“g(t) :
e (27if ) G(f)

: . 1 f

Time Scaling g(at) —G(—)
a " a

Time Shifting g(t-t,) e MG(f)
Convolution frg= j_°° f(r)g(t—7)dz F(H)G()
Multiplication f()g(t) F*G
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Modulation et g (t) Gg(f-1,)
(Frequency Shifting)

[3.4] Existence of the Fourier Integral

Thus far, we’ve assumed that Fourier integral and its inverse of the definitions (3.4) and
(3.5) of a FT pair (g(t),G(w)) do exist (i.e. they are well-defined for all functions).

Sufficient (but not necessary) condition for the existence of Fourier transform and its
inverse is:

[ Jodt <eo, (3.47)

which is an integrability condition.
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[4] Characteristic Function
[4.1] Definition of a Characteristic Function

Let X be a random variable with its probability density functionP(x). A characteristic
function ¢(w) with @ € R is defined as the Fourier transform of the probability density
function P(x) using Fourier transform parameters(a,b) = (1,1) . From the definition (3.4):

#(w) = F[P(x)] = I:e‘”XP(x)dx =E[e”]. (4.1)
Using the Euler’s formula (2.15), #(w) can be expressed as:
$(0) = E| € | = E[cos(@x)] +iE [sin(ex)] .

Taylor series expansion of a real function f (x) in one dimension about a point x=b is
given by:

f(x)=f(b)+f '(b)(x—b)+%(x—b)2 +%(x—b)3+.... (4.2)

Taylor series expansion of an exponential function exp(iwx) in one dimension about a
point X =0 is given by from (4.2) as:

oexp(iox) | exp(la)x) |
0

exp(iwx) = exp(iw0) + 0 (x—0)+ T o (X—

L o° exp(iwx)
T

exp(iox) = exp(iw0) +iwexp(ioX)|,_, (x—0) + % (iw)? exp(iwx) |, o (x—0)?

o (X=0)*+...

+:(0) 00Ky (¢~ O) +.

exp(iox) = 1+|a)x+—(|a)x) + (m)x) + (m)x) +.. (4.3)

Therefore, a characteristic function ¢(w) can be rewritten as from equations (4.1) and
(4.3) as:

pw)= [ e P(x)dx

- ji[n o+ (100" 4 (00 + - 0x)’ +...)P(x)dx
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- [ Poodx+io]” xP(x)dx+%(ia))2 [ XZIP’(x)dx+%(ia))3 [* KPP

1. 1
r,——i0’n + ', +...
3! 41

-y ()" (4.4)

n!

. 1
=0 tion -0

where r, is the n-th moment about 0 (called raw moment).

Probability density function IP(x) can be obtained by inverse Fourier transform of the
characteristic function using the equation (3.5):

P(x) = F[(0)] = i [ e“plo)do. 45)

If X is adiscrete random variable with possible values {x, },_, and Pr{X =x,}=4a,,
then ¢(w) is obtained by a series expansion instead of an integration as:

(o)=Y expliox, )a, . (4.6)

[4.2] Properties of a Characteristic Function

Let X be arandom variable and ¢, (@) be its characteristic function. A characteristic
function ¢, (w) is: 1) bounded by 1 (i.e. ¢, (®)| <1, @€ R), 2) ¢, (0) =1, and 3)
uniformly continuous in R.

A statistical distribution is uniquely determined by its characteristic function, i.e. one-to-
one relationship between distribution functions and characteristic functions. In other

words, if two random variables X and Y have the same characteristic functions
(i.e. ¢, (w) = ¢, () ), they have the same distribution.

If {X,,k=1,...,n} are independent random variables, the characteristic function of their
sum X, + X, +...+ X, is the product of their characteristic functions:

B, @ =[], (@), @7)

A random variable X has a symmetric probability density function P(x) if and only if
its characteristic function ¢, (w) is a real-valued function, i.e.:
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o, (w) eR for weR.

For a,beR:

Pux o (@) =€y (a) . (4.8)
[4.3] Characteristic Exponent: Cumulant-Generating Function

A characteristic exponent of a random variable X , ¥, (w), is defined as a log of a
characteristic function ¢, (w):

¥y (@) =Ing, (@) . (4.9)

The n-th cumulant is defined as:

(4.10)

cumulant, :_lé‘P—xfa))|w:0 .
[0

n
|

Mean, variance, skewness, and excess kurtosis of the random variable X can be obtained
from cumulants as follows:

Mean of X = E[X] = cumulant,,
Variance of X = E[(X —E(X))ZJ = cumulant,

3
s = UL oot
(\/E[(X—E(X)) D 2
. E[(X - E(X))A} cumulant
Excess kurtosis of X = 7—3= 4 (4.12)

(cumulant,)®

(\/E[(X—E(X))ZD

Let’s consider one fundamental example. A normal random variable X with mean u
and variance c° has a density:

P(x) = ! exp{—u}
270 20

Its characteristic function can be calculated as from the definition (4.1):
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2 2
O @

2

#(w) = F[P(x)]= j:ei‘”XIP’(x)dx = exp(i uw - ).

Its characteristic exponent is:

¥(w) = Ing(w) = In {exp(i Lo~ ‘722“’2 )} = iuw— ‘722“’2 .

Cumulants are calculated using ¥ (w) from (4.10):

cumulant, =
cumulant, = o2,
cumulant, =0,
cumulant, =0.

This tells us that a normal random variable X has a mean x and variance o, zero
skewness, and zero excess kurtosis.

[4.4] Laplace Transform
For nonnegative random variables we replace the Fourier transform by Laplace transform

in order to obtain characteristic functions. The (unilateral) Laplace transform £ of a
function f(x) is defined as:

LLf(X)]= j: f (x)e"dx, (4.12)

where f(x) is defined for x> 0. Thus, the characteristic function of a nonnegative
random variable X with its density function P(x) is given by:

é, (0) = L[P(X)] = j:IP(x)e’“’de. (4.13)

[4.5] Relationship with Moment Generating Function

Let X be arandom variable on R and P(x) be its probability density function. A
function M (w) with @ e R is called a moment generating function if there exists an

h>0 for || <h such that (i.e. if the expectation in (4.14) converges):

M (@) = jjoe”’XIP(x)dx = E[exp(@X)]. (4.14)
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For a continuous random variable X , again using the equation (4.3):
M (@) = f e”P(x)dx
= Im 1+ wX +i(a)x)2 +£(a)x)3 +i(a)x)4 +... |P(x)dx
N 2! 3! 41

1 1
=1+awc, +ia)2C2 +—o’c,+—w'c, +..,
2! 3! 41

where c, is the n-th central moment.

If {X,,k=1,...,n} are independent random variables, the moment generating function of
their sum X, + X, +...4+ X,, is the product of their moment generating functions:

My xenx (@) =] [My (@). (4.15)
k=1
Its proof is very simple:

My e ox, (@) = E[exp{o(X, + X, +..+ X))} |
=E[exp{@X, +®X, +..+ 0X,} ]
=E[exp{oX, }exp{wX,}..exp{oX,}]
=E[exp{oX,} |E[exp{oX,}]..E[ exp{wX,} ]

=M (@M (@) M, (@) <[ M, (@).

If the moment generating function M (w) is differentiable at zero (defined on a
neighborhood [-¢, ] of zero), then the n-th raw moments r, can be obtained by:

_9"M() |
" b 7

(4.16)

Thus:

r=M*(0) = E[X],

r,=M"(0)=E[X"],
r, =M "(0)=E[X"],
r, =M "(0) = E[X"].
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For example, the mean and variance of the random variable X are computed using raw
moments as (discussed in detail in section 4.6):

Mean of X =E[X]=r1,,
Variance of X = E[X*]-E[X] =r,-r>.

A characteristic function is always well-defined since it is the Fourier transform of a

probability measure. But because the integral in (4.14) (V ® € R) may not converge for
some (all) values of @, a moment generating function is not always well-defined. When
M (@) is well-defined, the relationship between the moment generating function M (w)

and the characteristic function ¢(w) is given by:

M () = ¢(-i) . (4.17)

Let’s consider one fundamental example. If X ~ Normal (,u, o) , Its moment generating
function can be calculated as following the definition (4.14):

M (@) = j”; e P(x)dx = E[exp(wX)] = exp[ Lo+ “22“’2 ] .

You can confirm that (4.17) is true for the normal case. Raw moments are calculated as
the following:

n=M'0)=p,
r,=M"(0) = u* +0o?,

r,=M "(0) = x® +3uc?,
r,=M"(0) =" +6u°c"+3c".

Using these raw moments, central moments can be calculated as:

E[X]=1r=u,

Variance[X]= E[X2]-E[XP =1, - > = p? + o2 — i’ = o2,

Skewness[X ] = — XX = EIXTY 25 —3r12r23;r2 5 _o

WEX-EIXI¥) (oK)
E{X —E[X]}

(VE{X - E[X]¥")"

_—6r* +12r%r, -3r,” -4 41,
(I’2 _r12)2

Excess Kurtosis[ X ] =

0.
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[4.6] Summary: How to Calculate Standardized Moments from Characteristic
Function and Moment Generating function

Following is a summary of the relationship between standardized moments, cumulant_,

and raw moments r, . Let X be a random variable. n-th cumulant and n-th raw moment
are defined by (5.10) and (5.16):

10", (w)
e
_0"M(w)

n— aa)n |a)70

cum, =

w=0"

Table 4.1: How to Calculate Standardized Moments from Characteristic Function
and Moment Generating function

Moments n-th cumulant n-th raw moment
Mean E[X] cum, r
Variance E{X —E[X]¥ cum, r,—r’
SKewness E{X -E[X]} cum, 2r° =3nr, +1,

(\/m)g cumzs’z (I’2 _ rlz)s/z

Excess Kurtosis
E{X -E[X]} _3 cum, —6r* +12r%r, - 3r,” —4rr, +1,

(\/WY cum22 (I’2 _rlz)z

Note:

o 2-nd central moment of X = E{X —E[X]}* = E[X*]-E[X]* =Var[X]
=cum, =r,—r’.

o 3-rd central moment of X =E{X —E[X]¥ =cum, =2r>-3rr, +r,.

E{X —E[X]} _ cum,

( I—E{X ~ E[X]}2 )3 - Cumzs/z

0 Skewness of X = Skewness[X]=

2r° -3, +,
0 4-thcentral moment of X = E{X —E[X]}' =cum, +3{E{X — E[X]}*¥
=cum, +3cum,” = (-6r* +12r°r, - 3r,” —4rr, +1,) + 3(r, - ,°)°.
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E{X —E[X]}

(‘/E{X _E[X]Y )4

cum,  —6r" +12r%r, -3, —4rr, +1,
Cumz2 (rz - '12)2 .

g Cum, + 3cum,”

> 3
cum,

o0 Excess Kurtosiss of X =

[4.7] Examples of Characteristic Functions

Several examples of characteristic functions using the definition (4.1) for continuous
distributions and (4.6) for discrete distributions are given in the Table 4.2.

Table 4.2: Examples of Characteristic Functions

Distribution P(x) $(w)
2
x _ 2 2
Normal ! exp —(—ﬂ) exp(iuw— g )
270 20"
Exponential ae ™ a.
a—iw
-a,—x/ba-1
Gamma t)(;T))( (1-ibw)™
et Ax i
Poisson o exp[/l(e'X —1)}
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[5] Discrete Fourier Transform (DFT)

DFT is a special case of (continuous) Fourier transform. The results obtained from FT
and DFT are identical and the only difference is how we interpret these results.

[S.1] Intuitive Derivation of DFT: Approximation of FT

We first consider DFT of a time domain function g(t) into an angular frequency

domain @ Hz (radians/second). This follows the convention in physics. In the field of
signal processing which is a major application of FT, frequency f Hz (cycles/second) is

used instead of @ . But this difference is not important because @ and f are measuring
the same thing (rotation speed/second) in different units and related by:

w=2rf. (5.1)

We saw in section 3 that continuous FT of g(t) and inverse FT of G(w) using FT
parameters (a,b) = (1,1) are defined as:

(@)= F[90](@) =] e“g(t)dt, (5.2)

g(t) = F,* [G(@)] (1) z% [“ e gw)do. (5.3)

The purpose of DFT is to approximate FT as close as possible by sampling a finite
number of points N of a continuous time domain function g(t) with time domain

sampling interval At (seconds) and sampling a finite number of points N of a continuous
FT G(w) with angular frequency sampling interval Aw Hz. In other words, both the

original continuous time domain function g(t) and the original continuous FT G(w) are
approximated by a sample of N points.

We begin with the notation. Let N be the number of discrete samples taken to
approximate g(t) andG(w) . Let At (seconds/sample) be the time domain sampling

interval which is the time increment between samples. Its inverse f, =1/At
(samples/second) is called a sampling rate. Let T be the total sampling time:

At=T/N. (5.4)
It is extremely important to mention that total sampling time T defined by (5.4) has
absolutely nothing to do with period T of oscillation of a wave (i.e. the seconds (time)
taken for the wave to complete one wavelength defined by the equation (2.3)). To avoid
confusion, period T of oscillation of a wave is called a fundamental period.

If At is assumed to be 1, the total sampling time and the number of samples taken are
same (i.e. for example, T =10 seconds and N =10 samples). IfAt =0.01, 1 sample is
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taken in every 0.01 second in a time domain which in turn means that 100 samples are
taken every second (i.e. sampling rate f, =1/ At =100 Hz).

The first step to DFT is to take N discrete samples of a continuous time domain function
g(t) at n-th sampling instant t, = nAt (seconds) withn=0,1,...,N -1. When T =10
seconds and N =10 samples (i.e. time domain sampling interval At=1), g(t) is sampled
at 0 second, 1 second, 2 seconds, ..... , and 9 seconds. Let g(t, =nAt) be the sampled
values of g(t) . In a special case of At =1:

g9(t,)=9(n). (5.5)
We call this process as time domain sampling.

Next consider angular frequency domain (@ Hz) sampling. Let Aw Hz (radians/second)
be angular frequency sampling interval:

Ap=——=—, (56)

The second step to DFT is to take N samples of a continuous FT G(w) at k -th angular
frequency sampling instant @, =kAw® (radians) withk =0,1,...,N -1. When T =10
seconds and N =10 samples (i.e.At =1), G(w) is sampled at O radian, 7 /5 radians,
2715 radians, 3z /5 radians, ..., and 97/5 radians. Let G(w,) be the sampled values
of G(w):

_ _ otk 27N o 2
G(a) =G(kaw) =Gk ) =G(k ). (5.7)

G(w,) is called a spectrum of g (t,) at angular frequency o, and it is a complex number.

DFT defines the relationship between the sampled wave in time domain g (t,) and its
spectrum at angular frequency o, , G(@,), as:

272. N-1

G(ay = km) = ; g(t, =nAt)exp{imt, |
g(kz—”) Eilg(nAt) exp{2zikn/N}, (5.8)
NAt, &

and:
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N-1

gt —nAt)—iZQ(wk—k—)exp( i, )

g (nAt) = —Zg(k —) exp(~27ikn/N). (5.9)

As you can see, DFT replaces an infinite integral of FT with summation of N points.
[5.2] Definition of DFT

[5.2.1] Physicists’ Definition of DFT

Likewise FT, there are several different definitions of DFT depending on the field of

study. We first follow physicists” convention. We begin with the most general definition
of DFT of a continuous time domain function g(t) into angular frequency domain

function G(w) and its inverse using DFT parameters (a,b) as:

N -

G(o, = km) = 7"" Z(; = nAt)exp{ibayt, }, (5.10)
g(t, =nAt) = iaZg( k_k—)exp( ibat, ). (5.11)
N 2 K0

When DFT parameters are (a,b) = (1,1) for the purpose of calculating characteristic
functions, the definitions (5.10) and (5.11) become the definitions (5.8) and (5.9).

[5.2.2] Signal Processing Definition of DFT

In the field of signal processing (and most of the textbooks about FT), frequency f Hz
(cycles/second) is used instead of @ Hz (radians/second). Consider frequency domain f
sampling. Let Af Hz be frequency domain sampling interval (also called frequency
resolution):

Af

(5.12)

11
NAt T

Take N samples of a continuous FT G(f) at k -th frequency sampling instant f, = kAf

Hz withk =0,1,...,N —=1. When T =10 seconds and N =10 samples (i.e. At =1), G(f) is
sampled at 0 Hz, 1/10 Hz, 2/10 Hz, ..., and 9/10 Hz. Let G(f,) be the sampled values of
G(f):

_ _okt =gkl
G(f)=g(kat)=g(k--) =Gk o). (5.13)
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G(f,) iscalled a spectrum of g (t,) at frequency f, Hz and it is a complex number.

The general definition of DFT of a continuous time domain function g(t) into frequency
domain function G(f) and its inverse using DFT parameters (a,b) become (i.e.
equivalent to (5.10) and (5.11)):

N-1
G(f, =k~ )= g(t, = nat)exp{2zibkn/ N} (5.14)
N At "5 n=0
N 2
N-1 1
g(t, =nAt)=——> G(f, =k——)exp(-2zibkn/N). (5.15)
NT k=0 NAt

In the signal processing, DFT parameters (1,—1) are used:

N-1
G(f, = )=>.g(t, =nAt)exp{-27ikn/ N}, (5.16)
NAL &
LS g5, = ikn 17
g(tnznAt)—Wng( N—At)exp(Zm n/N). (5.17)

[5.2.3] Requirement of DFT

FT and inverse FT defined by the equations (5.10) and (5.11) require both the time

domain function g (t, = nAt) and the angular frequency domain function G(w, = km)

to be periodic. This means for 4 =0,+1,%2, ...:
g(t, =nAt)=g[(ON +n)At],
27 27
=k— )= ON +k)—/—|.
gl NAt) g[( ) NAJ

FT and inverse FT defined by the equations (5.16) and (5.17) require both the time

domain function g (t, = nAt) and the frequency domain function G(f, Eﬁ) to be

periodic. This means for 6 =0,%1,+2, ...:

g(t, =nAt)=g[(ON +n)At],

_ ko (ON +k)
o NAt) g{ NAt |
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[5.2.4] Sampling Theorem and Nyquist Rule: How to Determine the Time Domain
Sampling Interval At

At this point we are very familiar with the definition of DFT at least in terms of concept.
DFT is simply a discrete approximation of FT by takinga N point sample both in the
time domain t (seconds) and frequency (angular frequency) domain f (@) Hz. When

implementing DFT, the following very important question about the frequency of
sampling arises. What is the appropriate time domain sampling interval At
(seconds/sample), 1 second, 0.5 seconds, or 0.01 seconds? In terms of sampling rate
f, =1/ At (samples/second), question becomes the following. What is the appropriate

sampling rate f_, 1 Hz, 2 Hz, or 100 Hz?

If time domain function g(t) is not sampled at an appropriately high rate (i.e. you chose
too large time domain sampling interval At or you chose too small sampling rate f, Hz),

it turns out that DFT yields distorted (overlapped) approximation of FT known as
aliasing. According to the sampling theorem of Fourier transform, a continuous time
domain function g(t) can be uniquely determined by its sampled values g (t, = nAt) by

choosing the time domain sampling interval of At :% (seconds) if the FT G(f) of

c

g(t) is zero for all frequencies greater than f, Hz (i.e. if the FT G(f) of g(t) is band-
limited at the frequency f, Hz):

G(f)=0 if |f|>f,.

The time domain sampling interval of At = % (seconds) is the maximum value of the

c

interval without aliasing. In other words, aliasing occurs if At > % and aliasing does

c

not occur if At < i.
2f

C

In terms of a sampling rate f, =1/At Hz, the sampling theorem becomes the following.
A continuous time domain function g(t) can be uniquely determined by its sampled
values g (t, = nAt) by choosing the sampling rate of:

f,=2f, Hz, (5.18)
where f_ is the folding frequency of the waveform g(t). The sampling rate of f, =2f,

Hz is the minimum value of sampling rate without aliasing. In other words, aliasing
occurs if f, <2f_ and aliasing does not occur if f, >2f_.
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After simple rearrangement:

At<i
2f

C

R f, <2f,
At

1fs<fc.
2

Nyquist rule states that when we sample a time domain function g(t) with sampling rate
f, Hz (samples/second), its FT G(f) is reliable (i.e. without aliasing) only up to
frequency f,/2 Hz . The maximum frequency without aliasing f,/2= f_ is called a
folding frequency.

Nyquist rule can be stated in terms of k -th frequency sampling instant f, = kAf Hz
withk =0,1,..., N —1. We solve for the value of k such that:

KAf = f,/2.
Since f, =1/ At and Af =1/ NAt:
111
NAt 2 At
=2
2

This means that when we take a N point sample of a time domain function g(t), its FT
G(f) isreliable (i.e. without aliasing) only up to k = N /2-th frequency sampling
instant. In other words, only half of N point DFT outputs are reliable.

Consider DFT of a continuous time domain function g(t) with the sampling rate
f, =200 Hz (samples/second) for the total sampling time T =3 (seconds). g(t) is
sampled in the time domain with the interval At =1/ f =1/200 =0.005

(seconds/sample). The number of samples taken isN =T / At =3/0.005 =600 . Frequency
resolution (frequency domain sampling interval) is Af =1/ NAt=1/T =1/3 Hz.

Following Nyquist rule, FT G(f) is reliable (i.e. without aliasing) only up to frequency
f./2=200/2=100 Hz. In other words, out of 600 DFT outputs G(f, = ﬁ) with k =
0,1,2,...,599 only the half N/2=600/2=2300 are reliable.
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Read the chapter 5 of Brigham (1988) which is an excellent book for more rigorous
treatment of the sampling theorem.

[5.3] Examples of DFT

Above all, section 5.3.1 is the most important example. Using an example of a sine wave
g(t) = Asin(2x ft) = Asin(a,t) , following important features of DFT are explained in

detail: 1) Approximation error inherent in DFT called leakage, 2) Leakage cannot always
be reduced by increasing a sampling rate f, Hz (cycles/second) with holding the number

of samples taken N constant, 3) Guideline of choosing the optimal sampling rate f, Hz
when the folding frequency f_ of the waveform is known (Nyquist rule), and 4) The
only remedy for leakage is to sample more points (i.e. higher N ).

[5.3.1] Sine Wave g(t) = Asin(2x f,t) = Asin(w,t)

Consider 10 Hz (cycles/second) sine wave (i.e. fundamental frequency f, =10) with
amplitude A =1 volt plotted in Panel A of Figure 5.1:

g(t) =sin(2710t). (5.19)

We saw in section 3.2.6 that the ideal FT of (5.19) is an impulse function of normalized
magnitude (frequency spectrum) 1 volt at frequency f =10 Hz plotted in Panel B of

Figure 5.1 which implies that the frequency f =10 Hz contains all the energy of the

waveform. Normalized magnitude is normalized so that it equals the amplitude A of the
waveform g(t).

0 ] 1
tine t

A) Plot of a 10 Hz sine wave g(t) = sin(2710t).

63



0 5 10 15 20
Frequency f Hz (cycles/second)

B) Plot of the ideal normalized FT of g(t) =sin(2x10t).

Figure 5.1: Plot of a 10 Hz Sine Wave and Its Ideal Normalized FT

Next, we consider DFT. Since DFT is only an approximation of FT, the frequency
spectrum produced by DFT is not as clean as the Panel B Figure 5.1 meaning that it
contains a lot of noise. This degree of cleanness (noise) depends on such factors as the
sampling rate f, Hz (or At =1/ f,), the point of sample N , and the total sampling time T

which are all related by:

f=NI/T. (5.20)

First, we sample a time domain function (5.19) by a sampling rate of f, =200 Hz

(samples/second) and the number of samples N =256 (samples). In other words, we take
a N =256 point sample of (5.19) with a time domain sampling interval:

At=1/f,=1/200=0.005 (seconds/sample),

and total sampling time:
T =NAt =256x0.005=1.28 (seconds).
Sampled 10 Hz sine wave (5.19) is plotted in Panel A of Figure 5.2.

Secondly, consider frequency domain f sampling. Frequency resolution (frequency
domain sampling interval) Af Hz (cycles/second) is following (5.12):

1 1

f= = =0.78125.
T=NAt 1.28
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A) Plot of sampled 10 Hz sine wave g(t) =sin(2710t) on the left. Points are joined on the

right.
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B) Plot of DFT non-normalized frequency spectrum of sampled 10 Hz sine wave
g(t) =sin(2710t) on the left. Points are joined on the right.
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C) Plot of DFT normalized frequency spectrum of sampled 10 Hz sine wave
g(t) =sin(2710t) on the left. Points are joined on the right.

Figure 5.2: Plot of Sampled 10 Hz Sine Wave and Its DFT Output

Following the signal processing definition of DFT (5.16), frequency spectrum of sampled
10 Hz sine wave (5.19) is plotted in Panel B of Figure 5.2. The frequency axis goes from
0 to 100 Hz because aliasing does not occur up to the folding frequency f./2=200/2 =
100 Hz. Frequency spectrum in Panel C is normalized so that the normalized magnitude
equals the amplitude A of the waveform g(t) (i.e. in this example A=1). This
normalization is done by weighting the non-normalized magnitude by:
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N/2

Several important features should be noticed from the Panel C of Figure 5.2. Continuous
(normalized) FT G(f) of a sine wave (5.19) is a unit impulse function at the frequency
f, =10 Hz (this fundamental frequency is also a folding frequency) as depicted in the
Panel B of Figure 5.1. Its approximation by DFT is not an impulse function, but it is

rather a spike with significant portion of the energy distributed around 10 Hz (i.e. positive
energy in the interval 5< f <15 Hz). In other words, the approximation by DFT leaks

the energy around the original impulse. This approximation error inherent in DFT is
called a leakage which occurs when the time domain sampling does not end at the phase
of the sine wave as it started. As a consequence of leakage, the normalized maximum
magnitude of DFT G(f) is less than 1 compared to the exactly 1 normalized maximum

magnitude of an original impulse. Theoretically speaking, the only remedy for leakage is
to take infinitely many samples (i.e. N — o). But practically speaking, DFT always
contains leakage because it is impossible to take infinitely many samples.

Some readers might think that the degree of leakage can be reduced by taking samples
with higher sampling rate f, Hz with no change in N . The answer is no. To show why

this is the case, we redo DFT of a sine wave (5.19) with higher sampling rate f, =1000

Hz (5 times faster). First, we sample a time domain function (5.19) by a sampling rate of
f, =1000 Hz (samples/second) and the number of samples N =256 (samples). In other

words, we take a N =256 point sample of (5.19) with a time domain sampling interval:

At =1/ f, =1/1000 = 0.001 (seconds/sample),

and total sampling time:
T =NAt =256x0.001=0.256 (seconds).

Sampled 10 Hz sine wave (5.19) is plotted in Panel A of Figure 5.3. Secondly, consider
frequency domain f sampling. Frequency resolution (frequency domain sampling

interval) Af Hz (cycles/second) is following (5.12):

1 1

Af = =
T=NAt 0.256

=3.90625.
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A) Plot of sampled 10 Hz sine wave with the sampling rate f, =1000 Hz.
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B) Plot of DFT normalized frequency spectrum of sampled 10 Hz sine wave
g(t) =sin(2710t) with the sampling rate f, =1000 Hz.

o o
H (o)}

Normalized Magnitude
o
N

(@]

0 100 200 300 400 500
Frequency f Hz (cycles /second )

C) Points are joined.

Figure 5.3: Plot of Sampled 10 Hz Sine Wave and Its Normalized DFT Output with
Sampling Rate f; = 1000 Hz.

Following the signal processing definition of DFT (5.16), normalized frequency spectrum
of sampled 10 Hz sine wave (5.19) with f, =1000 Hz is plotted in Panel B and C of
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Figure 5.3. The frequency axis goes from 0 to 500 Hz because aliasing does not occur up
to the folding frequency f,/2=1000/2 =500 =500 Hz according to Nyquist rule. As

you realize now, leakage gets worse as a result of an increase in a sampling rate f, from

200 to 1000 Hz. We can see that the normalized maximum magnitude of DFT G(f) is

0.6573267 (significantly less than 1 which is the original normalized magnitude) which
in turn indicates that the degree of leakage of energy around 10 Hz is greater. In addition,
the normalized maximum magnitude 0.6573267 occurs at 11.7188 Hz, although
continuous normalized FT is a unit impulse function at the frequency f, =10 Hz. The

reason that the accuracy of the approximation by DFT gets poorer is the fact that the
frequency resolution gets poorer from:

= L = ! =0.78125 Hz,
T=NAt 1.28
to:
Af = L = 1 =3.90625 Hz,
T=NAt 0.256

as a result of an increase in a sampling rate f, from 200 to 1000 Hz (i.e. because an
increase in f, is an decrease in At through the relationship f, EA—t). The bottom line is

that the degree of leakage cannot necessarily be reduced by taking samples with higher
sampling rate f, Hz with no change in N .

The above example indicates that for a 10 Hz sine wave using 1000 Hz sampling rate f,

is too much (i.e. frequency resolution becomes too poor). So the next natural question
arises that how can we determine the appropriate sampling rate f, Hz? Following

Nyquist rule of (5.18), the sampling rate of f, =2f, Hz is the minimum value of
sampling rate without aliasing. As long as the folding frequency f_ of the waveform

g(t) is known (in our example f =10 Hz), the minimum value of sampling rate without
aliasing can be obtained by doubling f_. Although this is a nice rule, its practical

usefulness is very doubtful because in other than textbook examples the folding
frequency f_ of the waveform g(t) is not known a priori. Redo DFT of a sine wave

(5.19) using the sampling rate f, =50 Hz. We take a N =256 point sample of (5.19)
with a time domain sampling interval:

At=1/f,=1/50=0.02 (seconds/sample),

and total sampling time:
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T =NAt=256%x0.02=5.12 (seconds).

Sampled 10 Hz sine wave (5.19) is plotted in Panel A of Figure 5.4. Frequency resolution
of DFT (frequency domain sampling interval) Af Hz (cycles/second) is following (5.12):

=0.1953125.
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-0.75

0 1 2 3 4 5 0 1 2 3 4 5
time t time t

A) Plot of sampled 10 Hz sine wave g(t) = sin(2710t) using the sampling rate f, =50 Hz
on the left. Points are joined on the right.
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0 5 10 15 20 25 0 5 10 15 20 25
Frequency F Hz (cycles /second ) Frequency f Hz (cycles /second )

B) Plot of DFT normalized frequency spectrum of sampled 10 Hz sine wave
g(t) =sin(2710t) using the sampling rate f, =50 Hz on the left. Points are joined on the

right.

Figure 5.4: Plot of Sampled 10 Hz Sine Wave and Its Normalized DFT Output with
Sampling Rate f; =50 Hz.

By reducing the sampling rate from f, =1000 Hzto f, =50 Hz, DFT approximates

continuous FT (a unit impulse function at 10 Hz in this example) much better because the
frequency resolution Af increases from 3.90625 Hz to 0.1953125 Hz. Again, the

important result is the fact that higher sampling rate f, does not always reduce leakage
(DFT inherent error) depending on the folding frequency f, of the waveform.
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The only way to reduce leakage is to sample more points. To illustrate this, we take a
N =4x256 =1024 point sample of (5.19) using the sampling rate f, =50 Hz with a time

domain sampling interval:

At=1/f,=1/50=0.02 (seconds/sample),

and total sampling time:
T =NAt=1024%0.02 = 20.48 (seconds).

Sampled 10 Hz sine wave (5.19) is plotted in Figure 5.5. Frequency resolution of DFT
(frequency domain sampling interval) Af Hz (cycles/second) is following (5.12):

1 1

Af = =
T=NAt 20.48

=0.048828125.

Note that the frequency resolution Af become 4 times finer because the number of

samples taken N increased by four-fold. As a result, leakage has been dramatically
reduced. In fact, in Figure 5.5 the peak magnitude is 0.935 at a frequency of 10.01 Hz
which is really close (i.e. a good approximation) to the continuous FT of the peak
magnitude 1 at 10 Hz.

(O]

So.8

=

5

20.6

=

©

Ig 0-4

0.2

S

2 »

0 A
0 5 10 15 20 25

Frequency f Hz (cycles /second )
A) Plot of N = 1,024 point-DFT normalized frequency spectrum of 10 Hz sine wave
g(t) =sin(2710t) . Sampling rate f, =50 Hz is used.
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L

B) Points are joined.

Figure 5.5: Plot of N = 1,024 Point-DFT of a 10-Hz Sine Wave and Its Normalized
DFT Output with Sampling Rate f; = 50 Hz.

[5.3.2] Double-Sided Exponential

Consider a double-sided exponential function with A,z e R :
g(t) = Ae 'l

Set A=1 anda =3. Following the definition (5.16), N =256 point DFT of a double-
sided exponential function with f, =40 Hz (samples/second) sampling rate is performed

on Figure 5.6. Time domain sampling interval At (seconds/sample), total sampling time
T (seconds), and frequency resolution Af Hz (cycles/second) are:

At=1/f, =1/40=0.025,
T =NAt=256x0.025=6.4,
Af =1/NAt=1/T =1/6.4=0.15625.

1 ‘ ‘ ‘ ‘ ‘ ‘ 1
0.8 - 0.8
067 - 0.6
o : o
0.4} % 0.4
0.2l % 0.2 L
0 \~ 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
time t tine t

A\) Plot of sampled g(t) =e*"'! using the sampling rate f, = 40 Hz. Points are joined on
the right.
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B) Plot of N =256 point DFT frequency spectrum of sampled g(t) = et using the
sampling rate f, = 40 Hz. Points are joined on the right.

Figure 5.6: Plot of Sampled Double-Sided Exponential Function g(t) = el and N =
256 Point DFT with Sampling Rate f; = 40 Hz.

[5.3.3] Rectangular Pulse

Consider a rectangular pulse with A, T, e R :

A -T <t<T
g(t)={ " ’

0 [>T,
which is an even function of t (symmetric with respect to t).

Set A=1 andT, = 2. Following the definition (5.16), N =256 point DFT of a
rectangular pulse with f, =40 Hz (samples/second) sampling rate is performed on

Figure 5.7. Time domain sampling interval At (seconds/sample), total sampling time T
(seconds), and frequency resolution Af Hz (cycles/second) are:

At=1/f, =1/40=0.025,
T =NAt=256x0.025=6.4,
Af =1/NAt=1/T =1/6.4=0.15625.

R ' ' ' ' 10"
0.8 0.8
0.6 0.6
Lo Lo
0.4 0.4
0.2 0.2
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
time t time t

72



A) Plot of sampled rectangular pulse using the sampling rate f, =40 Hz. Points are
joined on the right.

80 [* ‘ ‘ ‘ ] 80 ]

Magnitude
5 8
Magnitude
5 83

8
8

5 10 15 20 0 5 10 15 20
Frequency f Hz (cycles /second ) Frequency T Hz (cycles /second )

B) Plot of N =256 point DFT frequency spectrum of sampled rectangular pulse using
the sampling rate f, = 40 Hz. Points are joined on the right.

0

Figure 5.7: Plot of Sampled Rectangular Pulse and N = 256 Point DFT with
Sampling Rate f; = 40 Hz.

[5.3.4] Gaussian Function

Consider a Gaussian function with Ae R" ;

g =e ",

Set A= 2. Following the definition (5.16), N =256 point DFT of a Gaussian function
with f, =40 Hz (samples/second) sampling rate is performed on Figure 5.8. Time

domain sampling interval At (seconds/sample), total sampling time T (seconds), and
frequency resolution Af Hz (cycles/second) are:

At=1/f,=1/40=0.025,

T =NAt=256x0.025=6.4,
Af =1/NAt=1/T =1/6.4=0.15625.

1y ‘ ‘ ‘ ‘ ‘ 1r
0.8 3 0.8
0.6 - 0.6

2 '-. o
0.4 ©0.4
0.2 0.2
*\

0 N 0

o 1 2 3 4 5 6 o 1 2 3 4 5 6

tine t tine t

A) Plot of sampled g(t) e using the sampling rate f, = 40 Hz. Points are joined on
the right.
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B) Plot of N =256 point DFT frequency spectrum of sampled g(t) = e using the
sampling rate f, = 40 Hz. Points are joined on the right.

Figure 5.8: Plot of Sampled Gaussian Function g(t) = e and N = 256 Point DFT
with Sampling Rate f; = 40 Hz.

[5.3.5] Cosine Wave g(t) = Acos(2r f,t) = Acos(w,t)

Consider 10 Hz (cycles/second) cosine wave (i.e. fundamental frequency f, =10) with
amplitude A=1 volt:

g(t) = cos(2710t).

Following the definition (5.16), N =256 point DFT of a cosine function with f, =40

Hz (samples/second) sampling rate is performed on Figure 5.9. Time domain sampling
interval At (seconds/sample), total sampling time T (seconds), and frequency resolution
Af Hz (cycles/second) are:

At=1/f, =1/40=0.025,
T = NAt = 256%0.025=6.4,

Af =1/NAt=1/T =1/6.4=0.15625.

annnny 395 PO 0 P 5 310 P P P P PP 1 T
0.5 1 0.5
£ o0 < o0

o o
-0.5 E -0.5
PP PP PPN ] -1
0 1 2 3 4 5 6 0 1 2 3
tme t tine t

A) Plot of sampled g(t) = cos(2710t) using the sampling rate f, =40 Hz. Points are
joined on the right.

4 5 6
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B) Plot of N =256 point DFT frequency spectrum of sampled g(t) = cos(2710t) using
the sampling rate f, = 40 Hz. Points are joined on the right.

Figure 5.9: Plot of Sampled Cosine Wave ¢(t) = cos(2710t) and N = 256 Point DFT
with Sampling Rate f; = 40 Hz.

[5.4] Properties of DFT
DFT retains all the properties of continuous FT since DFT is a special case of FT.
[5.4.1] Linearity of DFT

Suppose that the time domain sequence {f (t,):n=0,1,...,N -1} and
{g(t,):n=0,1,...,N -1} have discrete Fourier transforms {#(f,):k =0,1,...N -1} and
{G(f,):k=0,1,...N -1} defined by the equation (5.16). Then:

N -

aF(f)+bg(f)= Z‘j(af (t,)+bg (t,))exp{-2zikn/N}. (5.21)
PROOF

> (af (t,)+bg (t,))exp{-2zikn/ N}

=0

= af f (t,)exp{-2zikn/ N}+sz_lg (t,)exp{—2zikn/N}
n=0 n=0
=aF(f.)+bg(f,).

>

[5.4.2] DFT of Even and Odd Functions

Let even(x) be an even function and odd(x) be an odd function. Integral properties of
even and odd functions are:
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[* odd (x)dx=0,
_[A even(x)dx = 2_[Aeven(x)dx
-A 0 '
If the time domain sequence {g (t.):n=0,1,..,N -1} iseven,i.e.g(t) =g (-t ), then its

DFT {G(f,):k=0,1,...N -1} defined by the equation (5.16) is a real-valued even
function:

N-1
6(f)=Sg (tn)cos(z”k”j . (5.22)
n=0
PROOF
Start from the DFT definition (5.16):
k N-1
G(f,=——)=>_g(t, =nAt)exp{-2zikn/N}.
NAt" 3

—ix

Using the Euler’s formula (2.16) of e™ =cos(x) —isin(x):

G(f, Eﬁ) = %g (t, = nAt){cos(2zkn/N)—isin(2zkn/N)}
n=0

Gg(f,)= Elg (t,)cos(2zkn/N) —iilg (t,)sin(2zkn/N).

n=0

Since the product of an even function g (t,) and an odd functionsin(2zkn/N) is odd,
from its integral property:

N-1

D g(t,)sin(2zkn/N) =0.

n=0
Thus:

G(1,) = g(t,)cos(2zkn/ ),

which is a real-valued even function since it is a product of two real-valued even
functions g (t,) and cos(2zkn/N).
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Next consider an odd case. If the time domain sequence {g (t,):n=0,1,...,N -1} is odd,
e.g(t,)=-9g(-t,), thenits DFT {G(f,):k=0,1,...N -1} defined by the equation (5.16)
is a complex-valued odd function:

(5.23)

g(fk):—iNz_lg(tn)sin[Z”"”j.

PROOF
Start from the DFT definition (5.16):

N-1
G(f, EL) =Y g(t, =nAt)exp{-2zikn/N}.
NAL &

—ix

Using the Euler’s formula (2.16) of e™ =cos(x) —isin(x):

G(f, ENLAt) = %g (t, =nAt){cos(2zkn/ N) —isin(2zkn/N)}
n=0

g(f,)= ilg (t,)cos(2zkn/ N) —iilg (t,)sin(2zkn/N).

n=0 n=0

Since the product of an odd function g (t,) and an even functioncos(2zkn/N) is odd,
from its integral property:

=z

1

] g (t,)cos(27kn/N)=0.

>
I
o

Thus:
N-1
g(f)= —iz g (t,)sin(2zkn/N),
n=0

which is a complex-valued odd function.
[5.4.3] Symmetry of DFT
If the time domain sequence {g (t,):n=0,1,...,N =1} has DFT {G(f,):k=0,1,..N -1}

defined by the equation (5.16), then the sequence {%g(tn) 'n=0,1,..,N —1} has DFT
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{9(-f,):k=0,1,...,N-1}. In other words, if (g (t,),G(f,)) isa DFT pair,

(%Q(tn), g(- fk)J is another DFT pair.

PROOF

By the definition of an inverse DFT (5.17):

N-1
g (t, =nAt) E%Zg(fk Eﬁ)exp(zmkn/ N).

k=0

Rewrite it by substituting —n forn:

N-1

1 k .
g(-t, =-nAt) = WZ{‘;Q( f, = m) exp(2zik(-n)/ N )

g(-t,) E%fg(fk)exp(&zik(—n)/ N).

Exchange t, with f, and n withk, vice versa:

N-1

g(-f) E%Z“G(tn)exp(—zﬂink/ N).

n=0
From the definition of DFT (5.16), (%g(tn), g(- fk)j is a DFT pair.

[S.4.4] Time Shifting of DFT

Suppose that the time domain sequence {g(t,):n=0,1,...,N -1} has DFT
{G(f,):k=0,1,...N -1} defined by the equation (5.16). Then, DFT of the time domain
sequence {g (t, —t,At):n=0,1,...,N =1} (i.e. time domain sampling moment t_ is shifted
byt,At € R ) can be expressed in terms of {G(f,):k=0,1,..N -1} as:

N-1
G(f)e 2™ =" g (t, —t,At)exp{-27ikn/N}. (5.24)
n=0

PROOF

By the definition of DFT (5.16):
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k N-1 N-1

G( kzm) D g(t, =nAt)exp{-i2z fit } ng(tn_nAt)exp{ 2xikn/ N} .
n=0

By settingt, —t At =t>:

Z

-1

N-1
g(t, —t,At)exp{—i2z ft,} =D g(t*)exp{-i2z f, (t*+t,At)}
n=0

>
I
o

N-1

=exp{-i2z f t,At)} > g (t*)exp{-i2x f,t*}
n=0

=exp{-i2zkt,/N}G(f,).

[5.4.5] Frequency Shifting: Modulation

Suppose that the time domain sequence {g(t,):n=0,1,...,N =1} has DFT
{G(f,):k=0,1...N -1} defined by the equation (5.16). If DFT frequency f, is shifted

by f,/NAteR Hz (i.e.G(f, —%) ), then its inverse DFT g (t,) is multiplied by
exp{2zinfy /N}:

. f
e?™"/Ng(t,)=DFT 1, 5.25

(5.26)

DfT(eZHinfolNg(tn)) NAt

PROOF

From the definition of an inverse DFT of (5.17):

0 _ f*-

iNZg(f (i2rft,)= Zg(f*)exp[m;z(f

)
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14 . ] f
=—§ f*¥Yexp(i2z f *t )exp| i2z —2>t
Nkzog( Jexp(izz {21, ) p( " NAt j

) f 1 ]
exp|i2 ° nAt |— f¥)exp(i2z f *t
p( o ijZég( Yexp(i2z f *t,)

exp(i2znf, /N)g(t,) .

[5.4.6] Discrete Convolution: Time Convolution Theorem

Suppose that the time domain sequence {f (t, =nAt):n=0,1,...,N -1} and
{g(t,=nAt):n=0,1,...,N -1} have discrete Fourier transforms {F(f,):k=0,1,..N -1}
and {G(f,):k=0,1,..N -1} defined by the equation (5.16). FT and inverse FT defined by
the equations (5.16) and (5.17) require both the time domain function g (t, = nAt) and

the frequency domain function G(f, = NLAt) to be periodic. This means for

0=0,+1,+2, ...

g(t, =nAt)=g[(ON +n)At],

_ ko (0N+k)
g(fk:N_A'[)_g{—NAt :|,

where N is the period.

Discrete convolution of time domain sequence {f (t, =nAt):n=0,1,...,N -1} and
{g(t,=nAt):n=0,1,...,N -1} for a total of N discrete samples which is denoted as
f (nAt) * g(nAt) is defined as:

N-1
f (nat) = g(nat) =" f (jat)h[(n— j)At]. (5.27)
j=0
DFT of the discrete convolution of {f (t, =nAt):n=0,1,...,N -1} and

{g(t,=nAt):n=0,1,...,N -1} in the time domain is equal to the multiplication in the
frequency domain:

DFT (f(nAt)* g(nAt)) = Dﬁ&f f(jAth[(n— j)At]J = F(f)G(f). (5.28)

j=0

PROOF
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Following the definition of DFT of (5.16):

DfT[NZl f(jat)h[(n— j)At]J = Nlezfl f (jAt)h[(n— j)At]exp{-27ikn/N}.

j=0 n j=

Use the time shifting property of DFT of the equation (5.24):

N-1

Dﬂ[g f(jat)h[(n- J')At]] =1 (J'At)ilh[(n — j)At]exp{-2zikn/N}

=0

-1 ] (JAt)g( fk)e_Zzzikj/N — g( fk)N24 f (jAt)e—Z;zikj/N

j=0

=z —.

J=

F(1)G(F)

o

[5.4.7] Discrete Frequency-Convolution Theorem

Suppose that the time domain sequence {f (t, =nAt):n=0,1,...,N -1} and

{g(t, =nAt):n=0,1...,N -1} have discrete Fourier transforms {F(f,):k=0,1,...N -1}
and {G(f,):k=0,1,...N -1} defined by the equation (6.16). We assume f (t, = nAt),
g(t, =nAt), F(f,),and G(f,) are all periodic functions. Discrete convolution of DFTs
(frequency convolution) {F(f,):k=0,1,..N -1} and {G(f,):k=0,1,...N -1} for a total
of N discrete samples which is denoted as F(f,)*G(f,) is defined as:

f(fk)*g(fk)sz'ﬂNjA t)g(NkAt- NjA ). (5.29)

Inverse DFT of the frequency convolution F(f, )*G(f, ) scaled by 1/N isequal to the
multiplication in the time domain:

DFT [ﬁﬂfk)*g(fk)} ft)a(t,). (5.30)

In other words, DFT of a multiplication in the time domain f(t,)g(t,) isequal to a
convolution F(f,)*G(f,) scaled by 1/N in the frequency domain:

DFT(1(,)9,)) =~ F(£)*0(%). (5.31)

PROOF
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There are several different ways to prove the frequency convolution theorem. But we
prove this by showing that the inverse DFT of the frequency convolution F(f,)*G(f,)

scaled by 1/N is equal to the multiplication in the time domain f (t,)g(t,) .

Following the definition of an inverse DFT (5.17):

iN_l{if( £)*G( fk)}exp(27zikn/ N)

N N
1 1 N-1 | N-1 J J

=—_ exp(2zikn/ N
N Nko{; (NAt)Q( )} p(2r )

N-1

z (NAt{ Zg(—)exp(Zﬂlkn/N)}

j=0

Using the frequency shifting (modulation) property of DFT of the equation (5.25):

iN % _iN J Zmnj/N

Nkz{ F(f) g(f)}exp(kan/N - :OF(NM) a(t.)
o[ 15 redoe]
= f(t,)a(t,)

[5.4.8] Parseval’s Relation

Suppose that the time domain sequence {f (t, =nAt):n=0,1,...,N -1} and
{g(t,=nAt):n=0,1,...,N -1} have discrete Fourier transforms {F(f,):k=0,1,..N -1}
and {G(f,):k=0,1,..N -1} defined by the equation (5.16). We assume f (t, = nAt),
g(t, =nAt), F(f.),and G(f,) are all periodic functions.

Let g (t, =nAt) be a complex conjugate of f (t =nAt) and G(f,) be a complex
conjugate of 7 (f,):

|f (t, =nAt)[* = f (t, =nAT (t, = nAt),
[F(If = F(FIG (f,).
Parseval’s relation states that the power of a signal function f (t, = nAt) is same whether

it is computed in signal (time) space t or transform (frequency) space f after taken care
of the weight1/N :
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=

N-1

-1 1
[t =nat =2 | F(RI]
k=0

f(t =nAtg(t, =nAt) :%Nzl]-"(fk)g_ (). (5.32)

>
o

=
LN

>
o

[5.4.9] Summary of DFT Properties

Suppose that the time domain sequence {f (t, =nAt):n=0,1,...,N -1} and
{g(t,=nAt):n=0,1,...,N -1} have discrete Fourier transforms {F(f,):k=0,1,..N -1}
and {G(f,):k=0,1,..N -1} defined by the equation (5.16). We assume f (t, = nAt),
g(t, =nAt), F(f.),and G(f,) are all periodic functions.

Table 5.1: Summary of DFT Properties

Property

{g(t,=nAt):n=0,1,..,N-1}

DFT {G(f,):k=0,1..N -1}

Linearity
Even Function

Odd Function

Symmetry

Time Shifting

Convolution

Multiplication

Modulation

(Frequency Shifting)

af (t,) +by (t,) aF (f,)+bG(*,)

g(t,) iseven G(f,)eR,even

g(t,) isodd G(f,)el,odd

1

ﬁg(tn) g(_fk)

g (t, ~toA1) G(f)e "
f(nAt) * g (nAt) F(1)G(1,)

ft,)9(t,) ()61
eZﬂinfolN (t) g(f _ fO )

g n k NAt
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[6] Lévy Processes

In this sequel theorems and propositions are presented without proofs most of the time.
This is obviously because we don’t need them for our purpose (it is finance) and always
inquisitive readers can read Cont and Tankov (2004) and Sato (1999) for more rigorous
treatment of the subjects dealt in this section. We recommend for those readers without
training in the field of set theory and measure theory to first read Appendix 1 and 2 for
the basic knowledge.

[6.1] Definition of Lévy Process

A right-continuous with left limits (cadlag) or an adapted (non-anticipating) stochastic
process {X,;0<t <} onaspace (Q, F,P) with valuesin R is said to be a Lévy

process if it satisfies the following conditions:

(1) Its increments are independent of the past: X, — X, is independent of the filtration
F, with 0<t<u<oo.ie P(X,—-X|7)=P(X,-X,).
(2) Its increments are stationary: X,,, — X, has the same distribution as X, . In other

words, the distribution of increments does not depend on t (i.e. temporal
homogeneity).
(3) X,=0 as.

(4) X, iscontinuous in probability: Ve >0, ng ]P’(|Xt+h - Xt| >¢£)=0.

Processes which satisfy conditions (1), (2), and (3) are said to be processes with
stationary independent increments. Condition (4) is satisfied when conditions (1), (2), and
(3) are satisfied. Condition (4) does not imply the continuous sample paths. Actually the
very opposite is true meaning that most Lévy processes have discontinuous sample paths
(i.e. except for one). Condition (4) means that if we are at timet, the probability of a
jump at time t is zero because there is no uncertainty about the present. Jumps occur at
random times.

From our knowledge, a right-continuous with left limits (cadlag in French) stochastic
process, a non-anticipating stochastic process, and an adapted stochastic process define
an identical process. A stochastic process {X,;0<t<T} is said to be non-anticipating

with respect to the filtration{#;0<t <T} or F -adapted if the value of X, is revealed at
time t for eacht €[0, T]. In other words, {X,;0<t<T} is said to be non-anticipating if
it satisfies fort [0, T]:

(1) Left limit of the process X (t-) = IitmtX(s) exists.
(2) Right limit of the process X (t+) = IitmtX(s) exists.
(3) X(t)=X(t+).
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Any continuous function is non-anticipating but non-anticipating functions allow
discontinuities. Suppose t is a discontinuity point, the jump of X at t is:

AX (1) = X (t) = X (t-).

A non-anticipating process {X,;0<t<T} can have a finite number of large jumps and
countable number (possibly infinite) of small jumps.

X(t)

¢ K(O)=X({+) =

‘ | fime

- t t+
Figure 6.1: Illustration of Non-Anticipating Stochastic Process

Suppose that X (t) is a stock price right now, X (t-) a sock price 1 second ago, and

X (t+) astock price 1 second from now. A stock price process X should be modeled as
a non-anticipating process because at time t— we cannot predict X (t) (i.e. it is a future
value), but at time t+ we already know X (t) (i.e. it is a past value).

We saw the definition of a Lévy process. Next let’s discuss infinite divisibility of a
distribution. It turns out that we cannot separate Lévy processes from infinitely divisible
distributions because Lévy processes are generated by infinitely divisible distributions.

A random variable Y is said to be divisible if it can be represented as the sum of two
independent random variables with identical distributions:

Y =Y, +Y,.

A random variable Y is said to be infinitely divisible if it can be represented as the sum
of n independent random variables with identical distributions for any integern>2:

Y=Y +Y,+..+Y, .

Let ¢(w) be the characteristic function of the distribution of the infinitely divisible
random variable Y and ¢, () be the characteristic function of the common distribution
of the n summands. Then, the relationship between ¢(w) and ¢, (@) is:
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#(@) = (¢,())" and ¢, (@) = ($(@))"". (6.1)

Examples of infinitely divisible distributions are: the normal distribution, the gamma
distribution, « -stable distributions, and the Poisson distribution.

If Y is a normal random variable, i.e.Y ~ N(u, o), its characteristic function is:

2 2

p(@)=[" e P(Y)dY =exp(iua—~

Then, the characteristic function for the identically distributed n summands of Y can be
computed as using the above relation:

hh(0) ={p(0)}"" = {exp(iuw— o )}

:exp{i(ﬁ]w_w}.
n 2

Thus, the identically distributed n summands of Y ~ N(u, o) are also normally

distributed with the mean x/n and the variance c° /n (because a characteristic function
uniquely determines a probability distribution):

Y=Y, Y, ~iid.N(u/n,c?/n).

Another example is a Poisson case. If Z is a Poisson random variable (read Appendix 6
for the definition), i.e.Z ~ Poisson(A) , its characteristic function is:

Aqz

#o)= Z‘:{e &

o Je‘“’z =exp[A(e"” -1)].

Its identically distributed n summands follow Poisson law with the parameter A/n since
their characteristic functions take the form:

@)= )" [oxp{ate 0] -exp| 2 1),

A Leévy process {X,;t >0} possesses this infinite divisibility, i.e. for everyt increments
of a Lévy process X,,, — X, has an infinitely divisible law. Conversely, if P is an
infinitely divisible distribution, then there exists a Lévy process {X,;t >0} where the
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distribution of increments X, , — X, is governed by P. This lemma is extremely

important because it means that infinitely divisible distributions (normal, gamma, « -
stable, and Poisson distribution) can generate Lévy processes.

Lévy process {X,;t>0} = P(X,,, - X,) € Infinitely divisible distributions

[6.2] Standard Brownian Motion Process: The Only Continuous Lévy Process
Generated by A Normal Distribution

Some people misinterpret that Lévy processes are discontinuous (i.e. jJump) processes.
This is not true in a strict sense. It is true to state that most Lévy processes are
discontinuous processes. But you can carefully go through the definition of Lévy
processes again and you’ll notice that no conditions require Lévy processes to possess
discontinuous sample paths. A Lévy process can have a continuous sample path. The
only example of a continuous Lévy process is a standard Brownian motion process.

A standard Brownian motion process {B,;t >0} is a Lévy process on R defined on a
probability space (Q2, F,P) such that:

(1) B, ~ Normal (0,t).
(2) Thereis Q, e F withP(Q2,) =1, i.e. X,(@) is continuous in t for every w € Q,.

[6.3] Poisson Process and Compound Poisson Process: Finite Activity Lévy
Processes Generated by Poisson Distribution

Appendix 5 gives the in-depth background treatment of the definition and characteristics
of an exponential random variable, a Poisson process.

Let (7,), ., be a sequence of independent exponential random variables with parameter A

and T, = ZTi . A Poisson process with intensity A is:
i=1

N, = zltzTn .

n>1

The sample function N, counts the number of random times (T,) at which a specified
event occurs during the time period between 0 and t where (T, -T, ,),.., isan i.i.d.
sequence of exponential variables. Therefore, each possible N, is represented as a non-
decreasing piecewise constant function.
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Figure 6.2: Sample Path of a Poisson Process with A =1 and t = 10. In this sample, the
process has 6 jumps.

A Poisson process (N,) is a Lévy process because it possesses the following properties:

(1) Its increments are independent of the past: N, — N, is independent of the filtration
F, with 0<t<u<oo.ie.P(N,—N,|%)=P(N,~N,).
(2) Its increments are stationary: N,., —N, has the same distribution as N, . In other

words, the distribution of increments does not depend on t (i.e. temporal
homogeneity).
(3) N,=0 as.

(4) N, is continuous in probability: v >0, lim PNy, —N,|>¢£)=0.
(5) A sample path of a Poisson process (N,) is non-anticipating.
(6) N, <oo as. forany t>0. A Poisson process has finite number of jumps.

Next, let’s take a look at more general version of Poisson process called a compound
Poisson process. A compound Poisson process {X,;t >0} with intensity A is defined as:

X, =2 Y, 6.2)

where Y, are i.i.d. jump sizes with the probability density function f . We assume (N,)
and (Y,),,, are independent.
Since a compound Poisson process reduces to a Poisson process if Y, =1 (a Poisson

process can be considered as a compound Poisson process with a constant jump size
Y, =1), a compound Poisson process is a Lévy process with properties:

(1) Its sample paths are piece-wise constant and non-anticipating functions.

(2) The jump sizes (Y,),., are independent and identically distributed with the
probability density function f .
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Figure 6.3: Sample Path of a Compound Poisson Process with L =20 and t=1. Jump
sizes are drawn from standard normal distribution. In this sample, the process has 19
jumps.

Note that a stochastic process {X,;t >0} is a compound Poisson process, if and only if it

is a Lévy process with piecewise constant functions. General Lévy process can be well
approximated by a compound Poisson process because any cadlag functions can be
approximated by a step function.

The characteristic function of a Poisson process can be obtained by a series expansion:
0 eiﬂ (ﬂ“t)z iwz io
o)=Y " — (e exp{At(e” ~1)} . (6.3)

To obtain the characteristic function of a compound Poisson process {X,;t > 0} with
intensity A4 and the jump size distribution f , we condition the expectation on a Poisson
process N, and let f * be the characteristic function of f (Cont and Tankov (2004)):

- e )" f * ()"
n=0 n!

=exp[At(f *(w)-1)]= exp{t/lj': (e -1 f(dx)}, VoeR. (6.4)

E[e* 1= E[E[”" ]IN,]= E[f *(2)*]= 3

We can interpret the characteristic function of a compound Poisson process as a
superposition of independent Poisson processes with random jump sizes from distribution
f.

Defining a new measure /(dx) = A f (dx) which is called a Lévy measure of the Lévy
process{X,;0 <t}, the above formula can be rewritten as (this is a special case of Lévy-
Khinchin representation which will be discussed later):
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E[e'*] = exp{t JZ (e —1)¢(dx)}, Yo eR.
(6.5)

The Lévy measure /(dx) represents the arrival rate (i.e. total intensity) of jumps of sizes
[x,x+dx]. In other words, we can interpret the Lévy measure /(dx) of a compound

Poisson process as the measure of the average number of jumps per unit of time. There
are a couple of extremely important points which should be mentioned about this Lévy
measure /(dx) . Lévy measure is a positive measure on R, but it is not a probability

measure since its total mass A (in the compound Poisson case) does not have to equal1:
[ =2er".

Also, Lévy density ¢(dx) of a Lévy process {X,;t >0} is completely different from a
probability density of Lévy process {X,;t >0} which will be denoted asP(x,) or vg(x,)

in the VG model, for example. We emphasize not to confuse these two densities although
they are related (this relation is briefly discussed in Cont and Tankov (2004)).

A Poisson process and a compound Poisson process (i.e. a piecewise constant Levy
process) are called finite activity Lévy processes since their Lévy measures /(dx) are

finite (i.e. the average number of jumps per unit time is finite):
[ odx)<oo.

[6.4] Lévy-Ito Decomposition and Infinite Activity Lévy Process

There is a very useful theorem called Lévy-1t6 decomposition which basically states that
any Lévy process can be represented as the sum of a Brownian motion with drift process
(which is a continuous process) and a discontinuous jump process (i.e. compensated
(centered) sum of independent jumps). We assume that these two components are
independent.

Let {X,;t>0} be a Lévy process on R with Lévy measure ¢ which is the measure of

expected number of jumps per unit of time whose sizes belong to any positive measurable
set A. Lévy-1t6 decomposition states:

(1) Lévy measure /¢ satisfies:
(=1 e <ooand [ x*1(|x] <1)¢(dx) <oo.

The first condition means that Lévy processes X have finite number of large
jumps (large jumps are defined as jumps with absolute values greater than 1).
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Second condition states Lévy measure must be square-integrable around the
origin.

(2) There exists a drift b and a Brownian motion process with a diffusion coefficient
o, (0B,).,, such that:

X, =bt+oB+ X +limX: .

Following Lévy-Itd decomposition, the distribution of every Lévy process X, is uniquely
determined by its characteristic triplet (Lévy triplet) (b,o, /) of the process. Condition
(2) means that any Lévy process X, can be decomposed into a continuous (i.e. diffusion)

. . e . . . .
part bt +oB, and a discontinuous part X" + Iwo] Xt . We arbitrarily define large jumps

AX" as those with absolute size greater than 1 (i.e. this does not have to be 1):

AX*' =|AX |21,
and small jumps as those with absolute size between S and 1:

AX® =S <|AX|<1.

X! is the sum of finite number of large jumps during the time interval of 0<r <t:

X¢ =D AX[.

o<r<t

XS is the sum of (possibly infinite in the limit S { 0) number of small jumps during the

time interval of 0<r <t:

XS =D AX?.

o<r<t

In the limit case of S 0, the process can have infinitely many small jumps, therefore
X may not converge. In other words, Lévy measure ¢ can have a singularity at O (i.e.

infinite arrival rate of small jumps at zero):

_[:f(dx) —,

This type of Lévy process is called an infinite activity Lévy process. Convergence in the
condition (2) can be obtained by replacing the jump integral by its compensated version

X: . For more rigorous treatment, we recommend Cont and Tankov (2004).
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[6.5] Lévy-Khinchin Representation

Lévy-Ité decomposition states that the characteristic function of a Lévy process can be
expressed in terms of its characteristic triplet. Let {X,;t > 0} be a finite variation Lévy

process on R and (b,o, /) be its triplet. Then for any w € R, a characteristic function
#(w) and a characteristic exponent y () of a finite variation Lévy process{X,;t >0}
can be expressed as:

#(@) = E[exp(ioX )] = exp(ty (@), (6.6)

oo’ | [~ {exp(ion) -1} (dx).

2

v (w) =ibow -

[6.6] Stable Processes

Consider a real-valued random variable X . Let ¢(w) be its characteristic function. X is
said to have stable distribution if for any a >0, there exist b(a) >0 and c(a) e R such
that:

oy (0)* = ¢, (wb(a))exp(icw), Vo eR. (6.7)

X is said to have strictly stable distribution if for any a >0, there exist b(a) >0 and
c(a) e R such that:

oy (0)* = ¢, (wb(a)), VoeR. (6.8)

At first look these definitions seem complicated, but what they mean is very simple. For

example, if Y is a normal random variable, i.e. Y ~ N(u, o?), its characteristic function
2 2

is ¢(o) = exp(iuw— 2

). A normal random variable has stable distribution since it
satisfies the equation (6.7) with b(a) =a"? and c = (—/a +a)u:

#(w)* ={exp(iuw—oc’w’ 1 2)} =exp(iuwa—oc’w’al 2)

B(w)* = exp(i uwa — o’ w?al 2) exp(iuwa —iuwa)

#(w)® = exp{iuaa — o (wva)? | 2yexp(iuwa—iuwma)
#(0)°* = ¢y (o/a)exp{i(a—a) ue}.

A normal random variable with z =0 has strictly stable distribution since it satisfies the
equation (6.8):

92



#(0)* ={exp(-c’0’ 12)} = exp(——azg)za-) = exp{- GZ(COT\E)Z}
$(@)" = 4 (oa).

Let {X,;t >0} be a stochastic process on R . A stochastic process is said to be self-
similar if for anya > 0, there exists b >0 such that:

{X,;t= 0} d {bX,;t >0}, (6.9)
which we read as that two processes {X, :t >0} and {bX, :t >0} are identical in law.

It is said to be broad-sense self-similar if for any a >0, there exists b >0 and a function
c(t) such that:

{X,t>0} d {oX, +c(t);t > 0}. (6.10)

A standard Brownian motion process {B,;t >0} (which is a Levy process),
B, ~ Normal(0,t), possesses this self-similarity property since it satisfies the equation
(6.9) for va>0:

{B,;t =0} ~ Normal (0, at)
{B,;t>0} d {aB,,t>0}.

A Brownian motion with drift B, + yt is broad-sense self-similar since it satisfies the
equation (6.10) forva>0:

{B, +yat;t >0}~ Normal(yat, at),
{B, +rat;t>0} d {/aB;t>0}+ yat.

Self-similarity means that any change of time scale for the self-similar process has the
same effect as some change of spatial scale (also called a scale-invariance property).

Let {X,;t >0} be a Lévy process. A Lévy process is said to be self-similar if for any
a>0, there exists b(a) > 0 such that:

{X, :t>0}d {b(@)X, :t>0}.

Following the Lévy-Khinchin representation, the characteristic function of a Lévy
process can be expressed as ¢(w) = E[exp(ioX,)] =exp(ty (@), @ € R. Thus, in terms of
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characteristic function a Lévy process is said to be self-similar if for any a >0, there
exists b(a) > 0 such that:

P ()" = ¢y (wb(a)),
which is the definition of a strictly stable distribution of the equation (6.8). This means
that if a Lévy process is self-similar, then it is strictly stable. Formally, a Lévy process
{X,;t =0} on R is self-similar (broad-sense self-similar), if and only if it is strictly
stable (stable).

For every stable distribution, there exists a constant 0 < & <2 such that b(a) =a"“ in the

equation (6.7). Let ¢(w) be the characteristic function of a stable real-valued random
variable X . Then if for anya >0, there exists 0 < <2 and c(a) e R such that:

éy (0)* = ¢ (wa"“)exp(ico), Vo eR.

a is called an index of stability and stable distributions with « are called « -stable
distributions. Normal distributions are the only 2-stable distributions.

A strictly « -stable Lévy process (a self-similar Lévy process which is strictly stable with
index of stability r ) satisfies for anya >0:

{X, t=0pd {a"“X, :t >0}, (6.11)
Brownian motion process is an example of a strictly 2 -stable Lévy process.
An « -stable Lévy process satisfies for anya >0
3 ceR suchthat {X, :t>0}d {a"“X, +ct:t >0},

A real-valued random variable is « -stable with 0 < < 2 if and only if it is infinitely
divisible with characteristic triplet (b, =0,¢) and its Lévy measure is of the form":

A B
Z(X) = X‘Hl 1x>0 + |X|a+l 1X<0 !

(6.12)

where A and B are some positive constants.

! For more details, Samorodnitsky, G. and Tagqu, M., 1994, Stable Non-Gaussian Random Processes,
Chapman & Hall: New York.
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[7] Black-Scholes Model as an Exponential Lévy Model

Even if you were very experienced readers, we recommend you take a look at section 7.6.
Other sections may be skipped.

[7.1] Standard Brownian Motion Process: A Lévy Process Generated by a Normal
Distribution

As we saw in section 6.2, a standard Brownian motion process {B,;t > 0} is a stochastic
process on R defined on a probability space (Q2, F,P) such that:

(1) B, —B, Yu>0~ Normal(0,u).

(2) Thereis Q, € F withP(Q),) =1, i.e. X,(w) is continuous in t for everyw € Q).
(3) B,,, —B, Yu >0 are stationary and independent.

(4) The process {B,;t >0} begins with 0, i.e. B, =0.

Stationary increments of the condition (3) mean that the distributions of increments
B,,, — B, do not depend on the timet, but they depend on the time-distance u of two

t+u

observations (i.e. interval of time). For example, if you model a log stock price InS, asa
Brownian motion (with drift) process, the distribution of increment in year 2004 for the

next one year InS,,,., —InS,,, isthe same as that in year 2050, InS,,., —IN S,y :

In Szoo4+1 —In S20042 In S2050+1 —In Szoso :

The conditional probability of the event A given B is assumingP(B) >0

P(A|B) = P(ANB).
P(B)
If A and B are independent events:
P(A[B) =P(A).

Independent increments of Brownian motion process of the condition (3) mean that when
modeling a log stock price InS, as a Brownian motion (with drift) process, the

probability distribution of a log stock price in year 2005 is not affected by whatever
happens in year 2004 in the stock price (i.e. such as stock price crush):

]P(In S2005+1 —In S2005 |In Szoo4+1 —In S2004) = P(In S2005+1 —In Szoos) :

These are the two main restrictions imposed by modeling a log stock price process using
a Lévy process.

95



[7.2] Black-Scholes’ Distributional Assumptions on a Stock Price

In traditional finance literature almost every financial asset price (stocks, currencies,
interest rates) is assumed to follow some variations of Brownian motion with drift
process. BS (Black-Scholes) models a stock price increment process in an infinitesimal
time interval dt as a log-normal random walk process:

dS, = uS,dt + o'S,dB,. (7.1)

where the drift is xS, which is a constant expected return on a stock x proportional to a
stock price S, and the volatility is oS, which is a constant stock price volatility o
proportional to a stock price S, . The reason why the process (7.1) is called a log-normal

random walk process will be explained very soon. Alternatively, we can state that BS
models a percentage change in a stock price process in an infinitesimal time interval dt
as a Brownian motion with drift process:

%: udt + odB, (7.2)
t
ds 1 ds, /S, — udt)®
P(_t):—zexp[_( t t2 /u ) ]
Sy 2o dt 20°dt

Let S be arandom variable whose dynamics is given by a Ito process:
dS =a(S,t)dt+b(S,t)dB,

and V be a function dependent on a random variable S and time t. The dynamics of
V(S,t) is given by an Ito formula:

2
dvzﬂduﬁdsﬁbza\ﬁdt, (7.3)
ot 0S 2 0S
or in terms of a standard Brownian motion process B :
av :ﬂdt+ﬂ(adt+bd8)+1b2 82\2 dt,
ot 0S 2 0S
av = ﬂ+aﬂ+1b28—2\£ dt+b dB (7.4)
oS 2 oS 0S

Dynamics of a log stock price process In S, can be obtained by applying (7.4) to (7.1) as:
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2
dins, {a'” Sty s NSt L 2207 INS, ]dt+aSt oS g
at as

2, 2 05,2 t
2
Substituting oln’, =0, Olns, :i,and d InZSt :—i2 yields:
ot 3, S, a5, S,
1 2
dInSt:(u—Ea jdt+0'dBt, (7.5)

or:
1,
|nSt—|n80: IU—EG (t_0)+0(Bt_BO)

InSt:|n80+(,u—%02Jt+O'Bt. (7.6)

The equation (7.6) means that BS models a log stock price InS, as a Brownian motion
with drift process whose probability density is given by a normal density:

{In S —(In So+ (,u—;ol)t)}
P(InS,) :;zexp[— ]. (7.7)

270t 207t

Alternatively, the equation (7.6) means that BS models a log return In(St /SO) asa

Brownian motion with drift process whose probability density is given by a normal
density:

In(St/SO):(,u—%O'ZJt+O'Bt,

{In(St/SO)—(y—;az)t}z

= 1. (7.8)

IP(In(SI/SO)):\/ZiGZt exp[-

An example of BS normal log return In(S, /S,) density of (7.8) is illustrated in Figure

7.1. Of course, BS log return density is symmetric (i.e. zero skewness) and have zero
excess kurtosis because it is a normal density.
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Figure 7.1: An Example of BS normal log return In(S/Sp) Density. Parameters and
variables fixedare # =0.1, 0 =0.2,and t =0.5.

Let y be arandom variable. If the log of y is normally distributed with mean a and

variance b? such thatiny ~ N(a,b®), then y is a log-normal random variable whose
density is a two parameter family (a,b):

asp? 2 2
y ~ Lognormal(e 2 ,e**™ (e” -1)),

1 {In y—a}2
P(y)= - :
) y~ 27b? ool 2b°? :

From the equation (7.6), we can state that BS models a stock price S, as a log-normally
distributed random variable whose density is given by:

{In S, —[In S, + (,u—;az)tJ}
].

expl|—
PL 20t

P(S,) (7.9)

S, 270
Its annualized moments are calculated as:

Mean[S,] = S,e“,
Variance[S,] = S, (e"2 —1)e2" :
Skewness[S,] = (e"2 + 2) e’ -1,

Excess Kurtosis[S,]=—6+3e%" +2e% +e*" .

An example of BS log-normal stock price density of (7.9) is illustrated in Figure 7.2.
Notice that BS log-normal stock price density is positively skewed.
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Figure 7.2: An Example of BS Log-Normal Density of a Stock Price. Parameters and
variables fixed are S, =50, # =0.1, 0 =0.2,and t = 0.5.

Table 7.1
Annualized Moments of BS Log-Normal Density of A Stock Price in Figure 2.2
Mean Standard Deviation Skewness Excess Kurtosis
55.2585 11.1632 0.614295 0.678366

From the equation (7.6), we can obtain an integral version equivalent of (7.1):
1,
exp[InS,]=exp[InS, +(,u—§a Jt +0B,]
1,
S, =exp[In SO]GXIOK#—EU jt +aBt}

S, =SoeXpK,u—%0'2Jt+aBt] (7.10)

Equation (7.10) means that BS models a stock price process S, as a geometric process
with the growth rate given by a Brownian motion with drift process:

(,u—%az)t+08t :

[7.3] Traditional Black-Scholes Option Pricing: PDE Approach by Hedging

Consider a portfolio P of the one long option position V (S,t) on the underlying stock S

written at time t and a short position of the underlying stock in quantity A to derive
option pricing function.

P =V(S,t)—AS,. (7.11)
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Portfolio value changes in a very short period of timedt by:
dP =dV(S,,t) - AdS,. (7.12)

Stock price dynamics is given by a log-normal random walk process of the equation
(7.2):

dS, = uS,dt +oS,dB,. (7.13)
Option price dynamics is given by applying Ito formula of the equation (7.3):

oV

2

av = gt +ﬂd8t +1028t2
o as, 20 g,

dt . (7.14)

Now the change in the portfolio value can be expressed as by substituting (7.13) and
(7.14) into (7.12):

- s D g 4L oo 2V
ot 8s, 2 as,

dt — AdS, . (7.15)

Setting A =0V /0S, (i.e. delta hedging) makes the portfolio completely risk-free (i.e. the
randomness dS, has been eliminated) and the portfolio value dynamics of the equation
(7.15) simplifies to:

o [CANE T a?vz dt. (7.16)
a2 a8,

Since this portfolio is perfectly risk-free, assuming the absence of arbitrage opportunities
the portfolio is expected to grow at the risk-free interest rater :

E[dP]=rPdt. (7.17)

After substitution of (7.11) and (7.16) into (7.17) by setting A =0V /S, , we obtain:

a—\/Jrlazsf azvz dt=r V—a—vst dt.
ot 2 oS oS,

t

After rearrangement, Black-Scholes PDE is obtained:
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V(s 1
ot 2

) aZV(SZt,t) irs, oV (S.t)
oS, oS

7S, IV (S,,t)=0. (7.18)

t

BS PDE is categorized as a linear second-order parabolic PDE. The equation (7.18) is a
linear PDE because coefficients of the partial derivatives of V (S,,t) (i.e. >S,”/2 and

rS,) are not functions of V (S,,t) itself. The equation (7.18) is a second-order PDE
because it involves the second-order partial derivative 6V (S,,t)/8S,”. Generally
speaking, a PDE of the form:

N N N N N

+C—+ ;s +te—+3g 0,
ot 0S 0S ot otoS

is said to be a parabolic type if:
g-4de=0. (7.19)

The equation (7.18) is a parabolic PDE because it has g =0 and e =0 which satisfies the
condition (7.19).

BS solves PDE of (7.18) with boundary conditions:

max (S; —K,0) for a plain vanilla call,
max (K —S;,0) for a plain vanilla put,

and obtains closed-form solutions of call and put pricing functions. Exact derivation of
closed-form solutions by solving BS PDE is omitted here (i.e. the original BS approach).
Instead we will provide the exact derivation by a martingale asset pricing approach (this
is much simpler) in the next section.

[7.4] Traditional Black-Scholes Option Pricing: Martingale Pricing Approach

Let {B,;0<t<T} be a standard Brownian motion process on a space (Q2, 7, ) . Under

actual probability measure I, the dynamics of BS stock price process is given by
equation (7.9) in the integral form (i.e. which is a geometric Brownian motion process):

S, =S, exp{[y—%azjtﬂr&} under P. (7.20)

BS model is an example of a complete model because there is only one equivalent
martingale risk-neutral measure Q ~ P under which the discounted asset price process

{e™"S,;0 <t <T} becomes a martingale. BS finds the equivalent martingale risk-neutral
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measure Q. ~ P by changing the drift of the Brownian motion process while keeping
the volatility parameter o unchanged:

S, =S, eprr—%aszaBt@%} under Qg . (7.21)

Note that B is a standard Brownian motion process on (€, F, Q) and the process
{e7"S,;0 <t <T} is a martingale under Qg . Then, a plain vanilla call option price
C(t,S,) which has a terminal payoff function max(S; —K,0) is calculated as:

C(t,S,) =€ "TVE [max(S; —K,0)|=e"E’*[max(S, -K,0)].  (7.22)

Note that an expectation operator E = [ ] is under a probability measure Qg and
conditional on timet. Let Q(S;) (drop the subscript BS for simplicity) be a probability
density function of S; in a risk-neutral world. From the equation (7.9), a terminal stock
price S; is alog-normal random variable with its density of the form:

) {InST—(InStJr(r—;az)rj}
_ | 7.3
S.N2ro’t ol 20°t ! 72

Using (7.23), the expectation term in (7.22) can be rewritten as:

EZ2[ max(s; '[: )Q(S; )ds, +j (0)YQ(S,

EZ2[ max (S, _[: (S; —K)Q(S; )ds,

Using this, we can rewrite (7.22) as:

Q(ST):

C(z,S)=¢e" [ (S —K)Q(S)ds;. (7.24)

Since S; is a log-normal random variable with its density given by the equation (7.23):
InS, ~ Normal(ms InS, +(r—%0'2)2',0'27j. (7.25)

We use a change of variable technique from a log-normal random variable S; to a
standard normal random variable Z through:
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InS; —{In S, +(r —;Gz)f}

3 _In§;-m
Z= oy =l Normal (0,1), (7.26)
with:
1 Z°
Z(Z) :Eexp[—7].
From (7.26):
S; :exp(Za\/;+ m). (7.27)

We can rewrite (7.24) as:

C(, s‘) =€ j(an—m)/aJ?

(exp(Za\E+m)— K)Z(Z)dz :

and we express this with more compact form as:
C(z,S,)=C,-C,, (7.28)

0 0

where C, =e™" exp(Za\/?+ m)Z(Z)dZ and C, =Ke™"

7z
(InK-m)/o~/7 (InK-m)/o~r

ConsiderC,; :

C —e™ ;:Kim)/gﬁexp(za\/?)exp(m)z(z)dZ

1 o0
C = exp(—rr)exp(ln S, +(r —Eaz)rj J'(mKim)laﬁexp(Za\/;)Z(Z)dZ

C,=exp| InS, —%GZT _[;K_m)/aﬁexp(zm/?)z(z)dz
C,=exp| InS, —%O‘ZT I(:]K_m)laﬁexp(Za\/?) \/;_ﬂ exp[—Z?z]dZ
C,=exp| InS, —%azr I(::K_m)/oﬁ \/;_ﬂ exp[— Z° - 2220«/;]dz
2
C,=exp| InS, —%O'zr J.(j;K—m)/o-«/; \/;_” exp[_(z —ax/z) _GZT]dZ
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i LV (L, (2- Gf I
Cl—exp(ln St—Eo- rjexp(E ]me m)/ofr exp[— ldz
1 (Z O'\/—)
C, =exp(Ins, )j(mK o o exp[--—— ——]dZ
(Z—O'«/;)
C, =S j(mK ol \/_e pl--———1dZ. (7.29)
Use the following relationship:
b 1 (Z-c) e 1 z?
——exp[- dZ=| —exp[-—]dZ.
L@ Pl L_C@ pl-=]
Equation (7.29) can be rewritten as:
C =5 .[(an m)/ oz a\/—\/_eXp[__]dZ (7.30)

Let N ( ) be the standard normal cumulative density function. Using the symmetry of a
normal density, (7.30) can be rewritten as:

(InK-m)/or+olr 1
=S ~£ 1dz
g Norhid ]
cl=sIN£ InKm a\/?j (7.31)
ot

From (7.25), substitute form. The equation (7.31) becomes:

“InK +InS, +(r - = 67z
C,=SN 2 yoir

oz

c,=sN| —K _s, (7.32)

oz oz

In St +(r—10'2)z'+021' In St +(r+102)r
2 ol _\K 2

Next, consider C, in (7.28):
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—(InK-m)/ o7

C,=Ke™[ .  Z(Z)dZ=Ke"[ 7(2)dz
C,=Ke "N (MJ (7.33)
2 J\/; . :
From (7.25), substitute form. The equation (7.33) becomes:
—InK+InSt+(r—;az)r InS‘+(r—;az)r
C,=Ke™"N =Ke™"™N . 7.34
2 iy iy (7.34)

Substitute (7.32) and (7.34) into (7.28) and we obtain BS plain vanilla call option pricing
formula:

C(z,S,)=S,N(d,)—Ke™N(d,), (7.35)
In(i}+(r+;az)r In§+(r—102)r
K 2
where d, = and d, = =d, — \/_.
1 G\/; 2 G\/; 1 —ONT

Following the similar method, BS plain vanilla put option pricing formula can be
obtained as:

P(z,S,) = Ke"*N(~d,)-S,N(~d,). (7.36)

We can conclude that both PDE approach and martingale approach give the same result.
This is because in both approaches we move from a historical probability measure P to a
risk-neutral probability measure Q. This is very obvious for martingale method. But in

PDE approach because the source of randomness can be completely eliminated by
forming a portfolio of options and underlying stocks, this portfolio grows at a rate equal
to the risk-free interest rate. Thus, we switch to a measure Q. For more details, we

recommend Neftci (2000) pages 280-282 and 358-365.

[7.5] Alternative Interpretation of Black-Scholes Formula: A Single Integration
Problem

Under an equivalent martingale measure Q ~ P under which the discounted asset price
process {e "S,;0 <t <T} becomes a martingale, a plain vanilla call and put option price

which has a terminal payoff function max (S, —K,0) and max(K —S;,0) are calculated
as:
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C(t,S,)=e""VE? [ max(S; —K,0)|=e"E?| max 0)], (7.37)
P(t,S,) =€ """ VE? [ max(K -S;,0)]=e "EZ[ max 0)]. (7.38)

Note that an expectation operator E*[ | is under a probability measure Q and
conditional on timet. Let Q(S;) (drop the subscript BS for simplicity) be a probability
density function of S; underQ. UsingQ(S; ), (7.37) and (7.38) can be rewritten as:

(D

ES[max(s; —K,0)]= | (S; —=K)Q(S;)ds; +j (0)Q(S;
= [ (8 —K)Q(S;)d
E2[max(K-S;,0)] =" (0)Q(S; )ds; +j (K-S, )Q(S;)ds;
j (K-S )Q L )ds;
Using these, we can rewrite (7.37) and (7.38) as:
C(z,S) =" (S; —K)Q(S,)ds;, (7.39)
P(r,5)=¢"" [ (K-S, )Q(S;)ds; . (7.40)

BS assumes that a terminal stock price S, is a log-normal random variable with its

density of the form:
1 2
{In S —(In S, +(r —02)1]}
1 2 ]

exp[-
S; J2no?r 20z

@(ST)=

(7.40)

Therefore, BS option pricing formula comes down to a very simple single integration
problem:

{In s, —(m St+(r—;02)r

j} Jds., (7.41)

. 1
C(r,S)=¢e"| (S; —K)——=exp[-
t '[K( ! )ST\/27Z'(722' 20°z
2
) {In S; —(In S, +(r—;02)rj}
K
P(z,S)=e"[ (K-8, )——=——exp[- ds,. (7.42
(r.5)=e" [ T)ST% p[ == 1ds,. (7.42)
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This implies that as far as a risk-neutral density of the terminal stock price Q(ST ) is
known, plain vanilla option pricing reduces to a simple integration problem.

[7.6] Black-Scholes Model as an Exponential Lévy Model

The equation (7.10) tells us that BS models a stock price process as a geometric

Brownian motion process:
1.,
S, =S, exp ,U—EJ t+oB, |.

BS model is an exponential Lévy model of the form:
S, =S,e",

where the stock price process {S, :0<t <T} is modeled as an exponential of a Lévy
process {L,;0<t <T}. Black and Scholes’ choice of the Levy process is a Brownian
motion with drift (continuous diffusion process):

Ltz(y—%azjtJrO'Bt. (7.43)

The fact that an stock price S, is modeled as an exponential of Levy process L, means

that its log-return In(%) is modeled as a Lévy process such that:
0

S 1
In(—=) = = i 2t+ B..
(0) L, (,u 20‘] oB,

BS model can be categorized as a continuous exponential Lévy model apparently because
a Brownian motion process is continuous (i.e. no jumps). Later, we will deal with Merton
jump-diffusion model (we call it Merton JD model) and variance gamma model by
Madan, Carr, and Chang (1998) (we call it VG model). These are all exponential Lévy
models of different types. Merton’s choice of Lévy process X, is a Brownian motion

with drift process plus a compound Poisson jump process which has a path of continuous
path with occasional jJumps. Merton JD model can be categorized as a finite activity
exponential Lévy model because the expected number of jumps per unit of time (i.e.
intensity 4 ) is finite and small. In other words, the Lévy measure /(dx) of Merton JD

model is finite:

[e(dx) <.
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VG model can be can be categorized as an infinite activity exponential Lévy model
because the expected number of small jumps per unit of time is infinite:

[e(ax) =0,

although the expected number of large jumps per unit of time is finite. VG model’s Lévy
process X, is a subordinated Brownian motion process by a tempered « -stable

subordinator (i.e. a normal tempered « -stable process) which is a pure jump process.
Continuous Exponential Lévy models: No Jumps
Example: BS Model

Exponential Finite Activity Exponential Lévy Models: Continuous with
Lévy Models Occasional Discontinuous Paths
Example: Merton JD Model

Infinite Activity Exponential Lévy Models: Pure Jump Process
Example: VG Model

Figure 7.3: Category of Exponential Lévy Models

Recently, there are enormous publications regarding infinite activity exponential Lévy
models which we intend to look into in near future.

108



[8] Option Pricing with Fourier Transform: Black-Scholes Example

In this section we present Fourier transform option pricing approach by Carr and Madan
(1999). To illustrate the idea clearly and simply, we present BS model with Fourier
transform pricing methodology.

[8.1] Motivation

Let Q ~ P be an equivalent martingale measure under which the discounted asset price
process {e "S,;0 <t <T} becomes a martingale and {;0<t <T} be an information

flow of the asset price S (i.e. filtration). In an arbitrage-free market, prices of any assets
can be calculated as expected terminal payoffs under @ discounted by a risk-free interest

rater:

e, =E°[e"S; | 7],
s =e"TVEC[S, |A],

which are martingale conditions.

Let K be a strike price and T be an expiration of a contingent claim. Plain vanilla call
and put option prices are computed as discounted risk-neutral conditional expectations of

the terminal payoffs (S; —K)" =max(S; —K,0) and (K -S;)" = max(K-S;,0):

C(t,s)=e""VE®[(S, -K)"|% ], (8.1)
P(t,S,) :e’r(T’t)EQ[(K —sT)+|ft]. (8.2)

Intrinsic value of a vanilla call (put) is defined as (S, —K)* ((K-S,)") which is the
value of the call (put) exercised immediately. Obviously, the intrinsic value of out of the
money option is zero. Current option price minus its intrinsic value C(t,S,) - (S, — K)"

(P(t,S,)—(K—=S,)") is called a time value of the option.

Let Q(S; |]-“t) be a probability density function of a terminal asset price S; underQ
conditional on F, . Using Q(S; |]{), (8.1) and (8.2) can be rewritten as:

C(t:8) = ™ [(8, ~K)Q(S: 7)ds, + [ (0)a(S: %) s, |

=e [ 7(S, —K)Q(S; | %) ds;, (8.3)

P(t,S)=e""" {J: (0)Q(S, | 7)dS, + [ (K-5,)Q(s, IJ-:)dsT}
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_e (™ IOK(K -5, )Q(S; | £)ds; - (8.4)

Black-Scholes (BS) assumes that a terminal stock price S; conditional on 7 is a log-
normal random variable with its density given by:

. {In S, —[In St+(l’—;az)(T —t))}

exp| —
S.\J270? (T —t) 20°*(T —t)

Q(s,|7)=

Therefore, BS option pricing formula comes down to single integration problem with
respect to S; since all parameters and variables are known:

) _{In s, —(m s, +(r—;02)rj}

C(t,S)=e"[ (S, —-K ex dS., (85
s (1.8) =€ [ (S, )’ o P == 1 (85)
_ . 2__
. {In S, —(In S, +(r —Zaz)rj}
K
P.(t,S)=e" K-S exp| — ds.. (8.6
55 (1,8) = [ Vs == r- (86)

This implies that as far as a conditional risk-neutral density of the terminal stock price
Q(S; |]-"t) is given, plain vanilla option pricing reduces to single integration problem by
the equation (8.3) and (8.4).

But for general exponential Lévy models Q(S; |]—"t) cannot be expressed using special

functions of mathematics or is not known. Therefore, we cannot price plain vanilla
options using (8.3) and (8.4). So how do we price options using general exponential Lévy
models? The answer is to use a very interesting fact that characteristic functions of
general exponential Lévy processes are always known in closed-forms or can be
expressed in terms of special functions of mathematics although their probability
densities are not. We saw in the section 4 that there is one-to-one relationship between a
probability density and a characteristic functions (i.e. through Fourier transform) and
both of which uniquely determine a probability distribution. If we can somehow rewrite

(8.3) and (8.4) in terms of a characteristic function of S; |]-} (i.e. log of S; |]-] to be more

precise) instead of its probability density Q(S; |7':) , we will be able to price options in
general exponential Lévy models.
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[8.2] Derivation of Call Price with Fourier Transform: Carr and Madan (1999)

For simplicity, assumet =0 without loss of generality. From the equation (8.3), use a
change of variable technique fromS; to InS; :

C(T,K)=e"" I:K(e'”ST —e")Q(Ins; |7)dIns, .

Let s, be alog terminal stock price and k be a log strike price, i.e. s, =InS; and
k=InK. Thus, we have:

C(r,k):e’”f(e* —e)Q(s;| %) s, (8.7)

where Q(s;) = Q(ST |]-"0) (for simplicity) is a risk-neutral density of a log terminal stock
price s, conditional on filtration F,. From the equation (4.1), a characteristic function of
s, is a Fourier transform of its density function Q(s;):

#(0) = F[Qs:)] (@)= [ e Qs,)ds; . (88)

Consider a function g(t) . Sufficient (but not necessary) condition for the existence of
Fourier transform and its inverse is the equation (3.47):

j_i|g(t)|dt <o, (8.9)

We saw in section 7 that BS models a log terminal stock price s; as a normal random
variable with its normal density given by under Q (from (7.7)):

. {sT —(so +(r—;02)Tj}
Q(s;) =——=exp| - : (8.10)

270°T 20°T

From the equations (8.8) and (8.10), a characteristic function of BS log terminal stock
price s, is easily obtained as:

b (@)= ] Qs )ds, exp[i{so +(r%az)T}a)@} (8.11)
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When a call price is expressed in terms of a log strike price k =InK in the equation
(8.7), k approaches —oo as a strike price K approaches 0 in the limit. Thus, from (7.8):

C(T,k):e"TI:(eST —e)Q(s; |7 )ds, =e"TIieST@(sT | %) ds;
C(T.k)=e"E[e" |7, ]. (8.12)

We know under equivalent martingale measure Q:
E%[S, =e" | |=Se".
Equation (8.12) becomes:
C(T,k)=5S,.
Therefore, a call price C(T,k) is not integrable (i.e. C(T,k) does not satisfy (8.9)).

Therefore, C(T,k) cannot be Fourier transformed. To solve this problem, CM defines a
modified call price as:

Crooa (T, k) =€™“C(T k), (8.13)

where C_,(T,k) is expected to satisfy the integrability condition (8.9) by carefully
choosing a >0:

[ o (T, K)ok < 0.

Consider a FT of a modified call price by the FT definition (3.4):

v, (0) = f e*C_ (T, k)dk . (8.14)
From (8.14), call price C(T,k) can be obtained by an inverse FT (i.e. the definition (3.5))
of y; (w):
1 = ik
Cooa(TK) === ™ *yr (0)do
27 7

eakc(‘l’ , k) — LJ._OO e*i(ukl//T ((())d W
27 4
e—ak

27

CT.K)="—[ ey (w)do. (8.15)
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Now CM derives an analytical expression of - (@) in terms of a characteristic function
¢ (). Substitute (8.13) into (8.14):

v (@)= e e C(T, kydk.

Substitute (8.7) and interchanging integrals yields:

vy () = _[_i e e J':(e% —e")@(sT )ds, dk
_ J‘: e—rTQ(ST )J';eiwk (esT+ak _ gltra)k )ddeT

e(a+l+i(l))s-|- e(a+1+iw)sT
ds;

-[emots) S

a+io a+l+iw
e g (0—(a+D)i)

= . 8.16
a’+a-o’+i(2a+l)o (8.16)
Thus, a call pricing function is obtained by substituting (8.16) into (8.15):
e o e (0—(a+1)i)
C(T,k)=—| e do, 8.17
Tk 2r Lﬂ a2+a—a)2+i(2a+1)a) © ®.17)

where ¢, (.) is a characteristic function of a log terminal stock price s, conditional on
filtration ;. We can interpret the equation (8.17) which is single numerical integration

problem as a characteristic function ¢ (.) equivalent of the equation (8.3). Table 8.1
illustrates this point.

Table 8.1: Comparison between Traditional and FT Option Pricing Formula

Option Pricing Method Equation Formula

Traditional (8.3) C=e"T[ (S, ~K)Q(S;|%)ds,
ok, eirT - +1)i

Fourier Transform (8.17) C(T,k) =e—j e — (i) _(a i) dw
27 I a’+a-o'+i(2a+1)w

()= f; e”"Q(In(S; )% )d IS, ), k=InK

[8.3] How to Choose Decay Rate Parameter a: Carr and Madan (1999)
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We mentioned earlier that when a call price is expressed in terms of a log strike price
k =InK in the equation (8.7), k approaches —o as a strike price K approaches 0 in the
limit which is illustrated in Figure 8.1.

2.5
0

-2.5
-5

=InK

-7.5

k

-10
-12.5

-15

0 2 6 8 10

4
Strike Price K
Figure 8.1: Relationship between a Strike Price K and a Log-Strike Pricek =InK..
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Figure 8.2: Plot of an Exponential Function ¢”* with Respect to Log-Strike Price

k=InK.

Thus, a call price function C(T,k) becomes S, as k — —oo discussed before. In order to

make a call price integrable, CM multiplies an exponential function e with o € R* to
C(T,k) and obtains a modified call price C_,(T,k) . As shown by Figure 8.2, the role of

e’ with « e R" is to dampen the size of C(T,k) =S, in the limit k — —oo. But this in

turn worsens the integrability condition for k e R* (i.e. positive log strike) axis. In order
for a modified call price C_,(T,k) =e““C(T,k) to be integrable for both positive and
negative k axis (i.e. square integrable), CM provides a sufficient condition:

wr(0) <oo.

From (8.16):

e " (—(a +D)i)

a’+a

V‘r(o)::
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Therefore, the sufficient condition of the square-integrability of C__,(T,k) is:
¢ (—(a+1)i)<oo. (8.18)
From the definition of a characteristic function (8.8):
¢ (@) = E[e" ] = E[e“" ] = E[(e"™)""] = E[S;"]. (8.19)
From (8.18) and (8.19):

é. (—(a +1)i) <o
E[S, i{—(a+1)i}] <o
E[S,“ "] <. (8.20)

CM suggests the use of (8.20) and the analytical expression of the characteristic function
to determine an upper bound on e« .

[8.4] Black-Scholes Model with Fourier Transform Pricing Method

By substituting a characteristic function of BS log terminal stock price s, (i.e. the

equation (8.11)) into the general FT pricing formula of the equation (8.17), we obtain BS-
FT call pricing formula:

e_ak . e_rT¢|' (a)—(a +l)|)
C ’k _< iwk
ss_rr (T,K) o ,[_we a? +a_a)2+i(2a'+1)60

do, (8.21)

_ { 1, (0°T )’
with ¢, (w) =exp |{so+(r—§a )T}m—T .

Table 8.2: Comparison between Original BS and BS-FT Option Pricing Formula

Option Pricing Method

Original Black-Scholes

C=e" [ (S, ~K)Q(S; | %)dS;
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. {In S, —(In St+(r—;az)(T—t))}

QS; R )= exp| —
( T| t) S. 270’ (T —t) 20*(T —t)
Black-Scholes with Fourier Transform Approach
—ak - ) -7 _ 1 H
C:e—j e—l(uk € ¢r(a) (a+ )I) d(l)
2 4

a’+a-o’+i(2a+1l)o

¢r(a))exp{i{Sﬁ(r—%az)T}a)—@], k=InK

We implement the BS-FT formula (8.21) with decay rate parameter « =1 and compare
the result to the original BS call price. As illustrated by Figure 8.3, as a principle BS-FT
call price and the original BS call price are identical. This is no surprise because the
original BS formula and BS-FT formula in Table 8.2 are the same person with a different
look. BS-FT formula is just frequency representation of the original BS formula.

820 — BS-FT

40 50 60 70 80
Strike K

Figure 8.3: Original BS Call Price Vs. BS-FT with a =1 Call Price. Common
parameters and variables fixed areS, =50, 0=0.2, r=0.05, q=0.02,and T =1.

Several points should be investigated further now. Firstly, CPU time should be discussed.
Consider an ATM call option withS; =50, K =50, 0=0.2, r=0.05, q=0.02, and

T =1.Our BS-FT a =1 code needs 0.01 second CPU time while our original BS code
needs zero seconds. Although you can state that BS-FT formula is slower than the
original BS, speed is not an issue for most of the purposes.

Secondly, let’s consider the choice of decay rate parameter @ . We saw the selection
procedure for o by Carr and Madan (1999) in section 8.3. But we found out that choice
of « is not much important as long asa € R*. Consider an ATM vanilla call price with
S, =50, K=50, 0=0.2, r=0.05, q=0.02,and T =0.25. Its BS price is 2.16794.
Figure 8.4 and Table 8.3 indicates that for  >0.05 BS-FT price converges to the
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original BS price. But it is possible that option prices using FT approach can be sensitive
to the choice of « for models other than the BS, so at this point it is safer for us to state
that for at least BS model the choice of « is of no importance (i.e. & =1 is fine).

2.35+¢
2.3¢

N
N
o1

Call Price
Moo
5 N

N
& =

0 1 2 3 4 5
Decay Rate o

Figure 8.4: Vanilla BS-FT ATM Call Price as a Function of Decay Rate Parameter
a. Common parameters and variables fixed areS; =50, K =50, 6 =0.2, r=0.05,

q=0.02,and T =0.25.

o 001 005 0.1 05 1 T2 5

Call Price 2.16972 2.16794 2.16794 2.16794 2.16794 2.16794 2.16794

Thirdly, we discuss the FT option pricing with (8.21) for near maturity deep OTM and
ITM calls. As CM (1999) points out, for near maturity deep OTM and ITM calls (puts),

call (put) prices approach their intrinsic values (S, —-K)" ast—>T ((K-S,)"). Since
this makes the inverse Fourier transform integrand highly oscillatory, the numerical
integration problem in (8.21) becomes slow and difficult. For example, using our code, in
the case of an ATM call withS; =50, K =50, 0=0.2, r=0.05, and q=0.02, BS-FT
a =1 call price does not face the difficulty in numerical integration at all even for one
day to maturity T =1/252. But in the case of a deep OTM call withS, =50, K =80,
0=0.2, r=0.05,and q=0.02, BS-FT a =1 call price begins to experience difficulty
in numerical integration around 37 trading days to maturity (i.e. T <38/252). For a deep
ITM call withS, =50, K =20, 0=0.2, r=0.05, and q=0.02, BS-FT a =1 call price
begins to experience difficulty around 5 days to maturity (i.e. T <5/252). Of course, this
depends on the value of «, your hardware, and your software, etc.

More important question is to investigate the amount of error caused by this numerical
integration difficulty for the near maturity deep OTM and ITM options. Consider a call
option withS, =50, 0=0.2, r=0.05, and q=0.02. Figure 8.5 plots a series of the

difference between the original BS price and BS-FT « =1 price for the range of less than
10 trading days to maturity 1/252 <T <10/252 . We find that despite the difficulty in the
numerical integration of BS-FT price of (8.21) for the near maturity deep OTM (in Panel
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A) and deep ITM (in Panel B) call, our BS-FT code causes no significant errors in terms
of pricing. For a near maturity ATM call (in Panel C) which faces no difficulty in
numerical integration, BS-FT pricing error is negligible.

BS - BS-FT

4x 1071
3x 107
2x 1074
1x 1071

0

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time to Maturity T

A) OTM call with S; =50 and K =80.

0.00006
0.00005
0.00004
0.00003
0.00002
0.00001

0

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time to Maturity T

B) ITM call with S; =50 and K =20.

0

-9

-1x 107"
-9

-2x 10 7
-9

-3x 107"
-4x 107"
5% 107
-9

-6x 10 7
7x 107
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Time to Maturity T

C) ATM Call with S; =50 and K =50.

Figure 8.5: Plot of BS Price minus BS-FT « =1 Price for Near-Maturity Vanilla
Call with Less Than 10 Trading Days to Maturity 1/252 <T <10/252. Common
parameters and variables fixed arec=0.2, r=0.05, and q=0.02.
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We conclude this section by stating the following remarks. In the case of BS model, the
FT call price of the equation (8.17) needs equivalent CPU time as the original BS formula
and produces negligible pricing errors regardless of the maturity and the moneyness of
the call.

[8.5] Derivation of Near-Maturity OTM Vanilla Option Pricing Function with
Fourier Transform: Carr and Madan (1999)

Although the numerical integration difficulty of BS-FT call price of (8.21) for the near
maturity deep OTM and deep ITM calls causes no significant pricing errors, CM (1999)
provides the vanilla option pricing formula specifically designed for them which makes
the inverse Fourier transform integrand less oscillatory and facilitates the numerical
integration problem.

Let z; (k) be the time value of an OTM vanilla options with maturity T at the current

time t =0 without loss of generality. This implies that when the strike price is less than
the spot stock price K < S, (i.e. k <s, in log-scale), z; (k) takes on the OTM put price.

When the strike price is greater than the spot stock price K > S, (i.e. k > s, in log-scale),
z; (k) takes on the OTM call price:

2 (k) = P(0,S,)—(K=S,)" =P(0,S,) if K<,
T e(0,8,)- (S, - K) =C(0,S,) if K>S,

2, (k)

A
A\ 4
A
v

OTM Put Price OTM Call Price

|

i k
0 S

Figure 8.6: Illustration of an OTM Vanilla Option Price z; (k).
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Assume the current stock price S, =1 for the simplicity (i.e. taken care in the end) which
in turn meanss, =0.

2, ()

A
A\ 4
A
v

OTM Put Price OTM Call Price

|
i k
0 S, =0
Figure 8.7: Illustration of an OTM Vanilla Option Price z; (k) Assuming$S, =1.

Under a risk-neutral measure Q, z, (k) can be computed as:

2 (k)= [ (€' =0 )L, o +(€7 —€ )L, oo [Q(s B s, (8.22)

where Q(s;) = Q(ST |]-“0) is a risk-neutral density of a log terminal stock price s;
conditional on filtration 7. z, (k) takes on a put payoff (ek —e% ) if this option is
currently OTM put k <0 and if at maturity T this put finishes ITM s, <k. z; (k) takes
on a call payoff (eST —ek) if this option is currently OTM call k >0 and if at maturity T
this call finishes ITM s; >k .

Consider a FT of OTM vanilla option price z; (k) by the FT definition (3.4):

&(@) =] ez (kydk. (8.23)

From (8.23), OTM vanilla option price z; (k) can be obtained by an inverse FT (i.e. the
definition (3.5)) of ¢; (@) :

2. (k) :% j“; e ¢ (w)dw. (8.24)

By substituting (8.22) into (8.23), CM shows that an analytical expression of £ () in
terms of a characteristic function ¢ () of a log terminal stock price s, conditional on
filtration 7, can be obtained as:
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l+iow 0 & —iw

Sr(w)=e" [L_ﬂ_@(w—i)j_ (8.25)

To facilitate numerical integration, CM again considers a FT of OTM vanilla option price
z; (k) modified with dampening function sinh(ak) (compare with (8.23)):

yr (@)= [ &* sinh(ak)z, (k)dk

ak _ A-ak
S 2e 2. (k)dk

_Glosi) Glovia) ©.26)

From (8.26), OTM vanilla option price z; (k) can be obtained by an inverse FT of y; () :

1 1 (o
e—lwk

2 () = inh(ak) 22~

7 (w)do. (8.27)

From now on, we call the OTM near maturity option price of the equation (8.27) as
FT/TV (i.e. TV indicates the time value approach). Table 8.4 compares the general FT
pricing formula using the modified call price (i.e. the equation (8.17)) and FT/TV
formula using the time value of OTM options which is specifically designed for near
maturity options.

Table 8.4: FT Formula Vs. FT/TV Formula

Approach Formula
ok, eirT — Di

FT cr k=4[ et mi’ (@+Bi)
2 I a’+a—-o'+i(2a+l)w

¢‘_ () = I:eiwln(ST)Q(ln(ST”ﬂ)d In(ST) , k = In K
{P(O,so) if k<s,
FT/ITV 2 (k) = .
C(0,s,) if k>s,
2 ()=t L[
sinh(ak) 27 9~

¢r(w-ia)-C(w+ia)
)= 2

ROLL

7 (@

121



C(w)=e"T (L_i_Mj

1+iw 0 o' —iw

¢ () =] e Q(In(s,)| % )dIn(s,) , k=InK

Next the performance of FT-TV formula of the equation (8.27) with decay rate parameter
a =10 (we will discuss the choice of « soon) is tested and compared to the original BS
price and BS-FT o« =1 price for a range of different moneyness in Figure 8.8. Panel A
plots z; (k) which reaches its maximum at ATM and takes the price of OTM put for

K < S, and takes the price of OTM call forK > S, . Panel B and C indicates that as a
principle, all three formulae produce identical prices. Again, this is no surprise because
all these are same thing with different looks.

2 x
\
g 1.5 ‘
‘=
o
- 1
e
(@]
0.5
0
20 30 40 50 60 70 80
Strike Price K
A) Plot of z, (k).
2
—— BS
815
s -~ BS-FT
o
- 1
I
BS-FT/TV
© o5 /
0

50 55 60 65 70 75 80
Strike Price K

B) For the range 50 <K <80.
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Put Price

20 25 3. 3B _ 40 45 50
Strike Price K

C) For the range 20< K <50.

Figure 8.8: BS Vs. BS-FT a =1 Vs. BS-FT/TV a = 10. Common parameters and
variables fixed areS;, =50, 0=0.2, r=0.05, q=0.02,and T =0.25.

Next, CPU time and the accuracy of BS-FT/TV formula are discussed. Consider vanilla
options with common parameters and variables S; =50, o =0.2, r =0.05, and

q=0.02. Table 8.5 to 8.7 show CPU time and the accuracy of BS-FT/TV «=10 formula
compared to other two formulae with three different maturities and with varying
moneyness. In terms of CPU time, we notice that BS-FT/TV formula is by far the slowest
although most of purposes this will not be an issue. BS-FT/TV =10 formula has
marginally larger error than BS-FT « =1 formula, but the size of the errors are trivial.

Table 8.5: CPU Time for an OTM Call with K =80
Price is in the bracket.
Time to Maturity
Method T=01 T=05 T=1

BS 0 seconds 0 seconds 0 seconds
(3.77524x10™) (0.00152306) (0.0594469)

BS-FTa=1 0.08 seconds 0.02 seconds 0.01 seconds
(3.97419x10™) (0.00152306) (0.0594469)

BS/FT/OTM « =10 0.31 seconds 0.07 seconds 0.03 seconds
(4.00513x10™) (0.00152306) (0.0594469)

Table 8.6: CPU Time for an ATM Call with K =50
Price is in the bracket.
Time to Maturity
Method T=01 T=05 T=1

BS 0 seconds 0 seconds 0 seconds
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(1.3331) (3.15382) (4.6135)

BS-FTa=1 0.01 seconds 0.01 seconds 0.01 seconds
(1.3331) (3.15382) (4.6135)

BS/FT/OTM =10 0.04 seconds 0.04 seconds 0.07 seconds
(1.3331) (3.15382) (4.6135)

Table 8.7: CPU Time for an OTM Put with K =20
Price is in the bracket.
Time to Maturity

Method T=0.1 T=05 T=1
BS 0 seconds 0 seconds 0 seconds

(0) (1.4492x107™)  (1.32586x107°)
BS-FTa =1 0.04 seconds 0.02 seconds 0.02 seconds

(-7.10543x10™")  (1.4481x10™")  (1.32586x10°)

BS/FT/OTM « =10 0.3 seconds 0.14 seconds 0.13 seconds
(-3.76588x107"%) (1.86517x10™"")  (1.32587x10°°)

Next, the level of decay rate parameter o for BS-FT/TV formula is dealt. Figure 8.9
illustrates the pricing error of BS-FT/TV formula of a one day to maturity T =1/252
option as a function of varying « . Panel A (for an OTM call) and C (for an ATM call)
tells us that for o > 2, BS-FT/TV formula has effectively zero error relative to BS price.
But for an OTM put (Panel B), the error does not monotonically decrease as & rises. It
seems that the value of 2 <« < 2.25 yields the negligible size of the error. Therefore,
from now on, we always use « =2.1 when implementing BS-FT/TV formula.

0 0 -

-0.001 4
-2x 10

-0.002 B
-4x 10

E,-o.oos § 6 10-7

5 -0.004 = o |
0.005 -8x 10~

~0.006 -1x 10—6

-6
-0.007 -1.2x 10

2 22 24 26 28 3
25 5 7.5 yloRaltze.sa 15 17.5 20 Decay Rate o

A) Foran OTM Call with K =80.
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B) For an OTM Put with K =20.

0 0 =
-0.0025

-0.005 25107
5 -0-0075 5 §
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-0.0125 )
~0.015 -6x 10
-0.0175 || y
-8x 10
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Decay Rate o Decay Rate o

C) For an ATM Call with K =50,

Figure 8.9: BS Price Minus BS-FT/TV Price for One Day to Maturity Option as a
Function of Decay Rate Parameter a. Common parameters and variables fixed
areS, =50, 0=0.2, r=0.05, q=0.02,and T =1/252.

Next, we compare the performance between BS-FT « =1 formula and BS-FT/TV

a =2.1 formula and let’s see if BS-FT/TV a = 2.1 formula improves the pricing
accuracy for near maturity options. According to Figure 8.10, BS-FT/TV a=2.1
formula generally has larger error regardless of the moneyness except for one-day to
maturity OTM put (in Panel B).

0
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2x1071

Error

3x 107"

41071

5% 107 : : : : : : :
= 0.0050.010.0150.020.0250.030.0350.04
Time to Maturity T

A) OTM call with K =80.
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B) OTM put with K =20.

-4 ——— BS-BSFT

—— BS-BSFTTV

0.0050.010.0150.020.0250.030.0350.04
Time to Maturity T

C) ATM Call with K =50.

Figure 8.10: Plot of Error of BS-FT/TV « =2.1 Price Vs. Error of BS-FT o =1
Price with Less Than 10 Trading Days to Maturity 1/252 <T <10/252. Common
parameters and variables fixed arec=0.2, r =0.05, and q=0.02.

We conclude this section by stating the following remarks. Carr and Madan (1999)
provides the FT/TV formula of the equation (8.27) in order to improve the pricing
accuracy specifically for near maturity options compared to the FT formula of the
equation (8.17). Firstly, FT/TV formula is slower than the original BS and FT formula,
but this won’t be an issue for pricing several options. Secondly, we recommend the use of
2 < ax < 2.25 for the decay rate in FT/TV formula. Thirdly, contrary to the design by CM,
FT/TV formula generally has larger error than FT « =1 formula. At this point, we are
skeptical about the usefulness of FT/TV formula.

[8.6] Derivation of Call Pricing Function with Discrete Fourier Transform (DFT):
Carr and Madan (1999)

There still remains one problem to be solved. Although the numerical integration
difficulty of FT call price of (8.17) for the near maturity options causes no significant
pricing errors, it makes the evaluation of FT price slow. This speed becomes an issue
when calibrating hundreds or thousands of prices (i.e. also in Monte Carlo simulation).
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To improve computational time, Carr and Madan (1999) apply discrete Fourier transform
to approximate the equation (8.17). Note that our version of DFT call price formula is
different from their original formula.

FT call price is (i.e. the equations (8.15) and (8.16)):

—ak

e
C (k=5

[e"yr (@)do, (8.28)

e "4 (0—(a+1)i)

a’+a-o’+i(2a+l)w

where y; (@) = . The integral is an inverse FT of an angular

frequency domain function y, (@) into signal space k function. As we saw in section 5,

it can be approximated by DFT. Firstly, the infinite integral of (8.28) needs to be
truncated as:

ak Q/2

C, (k)~ o ey, (w)do. (8.29)
Secondly, (8.29) can be discretized as:
ex K,

C (k) =~ p(2: )ZW {exp(-iok, )p; (0,)Aw). (8.30)

Let us discuss the interpretation of (8.30). The purpose of a DFT (an inverse DFT) is to
approximate the transform space function, i.e. in our case FT of a modified call price
v, (@) (the signal space function, i.e. in our case a call price C; (k) ) as close as possible

by sampling a finite number of points N of a signal space function C; (k) with signal

space sampling interval Ak and by sampling a finite number of points N of a transform
space function y; (w) with transform space sampling interval Aw . In other words, both

the original continuous signal space function C; (k) and the original continuous FT
v, (w) are approximated by a sample of N points.

Let N be the number of discrete samples taken to approximate C; (k) and y; (®). Let

Ak be the signal space sampling interval which is the signal increment between signal
space samples. Its inverse f, =1/Ak (samples/1 unit of k) is called a signal space

sampling rate. Let K be the total sampling range in the signal space:
K =NAK. (8.31)

If Ak is 1, the total sampling range in the signal space and the number of samples taken
are same (i.e. for example, K =10 dollars and N =10 samples). If Ak =0.01, 1 sample
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is taken in every 0.01 unit of k in signal space which in turn means that 100 samples are
taken per 1 unit of k (i.e. signal space sampling rate f, =1/Ak =100 Hz).

Consider a sampling in the signal space. Take N discrete samples of a signal space
function C; (k) at n-th sampling instant k, = _NTAk+ nAk withn=0,1,...,N —1. When

K =10 and N =10 samples (i.e. signal space sampling interval Ak =1), k, =-5+n
which means that C; (k) is sampled at k =-5,-4,-3,-2,-1,0,1,2,3, and 4. Let C, (k,) be
the sampled values of C; (k) .

Next, consider a sampling in the transform space (i.e. angular frequency » domain). Let
Aw Hz (radians/1 unit of k) be the angular frequency domain sampling interval:

w=——=—, (8.32)

The total sampling range in the angular frequency domain Q is:
Q=NAw. (8.33)

Take N samples of a continuous FT G(w) at j-th angular frequency sampling instant:

o = NA® jszAw[—ﬂ+ jjzz—”ﬂ—ﬂ+ j]z—i+ 27 (8.34)
j 2 2 Nak | 2 Ak NAk

with j=0,1,...,N —1. For example, when K =10 and N =10 samples (i.e. Ak =1),
G(w) issampled at  =—7,-4x15,-3715,-2715,-7 15,0, 715,27 15,37 15,47 15
(ile.w; =-7m+ jx/5). Let G(w;) be the sampled values of G(w):

NAw
2

G(w,)=G(- + jAw). (8.35)

G(w,) is called a spectrum of g (k,) at angular frequency w; and it is a complex
number.

DFT and inverse DFT defines the relationship between the sampled signal space function
g (k,) and its spectrum at angular frequency ;, G(®,), as the following:

G()= ¥ 9 k) expfiok,|

128



G(w,) = Zg(k)exp{ (—N—ﬂ'j 7rn+27|[\ljnj}

N -

G(w;)=exp(-izj)exp(izN/2) {g (k,)exp(-izn)}exp(i2zjn/N), (8.36)

=0

,_\

>

and:
gmaslfw@mmbmm)
w)——Zmem{(}Nﬂu—n+ﬁﬁﬂ

g(k,) =exp(-izN/2)exp(izn) Zg(w)exp( i2zjn/N)exp(izj), (8.37)

where the following relationships are used:

knE—N—Ak+nAk
2
@ __N w+]Aa)EAa) ——+] _ 2T —E+j =T jz—ﬁ
! NAk\ 2 Ak " NAk
Ky, =——-7]- n+27”n
N

Therefore, from the equation (8.30):
exp(—ak,
G (k) = 2B ) )zw&m(m k) (@)A0)

C (k)= exp( —ak, )ZW {exp{ (——ﬂj—;rn+2”

exp(—akn)exp(mn)exp(—mN 12)

}T()Wﬂ}

x—Zw {exp(iz )y (@)} exp(-i2z jn/N), (8.38)

j=0

C, (k) ~

where w,_, _;, are weights for sampled points. For example, when trapezoidal rule is
chosen:

W= 1/2 for j=0 and N-1
711 for others '
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For near-maturity OTM options, DFT/TV formula which is a DFT approximation of the
formula (8.27) is given by simply replacing exp(—ak,) by _ and y; (o,) by

sinh(ak,,)
77 (@;) in the DFT call price (8.38) as the following:
exp(izn)exp(—izN/2)
ZT (kn) ~ -
sinh(ak,,)Ak
N-1
x%zwj {exp(i7]) 77 (@)} exp(-i2z jn/N) (8.39)
j=0

where y; (@,) is given by (8.26).

[8.7] Implementation and Performance of DFT Pricing Method with Black-Scholes
Model

In this section, performance of DFT call price of the equation (8.38) is tested in the BS
case. We will call this as BS-DFT. We implement the formula (8.38) with decay rate
parameter « =1 and compare the result to the original BS call price and BS-FT « =1
call price under various settings. We will start from its implementation.

The first step to implement (8.38) is to choose the number of samples taken N and the
signal space sampling interval Ak which we will call as log-strike space sampling
interval, hereafter. Note that selecting Ak corresponds to selecting the frequency domain
sampling interval Aw, because these are related by:

AkAw =—. 8.40
®=" (8.40)

We set N =4096 as suggested by CM. Note that because our code uses DFT not FFT,
our choice of N does not need to be a power of 2. We use Ak =0.005 which is a half
the percentage point in the log-strike space. This corresponds to A = 0.306796 radians.
The total sampling range in the log-strike space isK = NAk = 20.48, its sampling rate is
200 samples per unit of k, and the total sampling range in the angular frequency domain
is Q=NAw=1256.64 .

Second step is to construct the N =4096 point-sampling grid in the frequency domain

NAo + jAw . Table 8.8 illustrates this. Using this grid, obtain N =4096

usingw; = -

point-samples of DFT integrand in (8.32), i.e. w, {exp(i;zj)g//T (a)j)} . With common
parameters and variablesS, =50, 0=0.2, r=0.05, q=0.02,and T =0.25, sampled
values of w; {exp(iz j ), (;)} are shown in Table 8.9.
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Table 8.8: Angular Frequency Domain Sampling Grid

Index j j -th angular frequency point ; (Hz)
0 -628.319
1 -628.012
2 -627.705
4095 627.705
4096 628.012

Table 8.9: Angular Frequency Domain Sampled Values

Index j j -th frequency domain sample w, {exp(i;:j)z//T (a)j)}

0 8.6137x107%° + 2.5868x10%°i
1 —8.5146x107%° —1.2340x10°%j
2 —7.7265x107%7 +3.5391x10°%j

4095 —7.7265x107%" —3.5391x10°%j
4096 —4.2573x107%° + 6.1702 x107%%8j

Third step is to perform inverse DFT of Table 8.9 and multiply the result by
exp(—ak,)exp(izn)exp(—izN/2)
Ak
point-samples of call price C; (k,) in log-strike space. Table 8.10 shows this result and it

is plotted in Figure 8.7.

in the equation (8.38). This amounts to the N = 4096

Table 8.10: N = 4096 Point-Samples of BS Call Price C. (k.) in Log-Strike Space

Index n n-th sample of call price C; (k,)
0 49.7525

1 49.752

2500 40.;338

2600 34.;249

2700 24.153

2800 7.&428

2900 0.5006067
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Figure 8.11: N = 4096 Point-Samples of Call Price C; (k,) in Log-Strike Space

Fourth step is to match the log-strike price k grid with the strike price grid K as shown
in Table 8.11.

Table 8.11: N = 4096 Point Log-Strike Price (k) Grid and Strike Price (K) Grid

Index n n-th log-strike price point nAk n -th strike price point exp[nAk]
0 -10.24 0.00003571

1500 -2.745 0.0642

5500 2.255 9.5353

5600 2.755 15.721

5700 3.255 25.9196

5800 3.755 42.7342

5900 4.255 70.4568

;1096 10.235 27861.5

Fifth and final step is to match the strike price K grid with the computed call price as
shown in the table 8.12 which is plotted in Figure 8.12. Panel A of Figure 8.12 is for the
entire range of the strike price sampled, and Panel B is only for the range of our interest.
Remember that we use the spot stock price S, = 50 and the maturity T =0.25.

Table 8.12: N = 4096 Point Sampled BS-DFT Call Price with respect to Strike Price
Ka
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Index n n -th strike price K, BS-DFT Call Price

0 0.00003571 49.7525
1500 0.0642 49.6872
5500 9.5353 40.3338
;600 15.721 34.2249
5700 25.9196 24.153
5800 42.7342 7.6428
5900 70.4568 0.0006067
4096 27861.5 8.0929x10°"
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A) For the entire strike price range.
30
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B) Our interest.

Figure 8.12: N = 4096 Point Sampled BS-DFT Call Price with respect to Strike Price
Kn-
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This completes the step-by-step procedure of DFT option price computation. Next, we
investigate the several important properties of BS-DFT « =1 call price.

Firstly, let’s consider the call price computed by the original BS, BS-FT a =1, BS-DFT
a =1 with N =4096 and Ak =0.005 using common parameters and variables S, =50,
0=0.2,r=0.05, q=0.02,and T =0.25 with respect to a strike price K. The result is
plotted in Figure 8.13 which indicates that as a principle these three approaches produce
the identical price. Again, this is no surprise because all these are same thing with
different looks and different precisions.
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25 ® A BS
8 20 ‘e
2 ® o BS-FT
1.
o &
_ b s «  BS-DFT
3 10 ®
®
5 ®
b
0

20 30 40 50 60 70 80
Strike K

Figure 8.13: BS Vs. BS-FT a =1 Vs. BS-DFT a = 1. Common parameters and variables
fixedareS, =50, 0=0.2, r=0.05, q=0.02,and T =0.25.

Secondly, let’s investigate the difference in CPU time. Consider calculating 100-point
call prices for a range of strike price 1< K <100 with interval 1 with common
parameters and variablesS, =50, 0=0.2, r=0.05, q=0.02,and T =20/252. Table

8.13 compares CPU time using the original BS, BS-FT o =1, and BS-DFT a =1 with
N =4096 and Ak =0.005 and Figure 8.14 reports the prices. We notice that there is a
significant improvement in the computational time by the use of DFT.
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Figure 8.14: BS Vs. BS-FT o =1 Vs. BS-DFT a = 1. Common parameters and variables
fixed areS, =50, 0=0.2, r=0.05, q=0.02, and T =20/252.

Table 8.13 CPU Time for Calculating 100-point call prices for a range of strike price
1<K <100 with interval 1 Common parameters and variables fixed are S, =50,

0=0.2,r=0.05,9=0.02,and T =20/252.

Method CPU Time

BS 0.03 seconds
BS-FTa=1 5.448 seconds
BS-DFTa =1 0.491 seconds

N =4096, Ak =0.005

Thirdly, we pay extra attention to the pricing errors of very near-maturity call prices
because these are of Carr and Madan’s interest. Consider a call option with common
parameters and variablesS, =50, 0 =0.2, r =0.05, and q=0.02. Figures 8.15 t0 8.17

plot three series of price differences for vanilla calls computed by the original BS, BS-FT
a =1, and BS-DFT a =1 with N =4096 and Ak =0.005 as a function of time to
maturity of less than a month 1/252 <T <20/252 . Figure 8.15 tells us that for deep

OTM calls, BS-DFT vyields the pricing error around 6x10"° which we interpret
negligible. Figure 8.17 tells us that for deep ITM calls, BS-DFT price and BS price are
virtually identical except for one day to maturity. Figure 8.16 is the most interesting case
among the three. It tells us that as the maturity nears, the error of ATM BS-DFT price
monotonically increases and the size of error is large but negligible. In contrast, ATM
BS-FT price produces virtually no error. This finding is more clearly illustrated in Figure
8.17 where the T =1/252 ATM pricing error (relative to BS) of BS-DFT a =1 with

N =4096 and Ak =0.005 is plotted across different moneyness. We again realize that
BS-DFT price is virtually identical to BS price for the deep ITM and OTM calls, but its
approximation error becomes an issue for ATM call. We have done several experiments
trying to reduce the size of this around ATM error by increasing the decay rate
parameter o to 10 or by sampling more points N =8192 . But these attempts were futile.

135



Off 414 s A4 44 A4 45 A4 4 &AAaaax
“1x 1078 »  BS_BSFT
2x 1078
-3x 107 o BS-BSDFT
~4x 1078
5% 1078 «  FT-DFT
6x 1078

Price Error

R KK ‘ RIAIKKY KK ‘ R

0.010.020.030.040.050.060.070.08
Time to Maturity T

Figure 8.15: Plot of Price Error for Deep-OTM Call as a Function of Time to
Maturity 1/252 <T <20/252. Common parameters and variables fixed

areS,=50,K =80, 0=0.2, r=0.05,and q=0.02.
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Figure 8.16: Plot of Price Error for ATM Call as a Function of Time to Maturity
1/252 <T <20/252. Common parameters and variables fixed are S, =50, K =50,

0=02,r=0.05,and q=0.02.
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Figure 8.17: Plot of Price Error for Deep-ITM Call as a Function of Time to
Maturity 1/252 <T <20/252. Common parameters and variables fixed
areS,=50,K=20, 0=0.2, r=0.05,and q=0.02.
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Price Error

-0.0001
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Figure 8.18: Plot of Price Error of BS-DFT Formula for 1-Day-to-Maturity
T =1/252 ATM Call as a Function of Strike Price 0 <K <100. Common parameters
and variables fixed areS; =50, K =50, 0=0.2, r=0.05, and q=0.02.

We conclude this section by stating the following remarks. Our version of CM (1999)
DFT call price formula, the equation (8.38), yields the price virtually identical to the
original BS price for OTM and ITM calls even for extreme near-maturity case (i.e.

T =1/252) although the size of error is larger than BS-FT formula. But the error of BS-
DFT price becomes large around (i.e.+3) ATM. In our example used, the maximum error
is 0.0001345 which occurs at exactly ATM atS, = K =50. Increasing the decay rate

parameter & or sampling more points (i.e. larger N ) cannot reduce the size of this error.
But we can accept this size of error when considering the dramatic improvement in the
CPU time to compute hundreds of prices.

[8.8] Summary of Formulae of Option Price with Fourier Transform

Table 8.14: Summary of Formulae of Option Price with Fourier Transform

Method Formula
Traditional C= e*“T*t)J'K (S, —K)Q(S; |%)ds;
e e o €4 (o—(a+D)i)
FT C ,k - ik d
(T k) 27 lee a’+a-o’+i(2a+l)w @

¢ ()= J"; e"IQ(In(S;)| 7 )d In(S; ), k=InK
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1 1
sinh(ak) 2735 71(@1de
)_é,T(a)_ia)_é,T(a)J’_ia)
- 2

C(@)=eT (L_E_Mj

l+iow o0 @ —iw

FT/TV 2. (k) =

7 (@

¢ () =] €"IQ(In(s,)|% )dIn(s,), k=InK

exp(—ak,)exp(izn)exp(-izN/2)

DFT C.(k )~
T( n) Ak

X%Niwj {exp(iz )y (@;)}exp(-i2zjn/N)

j=0

exp(izn)exp(—izN/2)
sinh(ak_)Ak

1 .. .
><WZWj {exp(i7])7; (@)} exp(-i2zjn/N)
j=0

DFT/TV C; (k) =

¢r(w—ia)-C; (w+ia)
)= 2

gT(w):e_rT(L_gj_mw—i)j

1+iw w0 & -iw

7 (@

¢ ()= IZ e“"Q(In(s;)| % )dIn(S; ), k=InK
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[9] Merton (1976) Jump-Diffusion Model
[9.1] Model Type

In this section the basic structure of Merton JD model is described without the derivation
of the model which will be done in the next section.

Merton JD model is an exponential Levy model of the form:
S, =S,e%,

where the asset price process {S,;0 <t <T} is modeled as an exponential of a Levy
process {X,;0<t<T}. Merton’s choice of the Lévy process is a Brownian motion with

drift (continuous diffusion process) plus a compound Poisson process (discontinuous
jump process) such that:

2
(o2

N,
X, = (a—7—/1k)t+o-Bt +>Y;,
i=1

where {B,;0<t <T} is a standard Brownian motion process. The term
2
(o —%—/1k)t + 0B, is a Brownian motion with drift process and the term ZiN:‘lY. isa

compound Poisson jump process. The only difference between the Black-Scholes and the
Merton jump-diffusion is the addition of the term ZiNz‘lYi . A compound Poisson jump

N . . . .
process Ziz‘lY. contains two sources of randomness. The first is the Poisson process dN,

with intensity (i.e. average number of jumps per unit of time) A which causes the asset
price to jump randomly (i.e. random timing). Once the asset price jumps, how much it
jumps is also modeled random (i.e. random jump size). Merton assumes that log stock

price jump size follows normal distribution, (dx; )~ i.i.d. Normal(z, &%)

_ (dx; — ﬂ)z

! exp{
J2rs? 25°

It is assumed that these two sources of randomness are independent of each other. By
introducing three extra parameters A, x, and ¢ to the original BS model, Merton JD

model tries to capture the (negative) skewness and excess kurtosis of the log return
density IE”(In(St /SO)) which deviates from the BS normal log return density.

f(dx) = 1.

Lévy measure /(dx) of a compound Poisson process is given by the multiplication of the
intensity and the jump size density f (dx):
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(dx) = A f (dx) .

A compound Poisson process (i.e. a piecewise constant Lévy process) is called finite
activity Lévy process since its Lévy measure ¢(dx) is finite (i.e. the average number of

jumps per unit time is finite):
f #(dxX)=A <.

The fact that an asset price S, is modeled as an exponential of Lévy process X, means

that its log-return In(%) is modeled as a Lévy process such that:
0

2
(o2

Nt
In(%) =X, = (a—7—)tk)t+o-Bt +Y;.
i=1

0
Let’s derive the model.
[9.2] Model Derivation
In the jJump-diffusion model, changes in the asset price consist of normal (continuous
diffusion) component that is modeled by a Brownian motion with drift process and
abnormal (discontinuous, i.e. jump) component that is modeled by a compound Poisson
process. Asset price jJumps are assumed to occur independently and identically. The

probability that an asset price jumps during a small time interval dt can be written using
a Poisson process dN, as:

Pr {an asset price jumps once in dt} =Pr{dN, =1} = Adt,
Pr {an asset price jumps more than once in dt } =Pr{dN, >2} =0,
Pr {an asset price does not jump in dt} =Pr{dN,=0} = 1-Adt,

where the parameter A e R" is the intensity of the jump process (the mean number of
jumps per unit of time) which is independent of time t.

Suppose in the small time interval dt the asset price jumps from S, to y,S, (we call y,

as absolute price jJump size). So the relative price jump size (i.e. percentage change in the
asset price caused by the jump) is:

dS S, —S
_t:yt t ‘=yt—1,
S, S,

140



where Merton assumes that the absolute price jump size y, is a nonnegative random
variables drawn from lognormal distribution, i.e. In(y,) ~ i.i.d.N (g, %) . This in turn

implies that E[y,]=¢""2" and E[(y, — E[y,])’]1=e?"" (e* —1). This is because if

2

1,
Inx ~ N(a,b), then x ~ Lognormal (e 2 g (e -1)).

Merton’s jump-diffusion dynamics of asset price which incorporates the above properties
takes the SDE of the form:

%: (cr — AK)dt + odB, + (y, —1)dN,, (9.1)

t

where « is the instantaneous expected return on the asset, o is the instantaneous
volatility of the asset return conditional on that jump does not occur, B, is a standard

Brownian motion process, and N, is an Poisson process with intensity A . Standard
assumption is that (B,), (N,), and (y,) are independent. The relative price jump size

152

ofS,, y, —1, is lognormally distributed with the mean E[y, —1] = e""2" —1=k and the

variance E[(y, —1— E[y, —1])2] =e?**" (¢*" —1) . This may be confusing to some readers,
so we will repeat it again. Merton assumes that the absolute price jump size y, is a
lognormal randon variable such that:

(y) ~iid.L I e e -1 9.2
y,) ~ i.i.d.Lognormal (e & (e ). 9.2

This is equivalent to saying that Merton assumes that the relative price jump size y, -1 is
a lognormal random variable such that:

L2 2 2
(y,—1) ~ ii.d.Lognormal (k =" 2 —1,e%+"" (¢*" 1)). (9.3)

This is equivalent to saying that Merton assumes that the log price jump size Iny, =Y, is
a normal random variable such that:

In(y,) ~ i.i.d.Normal(u,45?). (9.4)

This is equivalent to saying that Merton assumes that the log-return jump size In(%) is
t
a normal random variable such that:

'For random variable X, Variance[x —1] =Variance[x].
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In(ytS—St) =In(y,) =Y, ~i.i.d.Normal(z,5?). (9.5)

t

It is extremely important to note:

1

Ely,~1=¢"2" ~1=k = E[n(y)]=4,
because In E[y, —1] = E[In(y, —1] = E[In(y,)].

The expected relative price change E[dS, /S,] from the jump part dN, in the time
interval dt is Akdt since E[(y, —1)dN,]= E[y, —1]E[dN,]=kAdt. This is the predictable
part of the jJump. This is why the instantaneous expected return on the asset adt is

adjusted by —Akdt in the drift term of the jump-diffusion process to make the jump part
an unpredictable innovation:

E[%] = E[(e - AK)dt] + E[cdB ]+ E[(Y, ~1)dN,]

t

E[%] — (= AK)dt + 0+ Akdt = ezt

t

Some researchers include this adjustment term for predictable part of the jump —Akdt in
the drift term of the Brownian motion process leading to the following simpler (?)
specification:

%: adt +odB, + (y, —1)dN,
t
B, ~ Normal(—Lm,t)
(o2

E[ﬁ] =qdt+ 0'(—&) + Akdt = adt .
S, o

But we choose to explicitely subtract Akdt from the instantsneous expected return adt
because we prefer to keep B, as a standard (zero-drift) Brownian motion process. Realize

that there are two sources of randomness in the jJump-diffusion process. The first source
is the Poisson Process dN, which causes the asset price to jump randomly. Once the asset

price jJumps, how much it jumps (the jump size) is also random. It is assumed that these
two sources of randomness are independent of each other.

If the asset price does not jump in small time interval dt (i.e.dN, =0), then the jump-
diffusion process is simply a Brownian motion motion with drift process:
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95 _ (- ak)dt + odB,.
S

t
If the asset price jumps in dt (dN, =1):

% = (- AK)dt + odB, + (y, -1),

t

the relative price jJump size is y, —1. Suppose that the lognormal random drawing VY, is
0.8, the asset price falls by 20%.

Let’s solve SDE of (9.1). From (9.1), Merton jump-diffusion dynamics of an asset price
is:

dS, = (& — AK)S,dt + &:S,dB, + (y, ~1)S,aN, .

Appendix 10 gives the 1t6 formula for the jump-diffusion process as:

2 2
af (%, = Tt gy p A g 08 XY o
t OX 2 OX
Jrcrt%ouat +LF (X +AX) - F(X )],

where b, corresponds to the drift term and o, corresponds to the volatility term of a

N,
jump-diffusion process X, = X, +J: b,ds +I; o, dB, +ZAXi . By applying this:
i=1

2c 2 A2
dins, =25 g4 (- ks, G'agst dt+ 7 Zst aag‘f’t dt
t t
+08, M5 4B 4 iny,s, ~Ins]

t

2¢ 2

dIns, = (@—k)S, ~dt+ 7> [~ ldt+ oS, 2 dB +[Iny, +InS,~InS,]

S, 2 | s, S,
2

dIns, = (a—)tk)dt—%duatdBt +Iny,

2
O

IS, —InS, = (==~ - 2K)(t-0)+0;(8, - B,)+ Y. Iny,

2

InS, =In SO+(a—%—ﬂ,k)t+o-tBt +> " Iny,
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2
exp(In St):exp{ln S, +(a—%—/1k)t+0'tBt +ZiN:‘1In yi}

2
S, =S, exp{(a—%—ﬂ,kjtJratBt}exp(Z?_‘lln yi)

o’ M
S, =S, exp[(a -5 AKt+oBI[ Y

i=1

or alternatively as:

2 N,
S, =S, exp[(a—%—ﬂk)uo-Bt +>iny].

i=1

Using the previous definition of the log price (return) jump size In(y,) =Y, :

2 N,
S, =S, exp[(a—%—ﬂk)HaBt +>V]. (9.6)

i=1

This means that the asset price process {S,;0 <t <T} is modeled as an exponential Lévy
model of the form:

S, =S,e%,

where X, is a Lévy process which is categorized as a Brownian motion with drift
(continuous part) plus a compound Poisson process (jump part) such that:

2
O

NI
X, =(a—7—/1k)t+o-Bt+ZYi.

i=1

In other words, log-return In(%) is modeled as a Lévy process such that:
0

2
(o2

A
In(%) =X, = (a—?—ik)tJraBt +>Y,.

0 i=1

Nt
Note that the compound Poisson jump process J]y; =1 (in absolute price scale) or
i=1

N, N,
D Iny; =>"Y, =0 (in log price scale) if N, =0 (i.e. no jumps between time 0 and t) or
i=1 i=1

positive and negative jumps cancel each other out.
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In the Black-Scholes case, log return In(S, /S,) is normally distributed:

2
O
S, =S, exp[(a —7)'[ +0B,]
2

In(%) ~ Normal[(« —%)t, ot].

0

Nt
But in jJump-diffusion case, the existence of compound Poisson jump process ZYi

i=1
makes log return non-normal. In Merton’s case the simple distributional assumption
about the log return jump size (Y,) ~ N(x,8?) enables the probability density of log

return X, =1In(S, /S,) to be obtained as a quickly converging series of the following form:

P(x € A) =iIP’(Nt iP(x € AN, =i)

P(x)=Y e_ﬂi(!“)i N(x; (o —%Z—Ak)t i ot +is?) 9.7)

i=0

2

where N(Xt;(a—%—ﬂk)t+iy,azt+i§2)

g

1
(ot +is?) ol 2(c’t+i6%) I

—At i
The term P(N, =1) :# is the probability that the asset price jumps i times during
il

2

the time interval of lengtht. And P(x, € AN, =i)= N(xt;(a—%—/lk)t+iy,azt+i52)

is the Black-Scholes normal density of log-return assuming that the asset price jumps i
times in the time interval of t. Therefore, the log-return density in the Merton jump-
diffusion model can be interpreted as the weighted average of the Black-Scholes normal
density by the probability that the asset price jumps i times.

By Fourier transforming the Merton log-return density function with FT parameters
(a,b,) =(1,1), its characteristic function is calculated as:

)= [ exp(iox JP(x)dx
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1 . . 1 . .
=exp {/It exp{iw(my - 5260)} —At(1+iak) —Eta){—Zla +o” (i+ a))}} .
After simplification:

H() = exp[ty ()]

with the characteristic exponent (cumulant generating function):

2_2 2 2 2
(@) = Adexp| ion—-2"2" |1l vie| a— T~k |-Z2 9.8)
2 2 2
,u+£(52
where k=e 2 —1. The characteristic exponent (9.8) can be alternatively obtained by

substituting the Levy measure of the Meron jump-diffusion model:

2 (dx-p)|
£(dx) = Wexp{ 257 }/If(dx)

f(dx) ~ N (1,6%)

into the Lévy-Khinchin representation of the equation (6.6):

y (@) = ibo - “22‘"2 +[” {exp(iox) -1} £(dx)
() = ibo— "226"2 +[” {exp(ion) -1} 21 (d¥)

v (w) = ibw— “22”2 + 2 {exp(iwx) -1} f (dx)
(@) =ibo— 2 m{ [ e t(o-[" f (dx)}

Note that f e" f (dx) is the characteristic function of f (dx) :

2 2
J‘_ e‘”’xf(dx):exp[iya)—azw ]

Therefore:
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2 2 2 2
zy(a)):ibw—gzw +/1{exp[i,ua)—52w )—1},

2
where b=« —% — Ak . This corresponds to (9.8). Characteristic exponent (9.8) generates

cumulants as follows:

2
cumulant, = a—%—/ik +Au,

cumulant, = ¢* + 6% + Au?,
cumulant, = 2(35%u + 1),
cumulant, = 1(36* +64°5° + 1)

Annualized (per unit of time) mean, variance, skewness, and excess kurtosis of the log-
return density IP(x,) are computed from above cumulants as follows:

2 1
E[xt]:cumulantlza—%—/‘t[e# 2 —1}+/1,u

Variance[x, | = cumulant, = o + 6% + Au°
2 3
Skewness[x ] = cumulant33/2 _ ABo u+i°)
(cumulant,) (0'2 + 167 +/1y2)
cumulant,  A(30* +64°5° + u*)

(cumulant, )4/2 (02 +A5? +/1,u2)2

3/2

Excess Kurtosis|x, | = (9.9)

We can observe several interesting properties of Merton’s log-return density P(X,) .
Firstly, the sign of ,» which is the expected log-return jump size, E[Y,] = u, determines
the sign of skewness. The log-return density P(X,) is negatively skewed if z <0 and it is
symmetric if =0 as illustrated in Figure 9.1.
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Figure 9.1: Merton’s Log-Return Density for Different Values of #. x#=-0.5 in

blue, =0 inred,and x=0.5 in green. Parameters fixed are 7 =0.25, o =0.03,
0=02, A=1,and 6=0.1.

Table 9.1
Annualized Moments of Merton’s Log-Return Density in Figure 9.1
Model Mean Standard Deviation Skewness Excess Kurtosis
u=-05 -0.0996 0.548 -0.852 0.864
u=0 0.005 0.3742 0 0.12
1u=05 -0.147 0.5477 0.852 0.864

Secondly, larger value of intensity 4 (which means that jumps are expected to occur
more frequently) makes the density fatter-tailed as illustrated in Figure 9.2. Note that the
excess kurtosis in the case 4 =100 is much smaller than in the case 41 =1 or 41 =10.
This is because excess kurtosis is a standardized measure (by standard deviation).

3.5 A
: \
2.5 LA =1
I(T) 2 /// \\\\
o 1-5 =10
o 1 /
0.5 2=100
0

20.75 -0.25 0 0.25 0.75
log-retum Xt
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Figure 9.2: Merton’s Log-Return Density for Different VValues of Intensity 4. 4 =1
in blue, A =10 inred, and 4 =100 in green. Parameters fixed arez =0.25, ¢ = 0.03,
0=02, u=0,and 6=0.1.

Table 9.2
Annualized Moments of Merton’s Log-Return Density in Figure 9.2
Model Mean Standard Deviation Skewness Excess Kurtosis
A=1 0.00499 0.2236 0 0.12
A=10 -0.04012 0.3742 0 0.1531
A =100 -0.49125 1.0198 0 0.0277

Also note that Merton’s log-return density has higher peak and fatter tails (more
leptokurtic) when matched to the Black-Scholes normal counterpart as illustrated in
Figure 9.3.

3 0
2.5 /
g 2
9 1.5 ;e
0.5 - .
ol \

-1 -0.5 0 0.5 1
log-retum Xt

Figure 9.3: Merton Log-Return Density vs. Black-Scholes Log-Return Density
(Normal). Parameters fixed for the Merton (in blue) are 7=0.25,  =0.03, 0=0.2,
A=1, u=-0.5,and 6 =0.1. Black-Scholes normal log-return density is plotted (in red)

by matching the mean and variance to the Merton.

Annualized Moments of Merton vs. B-Iraacl:bkl-es?:ﬁoles Log-Return Density in Figure 9.3
Model Mean Standard Deviation Skewness Excess Kurtosis
Merton with

u=-05 -0.0996 0.548 -0.852 0.864
Black-Scholes -0.0996 0.548 0 0

[9.3] Log Stock Price Process for Merton Jump-Diffusion Model
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Log stock price dynamics can be obtained from the equation (9.6) as:

2 N,
InS, =In SO+(0¢—%—/1kjt+0'Bt+ZYi. (9.10)

i=1

Probability density of log stock price In'S, is obtained as a quickly converging series of
the following form (i.e. conditionally normal):

P(InS, € A) = iIF’(Nt _i)P(InS, < AN, =i)

P(Ins,) = i ¢ i(ft)'

2
N (m S;;Ins, +(a—%—/1k]t+iy,azt+i52J . (9.11)
where:

2
N (In S;In SO+(a—%—lkjt+iy,o—2t+i§2)

o’ 2
InS, —[In S, +[a——/1kjt+iu
1 2

=\/27z(0'2t+i52)exp 2(0'2t+i52)

By Fourier transforming (9.11) with FT parameters(a,b,) = (1,1) , its characteristic
function is calculated as:

#() :I:exp(iwln S, JP(InS,)d In’S,

ol

2

_ exp{/u(exp(i L~ )—1j+ ico[ln S, +( —%z—zk)tj— 022‘"2 t} ,(9.12)

/Hﬁ
where k=e¢ 2 -1.

[9.4] Lévy Measure for Merton Jump-Diffusion Model

We saw in section 6.3 that Lévy measure /(dx) of a compound Poisson process is given
by the multiplication of the intensity and the jump size density f (dx):

(dx) = A f (dx) .

150



The Lévy measure /(dx) represents the arrival rate (i.e. total intensity) of jumps of sizes
[x,x+dx]. In other words, we can interpret the Lévy measure /(dx) of a compound
Poisson process as the measure of the average number of jJumps per unit of time. Lévy

measure is a positive measure onR , but it is not a probability measure since its total mass
A (in the compound Poisson case) does not have to equall:

[eag=rer.

A Poisson process and a compound Poisson process (i.e. a piecewise constant Levy
process) are called finite activity Lévy processes since their Lévy measures /(dx) are
finite (i.e. the average number of jJumps per unit time is finite):

[ odx)<oo.
In Merton jump-diffusion case, the log-return jump size is (dxi)~ i.i.d. Normal(z, %) :

(dx; — ©)?

1
EXP1— .
o P02 )

Therefore, the Lévy measure ¢(dx) for Merton case can be expressed as:

f(dx,) =

(dx— p)°

0(dx) = A f (dx) = Wexp{— S (9.13)
T

An example of Lévy measure ¢(dx) for the log-return x, =In(S,/S,) in the Merton

jump-diffusion model is plotted in Figure 9.5. Each Lévy measure is symmetric (i.e.
4 =0 is used) with total mass 1, 2, and 4 respectively.

15
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Figure 9.5: Lévy Measures /(dx) for the Log-Return x, =In(S,/S,) in the Merton
Jump-Diffusion Model for Different Values of Intensity A . Parameters used are ¢ =0
and 6=0.1.

[9.5] Option (Contingent Claim) Pricing: PDE Approach by Hedging

Consider a portfolio P of the one long option position V (S,t) on the underlying asset S

written at time t and a short position of the underlying asset in quantity A to derive
option pricing functions in the presence of jumps:

R =V(S.t)-AS,. (9.14)
Portfolio value changes by in a very short period of time:
dP, =dV (S,,t) - AdS,. (9.15)

Merton jump-diffusion dynamics of an asset price is given by equation (9.1) in the
differential form as:

% = (a - k)dt + odB, + (y, ~1)dN,,

t

dS, = (@ — AK)S,dt + &:S,dB, + (y, ~1)S,aN, . (9.16)

Appendix 8 gives the 1t0 formula for the jump-diffusion process as:

2 N2
o (¢, 0= T D g AED g T TTO
oo T2 0B (X, +AX) = (X, )]

where b, corresponds to the drift term and o, corresponds to the volatility term of a
N,

jump-diffusion process X, = X, +L: b.ds +I; o, 4B, +ZAXi . Apply this to our case of
i=1

option price functionV (S,t) :

20 2
VS0 = N dt+ (-8, Vot + 75 Y gt o5 N g,
ot as

t t t

HV (y,S,,t) =V (S,,1)]dN, . (9.17)

The term [V (y,S,,t) -V (S,,t)]dN, describes the difference in the option value when a

jump occurs. Now the change in the portfolio value can be expressed as by substituting
(9.16) and (9.17) into (9.15):
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dP, = dV (S,,t) - AdS,

oV 2s GaY oV

dP, = —dt + (a — 2k)S, N Z " dt+oS, —dB + S.,t) =V (S,,)]dN

t ot ( ) c'ﬁSt 2 asz o taSt t [V(yt t ) ( t )] t

~M(a - 2k)S,dt + 5S,dB, +(y, —~1)S,dN,}

2c 2 2
dp =N s (- ak)s, Y TS aVZ—A(a—ﬂk)St dt+| oS, = —AcS, |dB,
ot ast 2 35, t
+{V (¥,S;,1) -V (S,,t) - A(y, -1S, } dN, . (9.18)

If there is no jump between time 0 and t (i.e.dN, =0), the problem reduces to Black-
Scholes case in which setting A =0V /S, makes the portfolio risk-free leading to the
following (i.e. the randomness dB, has been eliminated):

2
0= -5 Y TSNV NV s bt o5, Y- Y o5 |ap,
a s, 2 57 5, ‘s, s,

dP = oV O'S oV dt
at 2 8S°

This in turn means that if there is a jump between time 0 and t (i.e.dN, = 0), setting

A =0V /3S, does not eliminate the risk. Suppose we decided to hedge the randomness
caused by diffusion part dB, in the underlying asset price (which are always present) and
not to hedge the randomness caused by jumps dN, (which occur infrequently) by setting
A =0V /23S, . Then, the change in the value of the portfolio is given by from equation
(9.18):

2
ap =% N OSEON N s Lt 05, Y- Y s, |os,
EN ‘s 2 a7 s, &S, 5,

oV
+{V(yt8t,t) -V (SUt)_a?(yt _1)St}dN

t
2
P — {av o282 o

t

oV
o 2 882 }t+{V(ytst’t)‘v(5wt)—g(yt—1)St}dNt. (9.19)

t

Merton argues that the jump component (dN, ) of the asset price process S, is

uncorrelated with the market as a whole. Then, the risk of jump is diversifiable (non-
systematic) and it should earn no risk premium. Therefore, the portfolio is expected to
grow at the risk-free interest rater :
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E[dP]=rPdt. (9.20)

After substitution of (9.14) and (9.19) into (9.20) by setting A =0V /35S, :

erl Y TS OV L N (50 -V (S0 - 2y~ DS, N T = FV (S,.0) - AS o
a2 o8y S,
oV oS’ oV oV oV
— dt+E S, )-V(S,,t)——— —1DS.1E[dN.1=r S, t)———S Mt
(G5 g I EV 8.0~V (8,0~ (5 ~DSJEIN] = 1V (5.0 ast 3
2
av s aV)olt E[V(ytst,t)—V(st,t)——aV (v, ~1)S,JAdt = r{V (S, t) - 205 Jot
2 45, a5, ast
oV O'S GZV oV oV
-+ +AE S, t)-V(S,,t y. =S ]=r S, t)———S
ATy R AN (8D V(8.0 S (D81 = HY (8,0~ 28

Thus, the Merton jump-diffusion counterpart of Black-Scholes PDE is:

oV o’S’ oV oV oV
—+ +1S,———1V + AEV (¥,S,.t) -V (S, t)] - A4S, —— E[y, -1]=0. (9.21
a2 ast s IV (S, ) =V (S, O] - s, [y.-1=0. (9.21)

where the term E[V (y,S,,t) -V (S,,t)] involves the expectation operator and

1.,

Ely, -1] = e’ _1=k (which is the mean of relative asset price jump size). Obviously,
if jump is not expected to occur (i.e. A = 0), this reduces to Black-Scholes PDE:?
N, o ?S2 oV oV

—5 +I5,—/—-rv =0.
at 2 05, 0S,

Merton’s simple assumption that the absolute price jump size is lognormally distributed
(i.e. the log-return jump size is normally distributed, Y, =In(y,) ~ N(x,57)) makes it

possible to solve the jump-diffusion PDE to obtain the following price function of
European vanilla options as a quickly converging series of the form:

i e*“(m) — Vs (S, 7 =T -t,0,,1), (9.22)

i=0

1.,

where 7 = A(L+k)=2¢" 2" |
52
ol=0"+—,
T

% This equation not only contains local derivatives but also links together option values at discontinuous
values in S. This is called non-local nature.
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1,
iInL+k) _ wis M+ 2067)

r=r—Ak+ —Ae P Dy ———,
T

T
and Vg is the Black-Scholes price without jumps.

Thus, Merton’s jump-diffusion option price can be interpreted as the weighted average of
the Black-Scholes price conditional on that the underlying asset price jumps i times to
the expiry with weights being the probability that the underlying jumps i times to the
expiry.

[9.6] Option (Contingent Claim) Pricing: Martingale Approach

Let {B,;0<t<T} be astandard Brownian motion process on a space (Q, F,P). Under
actual probability measure I, the dynamics of Merton jump-diffusion asset price process
is given by equation (9.6) in the integral form:

2 N,
S, =S, exp[(a—%—/lk)tﬂth +> Y] under P.

k=1

Nt Nt
We changed the index from ZYi to ZYk . This is trivial but readers will find the reason

i=1 k=1
soon. Merton jump-diffusion model is an example of an incomplete model because there
are many equivalent martingale risk-neutral measures Q ~ P under which the discounted

asset price process {e "S,;0 <t <T} becomes a martingale. Merton finds his equivalent
martingale risk-neutral measure Q,, ~ P by changing the drift of the Brownian motion

process while keeping the other parts (most important is the jump measure, i.e. the
distribution of jump times and jump sizes) unchanged:

2
(o2

N,
S, =S, exp[(r —7—/1k)t +0B> +> Y, ] under Q,, . (9.23)

k=1

Note that B® is a standard Brownian motion process on (2, F,Q,,) and the process
{e™"S,;0<t <T} is a martingale under Q,, . Then, a European option price V"*""(t, S,)
with payoff function H (S, ) is calculated as:

VMerton(LSt) :e—r(T—t)E@M [H(ST)|‘7-:] (924)

Standard assumption is 7, =S, , thus:

2 Ny
\/ Merton (t,S,) = e TT-HEQu [H (S, exp[(r —0-7— AK)(T —t)+ UB;@,'? + ZYk])|St]
k=1
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2 Nr_
V(S ) = e T OB [H(S, expl(r— -~ AK)(T ~t)+ 0B + 3 VD).

k=1

Poisson counter is (we would like to use index i for the number of jumps):

And the compound Poisson process is distributed as:

N

DY, ~ Normal(iz,i5%).
k=1

(9.25)

Thus, VM (t,S,) can be expressed as from equation (9.25) (i.e. by conditioning oni):

V Merton (t, St)

=" T3 Q,, (N =i)E™ [H(S, exp[(r —%Z—ﬂk)(F ~t)+oB™ +iYk])] :

i>0
Use =T —t:

V Merton (t, St)

_ e’”z e’ (A7) E Qu [H (St eXp[{r—%z—/I(e”*‘sz’z “1)}r + 0B +§Yk]ﬂ. (9.26)

i>0 I!

Inside the exponential function is normally distributed:
2 i

(o2 152 "
{r—7—i(e" Dy +oBM DY,

k=1

2
~ Normal ({r —% A€ D) +in, o+ i52J .

Rewrite it so that its distribution remains the same:

2 2 Q2
{r——“2 YOI | Py L
T

2
~ Normal ({r —% A€ D) +in, o+ i52J .

Now we can rewrite equation (9.24) as (we can do this operation because a normal
density is uniquely determined by only two parameters: its mean and variance):
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V Merton (t, S )

At 2 ? i5°
- e-”;—l(fr) EQu {H (St exp[{r —%—1(8‘”52’2 -D}r+ iﬂ+\/@BPM ]ﬂ

2 4

We can always add (ﬁ—%) 0 inside the exponential function:
Z'
-t i

V Merton (t, St) — e—rrz e (ﬂf) %

i>0 I

E Ou [ (S exp[{l’_o—_2 (ﬁ_ﬁ) ﬂ(e’”‘s 2 1)}T+I,u+1/a +— io” BQM]H

—-Ar i
Vv Merton (t, St) — e—rrz e (/17) %

i>0 i

Ev { (S exp[{r——(o- +iz) |52 ﬁ(e’”‘”2 1)}r+l,u+,/0' +iBQM]H
2t T

A

10
Set 6” = o° +— and rearrange:
T

V Merton (t, St)

At i i i5?
:er,;e —.(f) E% | H (St exXpHr -5 o+~ 26" e 4w+ 0B ]ﬂ

—At i i 52
ey & oy [st expi+ 1~ A" ~DeYexp{(r -2 o)+ 0 B }H -

i>0 i!

Black-Scholes price can be expressed as:
VE(r=T-t,S;0)=¢ "E%[H{S exp(r —%GZ)HGB;@%}] .

Finally, Merton jump-diffusion pricing formula can be obtained as a weighted average of
Black-Scholes price conditioned on the number of jumpsi :
V Merton (t S )
e’ (/17) BS i5° 5212 i5°
_Z ——V™>(,S, =8 exp{|y+7—ﬂu(e“+ -)r}o=,/c°+—). (9.27)
T

i>0
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Alternatively:

vV Merton (t, St)
—At i i i52
- e*”Z—e “7) g {H {St exp{(r — A(e"? —1)+M—%af}+ai B }H
T

i>0 i

—AT 7N\ - o2 . . o2
=y T s 5o = o2 4 10 = aer ey HHIOT2) (9.28)
l t | r 1 r

i>0 I

1.,

where A = A(1+k) = ﬂe“id . As you might notice, this is the same result as the option

pricing formula derived from solving a PDE by forming a risk-free portfolio in equation
(9.22). PDE approach and Martingale approach are different approaches but they are
related and give the same result.

[9.7] Option Pricing Example of Merton Jump-Diffusion Model

In this section the equation (9.22) is used to price hypothetical plain vanilla options:
current stock price S, = 50, risk-free interest rate r = 0.05, continuously compounded

dividend yield g=0.02, time to maturity = 0.25 years.

We need to be careful about volatility o . In the Black-Scholes case, the t-period standard
deviation of log-return x, is:

Standard Deviationgs(x,) = O'BS\/E. (9.29)

Equation (9.10) tells that the t-period standard deviation of log-return x, in the Merton
model is given as:

Standard Deviation, ... (X,) = \/ (Creron. +A0° + ANt . (9.30)

This means that if we set oy = 0., » Merton jump-diffusion prices are always greater
(or equal to) than Black-Scholes prices because of the extra source of volatility A4

(intensity), ¢ (mean log-return jump size), o (standard deviation of log-return jump)
(i.e. larger volatility is translated to larger option price):
Standard Deviation (X, ) < Standard Deviation,,,,, (X,)

O-BS \/E < \/(O-Merton2 + 252 + ﬂ“/uz)t .
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This very obvious point is illustrated in Figure 9.6 where diffusion volatility is

Set Ogs = Oyeron = 0-2 . Note the followings: (1) In all four panels Merton jump-diffusion
price is always greater (or equal to) than Black-Scholes price. (2) When Merton
parameters (4, «,and J)

are small in Panel A, the difference between these two prices is small. (3) As intensity A
increases (i.e. increased expected number of jJumps per unit of time), the t-period Merton
standard deviation of log-return x, increases (equation (9.30)) leading to the larger
difference between Merton price and Black-Schoels price as illustrated in Panel B. (4) As
Merton mean log-return jump size ¢ increases, the t-period Merton standard deviation of
log-return x, increases (equation (9.30)) leading to the larger difference between Merton
price and Black-Schoels price as illustrated in Panel C. (5) As Merton standard deviation
of log-return jump size & increases, the t-period Merton standard deviation of log-return
X, increases (equation (9.30)) leading to the larger difference between Merton price and

Black-Schoels price as illustrated in Panel D.

20
&
- 10 —— Merton
g s ks
O S—
30 40 5 60 70
Strike K
A) Merton parameters: A=1, £=-0.1,and 6 =0.1.
20
I§ 15
&
- 10 —— Merton
8 S ks
O —
30 40 5 60 70
Strike K
B) Merton parameters: A=5, x=-0.1,and 6 =0.1.
20
O}
O 15
&
- 10 —— Merton
8 s s
0
30 70

0
Strike K
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C) Merton parameters: A=1, x=-0.5,and 6 =0.1.

20

)
O 15
a
- 10 —— Merton
§ s s

0 —

30 40 50 60 70

Strike K

D) Merton parameters: A =1, #=-0.1,and 6 =0.5.

Figure 9.6: Merton Jump-Diffusion Call Price vs. Black-Scholes Call Price When
Diffusion Volatility o is same. Parameters and variables used are S,=50, r=0.05, =

0.02, 7=0.25, and oy = Opyepyon =0.2..

Next we consider a more delicate case where we restrict diffusion volatilities o5 and
Overon SUCH that standard deviations of Merton jump-diffusion and Black-Scholes log-
return densities are the same:

Standard Deviation (X ) = Standard Deviation,,,., (X.) ,
Opgs Ji= \/(0',\,|em)n2 + 82+ 0t

Using the Merton parameters A =1, x=-0.1, and ¢ = 0.1 and Black-Scholes volatility
oy = 0.2, Merton diffusion volatility is calculated as o}, = 0.141421. In this same

standard deviation case, call price function is plotted in Figure 9.7 and put price function
is plotted in Figure 9.8. It seems that Merton jump diffusion model overestimates in-the-
money call and underestimates out-of-money call when compared to Black-Scholes
model. And Merton jump diffusion model overestimates out-of-money put and
underestimates in-the-money put when compared to Black-Scholes model.

|-
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© -~ BS

A) Range 30 to 70.
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—— Merton
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FNWA IO N

42 44 46 48 50 52
Strike K

B) Range 42 to 52.

Figure 9.7: Merton Jump-Diffusion Call Price vs. Black-Scholes Call Price When
Restricting Merton Diffusion Volatility o)., - We set o, =0.2 and o, =

0.141421. Parameters and variables used are S,=50, r=0.05, q=0.02, 7=0.25.

815!
1o
- —— Merton
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© ~__BS
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30 40 50 60 70

Strike K

A) Range 30 to 70.
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o

Call Price

= -~ BS
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o Ul - 0N
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2 4 46 48 50 52
Strike K

B) Range 42 to 52.

Figure 9.8: Merton Jump-Diffusion Put Price vs. Black-Scholes Put Price When
Restricting Merton Diffusion Volatility o)., - We set o, =0.2 and o, =

0.141421. Parameters and variables used are S,=50, r=0.05, q=0.02, r=0.25.
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[10] Merton (1976) Jump-Diffusion Model with Fourier Transform Pricing

We saw in section 9 that the most important character of Merton JD model is its
conditional Black-Scholes property. Because Merton JD model is a simple addition of
compound Poisson jump process to the original BS model (i.e. geometric Brownian
motion with drift), everything in the Merton JD model such as log return density

In(S, /S,) oreven call price can be expressed as the weighted average of the BS (log

return density or price) conditional on that the underlying asset price jumps i times to the
expiry with weights being the probability that the underlying jumps i times to the expiry.
Traditional pricing approach with Merton JD model is discussed in the section 9.5 (PDE
approach by hedging) and 9.6 (martingale approach).

In this section we present Fourier transform option pricing approach with Merton JD
model. You will see FT method is much more general and simpler.

[10.1] Merton JD Model with Fourier Transform Pricing Method

The first step to FT option pricing is to obtain the characteristic function of the log stock
price InS,. Similar arguments can be seen in section 9.3. Risk-neutral log stock price

dynamics can be obtained from the equation (9.6) as:

2 N,
InSt=In80+[r—%—ﬂkjt+08t+ZYi, (10.1)

i=1
1,

wherek =¢" 2" 1, Probability density of log stock price InS, is obtained as a quickly
converging series of the following form (i.e. conditionally normal):

P(InS, € A) = ZIP’(Nt =i)P(InS, € A|N, =

© At 2
P(InS,) = ze (M) (InSt;lnSo+(I’—%—}ijt+iy,02t+i52], (10.2)

i=0

2
N (In S;In SO+(r—%—/lk]t+i,u,O'2t+i§2)

2
2
{In S, —Lm SO+(I’—G—ﬂth+i/JJ}
1 2

) 2ﬂ(62t+i52)exp B 2(0‘2t+i52)

where:
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Let s, =InS, as before. By Fourier transforming (10.2) with FT parameters(a,b,) = (1,1),
its characteristic function is calculated as:

plw)=| e P(s,)ds,

2 2 2 2 2
:exp{/u(exp(i,ua)—é @ )—1)+ia)£so+(r—%—/1k)t]—02w t}. (10.3)

2

By substituting a characteristic function of Merton log terminal stock price s;, the

equation (10.3), into the general FT pricing formula of the equation (8.17), we obtain
Merton-FT call pricing formula:

ok J-ie_iwk e "4 (0—(a+1)i)

e
C K)y=—- -
verton-r (T K) a’+a-0’ +i(2a+l)w

do, 10.4
o @ (10.4)

where:

2

¢ (0) = eXp{ﬂT (exp(iuw— 52“’2)—1]“@(% +(r—%—/’tk)TJ— 022“’2 T}.

2

We implement the Merton-FT formula (10.4) with decay rate parameter « =1 and
compare the result to the original Merton call price of the equation (9.22) using common
parameters and variables fixed S, =50, 0=0.2, r=0.05, q=0.02, T =20/252,

A=1, u=-0.1,and 6=0.1. As illustrated by Figure 10.1, as a principle Merton-FT call

price and the original Merton call price are identical. This is no surprise because the
original Merton formula (9.22) and Merton-FT formula (10.4) are the same person with a
different look. Merton-FT formula is just frequency representation of the original Merton
formula.

2 —— Merton

0_15 — Merton -FT

20 30 40 50 60 70 80
Strike K

Figure 10.1: Original Merton Call Price Vs. Merton-FT with a = 1 Call Price.
Common parameters and variables fixed areS; =50, o =0.2, r=0.05, q=0.02,

T=20/252, A=1, u=-0.1,and 5=0.1.
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Next, CPU time should be discussed. Consider call options withS, =50, 0 =0.2,
r=0.05, g=0.02,and T =20/252 as a function of varying strike price K. We use
Merton JD parameters A =1, x=-0.1,and 6 =0.1. Table 10.1 reveals that although
Merton-FT formula is slower than the original Merton, speed is not an issue for most of
the purposes.

Table 10.1: CPU Time for Calls with Different Moneyness
Price is in the bracket.

Strike
Method K=20 K =50 K =80
Merton 0.01 seconds 0.01 seconds 0.01 seconds
(29.9999) (1.32941) (1.19634x107)
Merton-FT o =1 0.06 seconds 0.02 seconds 0.12 seconds
(29.9999) (1.32941) (1.19634x107")

Secondly, we investigate the level of decay rate parameter « for Merton-FT formula.
Figure 10.2 illustrates the pricing error (i.e. relative to the original Merton) of Merton-FT
formula of a one day to maturity T =1/252 call as a function of varying « . Panel A (for
an OTM call) and C (for an ATM call) tells us that for 0.05 <« <20, Merton-FT formula
has effectively zero error relative to the original Merton price. But it seems for an ITM
call (Panel B), the error monotonically increases as & rises. Therefore, from now on, we
always use a =1 when implementing Merton-FT formula.

6x 10~
5x 1071

§ 4x 1071
= 31071
2x 1071
1x 1071

o .

0 5 10 15 20
Decay Rate o

A) Foran OTM Call with K =80.
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B) For an ITM Call with K =20.
4x 1073
] i
0 J“u““lm.\mll NNI‘J " Mﬁ ‘MM MG A
s 0 | LB
= -2x1077
Lu =
4% 1075
6x 1075
-8x 10718
0 5 10 15 20
Decay Rate o

C) For an ATM Call with K =50.

Figure 10.2: Original Merton Price Minus Merton-FT Price for One Day to
Maturity Call as a Function of Decay Rate Parameter a. Common parameters and
variables fixed areS, =50, 0=0.2, r=0.05, q=0.02, T =1/252, A =1, u=-0.1,

and 6=0.1.

Thirdly, we investigate the amount of error caused by the difficulty in numerical
integration in (10.4) for the near maturity calls. Consider a call option with S, =50,

0=0.2, r=0.05,and q=0.02. Figure 10.3 plots a series of the difference between the

original Merton price and Merton-FT « =1 price for the range of less than 10 trading
days to maturity 1/252 <T <10/252 . We find that despite the difficulty in the numerical
integration of Merton-FT price of (10.4) for the near maturity deep OTM (in Panel A)
and deep ITM (in Panel B) call, our Merton-FT code yields effectively zero error in terms
of pricing.
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A) OTM call with K =80.

0.00006
0.00005
= 0.00004
o
L
0.00002
0.00001

0

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time to Maturity T

B) ITM call with S, =50 and K =20.

0

2% 1079

-

-4x 10

Error

—6x 107

-8x 107

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time to Maturity T

C) ATM Call with S; =50 and K =50.

Figure 10.3: Plot of Merton Price minus Merton-FT « =1 Price for Near-Maturity
Vanilla Call with Less Than 10 Trading Days to Maturity 1/252 <T <10/252.
Common parameters and variables fixed areS, =50, =0.2, r=0.05, q=0.02, 41 =1,

u=-0.1,and 6=0.1.

We summarize this section. Although Merton-FT call price of the equation (10.4) is
slower than the original Merton price formula, it produces negligible pricing errors
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regardless of the maturity and the moneyness of the call. We recommend the use of o =1
for its decay rate.

[10.2] Discrete Fourier Transform (DFT) Call Pricing Formula with Merton Jump-
Diffusion Model

Although the numerical integration difficulty of Merton-FT call price of (10.4) for the
near maturity options yields virtually zero pricing error, it makes the evaluation slow.
This speed becomes an issue when calibrating hundreds or thousands of prices (i.e. also
in Monte Carlo simulation). To improve computational time, we apply our version of
DFT call price formula in Merton case.

From the equation (8.38), Merton-DFT call price is given as:

exp(—ak,)exp(izn)exp(—izN/2)
Ak

x%fwj {exp(inj)l//T (a)j)}exp(—iann/ N), (10.5)

Cr (k)=

where w;_,  , are trapezoidal rule weights:

W= 1/2 for j=0 and N-1
1711 for others

and:

e (0 (a+Di)

a2+a—a)2+i(2a+1)a)’

v (o) =

with ¢ () given by (10.3).

[10.3] Implementation and Performance of DFT Pricing Method with Merton
Jump-Diffusion Model

In this section, performance of Merton-DFT « =1 call price of the equation (10.5) is
tested by comparing results to the original Merton call price and Merton-FT « =1 call
price of the equation (10.4) under various settings. Merton-DFT « =1 call price is
implemented using N =4096 samples and log strike space sampling interval

Ak =0.005. This corresponds to angular frequency domain sampling interval of Aw =
0.306796 radians, the total sampling range in the log strike space isK = NAk = 20.48, its
sampling rate is 200 samples per unit of k, and the total sampling range in the angular
frequency domain is Q= NAw =1256.64 .
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Firstly, let’s investigate the difference in price and CPU time. Consider calculating 100-
point call prices for a range of strike price 1< K <100 with interval 1 with common
parameters and variablesS, =50, 0 =0.2, r=0.05, q=0.02, T =20/252, 41 =1,

u=-0.1,and 6 =0.1. Figure 10.4 reports the price and Table 10.2 compares CPU time.

We notice that call prices are virtually identical (i.e. they are supposed to be identical)
and the use of DFT significantly improves the computational time although it is slower
than the original Merton price.

50 &

Call Price

0 20 40 60 80
Strike K

Figure 10.4: Merton Vs. Merton-FT a =1 Vs. Merton-DFT o = 1. Common
parameters and variables fixed areS, =50, 0=0.2, r=0.05, q=0.02, T =20/252,
A=1, u=-0.1,and 6=0.1.

Table 10.2 CPU Time for Calculating 100-point call prices for a range of strike price
1<K <100 with interval 1 Common parameters and variables fixed are S, =50,

c=02,r=0.05,q=0.02, T=20/252, A=1, u=-0.1,and 6 =0.1.

Method CPU Time

Merton 0.14 seconds
Merton-FT a =1 7.22 seconds
Merton-DFT o =1 1.31 seconds

N =4096, Ak =0.005

Secondly, we pay extra attention to the pricing errors of very near-maturity calls.
Consider a call option with common parameters and variablesS, =50, o =0.2,

r=0.05, and g =0.02. Merton jump-diffusion parameters are setas4 =1, x=-0.1, and
0 =0.1. Figures 10.5 t010.7 plot three series of price differences for vanilla calls
computed by the original Merton, Merton-FT « =1, and Merton-DFT « =1 with

N =4096 and Ak =0.005 as a function of time to maturity of less than a month
1/252<T <20/252. Figure 10.5 tells us that for deep OTM calls, Merton-DFT yields
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the pricing error around 6x10°® which we interpret negligible. Figure 10.7 tells us that
for deep ITM calls, Merton-DFT price is virtually identical to the original Merton except
for one day to maturity. Very similar to the BS case, Figure 10.6 tells us that as the
maturity nears, the error of ATM Merton-DFT price monotonically increases and the size
of error is large (compared to ITM and OTM errors) but still negligible. In contrast, ATM
Merton-FT price produces virtually no error. This finding is more clearly illustrated in
Figure 10.7 where the T =1/252 ATM pricing error of Merton-DFT & =1 with

N =4096 and Ak =0.005 is plotted across different moneyness. We again realize that
Merton-DFT price is virtually identical to BS price for the deep ITM and OTM calls, but
its approximation error becomes an issue for ATM call. We have done several
experiments trying to reduce the size of this around ATM error by increasing the decay
rate parameter o to 10 or by sampling more points N =8192. But these attempts were
futile.

OAAAAAAA‘AAAAA‘AAA‘AA‘AAA‘
~1x 107 s Nerton -FT
j-
© o 1078
I -8
W _3.10 O Merton -DFT
(O]
S 441078
n -8
% 5x10 % FT-DFT
-8
—6x10 8 ® YRR RS

0.010.020.030.040.050.06 0.07 0.08
Time to Maturity T

Figure 10.5: Plot of Price Error for Deep-OTM Call as a Function of Time to
Maturity 1/252 <T <20/252. Common parameters and variables fixed
areS,=50,K =80, 0=0.2, r=0.05,and q=0.02.

Ofx afa Aéééé@é@@@@@@@@@@

—0.00002 5 ® A Merton -FT
—

|-
W -0.00006 o Merton -DFT

0.010.020.030.040.050.060.070.08
Time to Maturity T

Figure 10.6: Plot of Price Error for ATM Call as a Function of Time to Maturity
1/252 <T <20/252. Common parameters and variables fixed are S, =50, K =50,

0=0.2, r=0.05,and q=0.02.
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Figure 10.7: Plot of Price Error for Deep-ITM Call as a Function of Time to
Maturity 1/252 <T <20/252. Common parameters and variables fixed
areS, =50,K =20, 0=0.2, r=0.05,and q=0.02.

- |

-0.00005

Price Error

-0.0001

0O 2 4 6 8 100
Strike Price K
Figure 10.8: Plot of Price Error of Merton-DFT Formula for 1-Day-to-Maturity
T =1/252 ATM Call as a Function of Strike Price 0 <K <100. Common parameters

and variables fixed areS; =50, K =50, 0 =0.2, r =0.05, and q=0.02.

We conclude this section by stating the following remarks. Our Merton-DFT o =1 call
price formula, the equation (10.5), yields the price virtually identical to the original
Merton price for OTM and ITM calls even for extreme near-maturity case (i.e.

T =1/252) although the size of error is larger than Merton-FT formula. But the error of
Merton-DFT price becomes large around (i.e.£3) ATM. In our example used, the
maximum error is 0.0001343 which occurs at exactly ATM atS, = K =50. Increasing the

decay rate parameter & or sampling more points (i.e. larger N ) cannot reduce the size of
this error. But we can accept this size of error when considering the dramatic
improvement in the CPU time to compute hundreds of prices.

[10.4] Summary of Formulae of Option Price with Fourier Transform in Merton
Jump-Diffusion Model
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Table 10.10: Summary of Formulae for Merton Jump-Diffusion Model

Method

Formula

Original Merton

FT

Merton iﬂc% (S T,0o r)

it

7 = 2(1+k) =,1exp(y+%52j, o =0%+12

]

i(,u+ 152j
. 1. -
r = r—/1k+||n(1l_—+k): r—/l[emzb —1]+—2

e o e (0—(a+Di)

C ,k _> —iwk
Merton—FT(T ) 2” ,[_Ooe a2+a—a)2+i(20!+1)60

deo

¢ (o) = exp{ﬂ (exn(iuw— 522“’ 2)—1} ia{so +(r —%Z—ZK)T]— 022‘02 }

DFT

kEeﬁ%g2 -1
exp(—ak. )exp(izn)exp(—izN/2
C. (k ) = 2Pk exp (i) exp( )
Ak
18 .. o
><WZWj {eXp(Iﬂj)l//T (a)j)}exp(—|27rjn/ N)
j=0
e 4 (0, — (a+D)i
WT(a)j): ( : )

ot +0:—a)j2 +i(2a+1) o,
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[11] Variance Gamma (VG) Model by Madan, Carr, and Chang (1998)
[11.1] Model Type

In this section the basic structure of VG model is described without the derivation of the
model which will be done in the next section.

VG model is an exponential Lévy model of the form:
S, =S,e",

where the asset price process {S,;0 <t <T} is modeled as an exponential of a Levy
process {L,;0<t <T}. Choice of the Lévy process by Madan, Carr, and Chang (1998)
is a VG process, VG (x;6,,0,,k; ), plus a drift:

2

L, E{m+iln(l—gplfp _ J]PZK]P’ ]}t+VG(X,[;0P,O']P,K‘P) :

Kp

A VG process VG (X,;6,,0,,k; ) is defined as a stochastic process {X,;0<t <T} created

by random time changing (i.e. subordinating) a Brownian motion with drift process
6t + oB, by a tempered O-stable subordinator (i.e. a gamma subordinator) {S,;0<t<T}

with unit mean rate:
X, =6(5,)+ GBSt .

The CF of a VG process can be easily obtained by the use of the subordination theorem
described in the section 11.2.1 and its probability density function is obtained in closed
form.

A VG process VG (xt;ep,ap,xp) is characterized as a pure jump Lévy process with

infinite arrival rate of jumps. In other words, the Lévy measure of a VG process has an
infinite integral:

[ )dx=co.

This means that a VG process has infinitely many small jumps but a finite number of
large jumps.

Introduction of two extra parameters by the VG model captures the (negative) skewness
and excess kurtosis of the log return density P(In(S, /S, )) which deviates from the BS

normal log return density. One is variance rate parameter x which controls the degree of
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the randomness of the subordination. Larger x implies the fatter tails of the log return
densityIP(In (S, /SO)) . The other is the drift parameter of the subordinated Brownian

motion process & which captures the skewness of the log return density.

Let’s derive the model.

[11.2] Model Derivation

[11.2.1] Subordination Theorem of Lévy Processes

A transformation of a stochastic process to a new stochastic process through random time

change by an increasing Lévy process (subordinator) independent of the original process
is called subordination. Time is an increasing sequence of numbers: 0,1,2,3,... or

1,10, 23,30,50,.... So is subordinator because subordinator is an increasing (i.e. non-

decreasing) Lévy process. This non-decreasing property of a subordinator makes it a
possible candidate for a time indicator.

Let {S,;0<t<T} be a subordinator with its characteristic triplet(b;,c, =0,¢;) . Any

increasing function is of finite variation in one dimension and following the Lévy-
Khinchin representation in section 6.5, the MGF (moment generating function) of S, is:

M (@) = Elexp(w$,)] = exp {tL ()},

where the Laplace exponent is given by:
L (o) =bo+ j: (™ ~1)¢ (dx).. (11.1)

We used a relationship between the MGF M, and the CF (characteristic function) given
by M, (t) = ¢, (—it) which holds when M, is well-defined. Laplace transform is used

instead of Fourier transform because Lévy measure of an increasing Lévy process is
concentrated on the positive real-axis (i.e. by definition). £ (@) satisfies the following:

j:ldlep(dx) <o (i.e. a finite variation condition),
b, >0 (i.e. a positive drift),
which are the conditions of being an increasing Lévy process.

Let {X,;0<t<T} be aLévy process on R with its characteristic triplet (b, o, ¢) and its
CF given by the Lévy-Khinchin representation:

¢ (@) =E [exp(ith)] =exp {u//x (a))} ;
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where the CE (characteristic exponent) is given by:

2 2
(o7

2

v, (&) =ibo— + j:{exp(iwx) ~1}4(dx). (11.2)

We assume {X,;0<t<T} and {S,;0<t <T} are independent.

Define a new stochastic process {Z,;0 <t <T} by random time changing (i.e.
subordinating) the original Lévy process{X,;0<t<T}:

Z,=Xg (11.3)
Then, the process {Z,;0<t <T} is a Levy process on R with its CF given by:
¢, () = E{exp(iaZ,)} = exp{tL (v (@)} . (11.4)

This is an extremely powerful and useful theorem since we can obtain the CF of a
random time-changed Lévy process Z, by simply substituting the CE of an original Lévy

process v, (w) into the Laplace exponent of the subordinator £ (@) . The characteristic
triplet of a random time-changed Levy processZ,, (b,,o0,,¢,), is given by:

b, =bgb+ [ "/ (ds)[1,,, XP, (d),
o,” =bjo?, (11.5)
£ (dx) = by (cb) + [ ", (dx) £ (d),

where PP, () is the probability density function of X, . Transformation of a Lévy process
{X,;0<t <T} into another Levy process{Z,;0 <t <T} is called subordination by the
subordinator{S;;0<t<T}.

[11.2.2] Tempered a-Stable Subordinator: General Case

For the reason of pure mathematical tractability of the process, we restrict our attention to
the tempered « - stable subordinator. Let {S,;0 <t <T} be a tempered « -stable

subordinator which is Esscher transformed stable subordinator (i.e. whose tails of both
probability density and Lévy density are damped symmetrically) and (bs,o5 =0,¢;) be
its characteristic triplet, then:

(1) {S,;;0<t<T}isa « -stable process with the index of stability0 < o <1.
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) J-lfs(dx) =0: {S,;0<t<T} has no negative jump. In other words, Lévy

measure concentrated on the positive real-axis.
(3) bs >0: Positive drift.

(4) Lévy measure is three-parameter family and is simply a tempered version of the
Lévy measure of a stable subordinator of the equation (6.12):

cexp(—=Ax
10 = S, (1L6)

where ¢ >0 and A > 0. The intensity of jumps of all sizes is controlled by the parameter
¢ and the decay rate of large jumps is controlled by A . And the relative importance of
small jumps in the trajectory is determined by « .

Let {S,;0<t<T} be atempered « -stable subordinator with zero drift for simplicity (i.e.
b =0) in the general case 0 <« <1. Following the Lévy-Khinchin representation in
section 6.5, the MGF of S, is given by (11.1) as:

M () = E[exp(@S,)] = exp{tL, ()},

where the Laplace exponent is given by:

£ (w) =byw+ jo“’ (e —1)¢4 (dx)

dx

x>0

SINCE —1)"%:1
— o{(A-w)" - AW (-a). (11.7)

Using the MGF, the mean, variance, skewness, kurtosis of the tempered « -stable
subordinator with zero drift b, =0 in the general case are obtained as:

E[S,]=m, = —ctai* T[-a], (11.8)
var[S,]=m, -m? = ct(a -)al* T[-«],
m°—3mm, +m, 2-«a
(m, —m;?)*? - /1\/0'[(05 ~DaA* T[-a] '
-6m* +12m?m, —-3m,? —4mm, +m, 17“(6-5a +a?)
(m, —m?)? ct(a Dol [-a]

Skewness[S,] = 2

Excess Kurtosis[S,] =

Note that the probability density of the tempered « -stable subordinator with zero drift
b, =0 in the general case0 < <1 is not known.
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[11.2.3] Gamma Subordinator (Process): Special Case of Tempered a-Stable
Subordinator When a =0

Consider a special case when the stability index takes zero, i.e.a =0. A tempered 0-
stable subordinator with zero drift b, =0 is called a gamma subordinator. Lévy density

of the gamma subordinator S, is obtained by setting & =0 in the equation (11.6) as:
—AX

ce 1

04(X) = (11.9)

x>0 *

Following the Lévy-Khinchin representation of the equation (11.1), the MGF of the
gamma subordinator S, is:

M (@) = E[exp(@S,)] = exp{tL (@)},
where the Laplace exponent is given by substituting (11.9):
L (o) =bo+ j: (™ —1)¢ (dx)

(e

en 2]

Therefore, the MGF of the gamma subordinator S, is explicitly calculated as the
following:

—AX
ce
dx
X

M (@) =exp{tL(w)} =exp {tc In ( 4 j}

A-w
{ ( /1 jtc} ( 2’ jtc
=exp4iIn = —
A-—w A—w
:( L ljm: LI (11.10)
1-wA (1-wi™)"

Note that the equation (11.10) cannot be obtained by setting « =0 in (11.7).
The probability density of the gamma subordinator S, follows a gamma distribution:

ct

A
G == g%l . 11.11
amma, (g) F(Ct)g el ( )
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Using moment generating function (11.10) the mean, variance, skewness, and excess
kurtosis of the gamma subordinator are calculated as:

E[s]=2, (11.12)
A
ct
VaI’[St] = ? y

Skewness[S,] = 2

T

Excess Kurtosis[S,] = %
C
Note that MCC (1998) uses the different parameterization such that:

4 = Mmean rate :% and « = variance rate :%, (11.13)

2

(c:”— and /"L:ﬁ).
K K

Don’t be confused by this different parameterization. We and MCC (1998) are the same.
Alternatively, (11.12) can be obtained by setting « =0 in the equation (11.8).

A gamma process is an infinite activity Lévy process because a gamma distribution
possesses the infinite divisibility and its Lévy measure (11.9) has an infinite integral. This
means that a gamma process has infinitely many small jumps (i.e. infinite arrival rate of
small jumps) and a finite number of large jumps (i.e. /4 (dx) is concentrated at the origin).

A gamma process is a pure jump process since it has no continuous (Brownian motion)
component.

[11.2.4] Re-Parameterizing Tempered a-Stable Subordinator Using Its Scale-
Invariance (Self-Similarity) Property

A tempered « -stable subordinator S,(«, 4,c) possesses a very important property called

the scale-invariance since the process S at scale w“t has the same law as the process S
at scale t after appropriate rescaling. In other words, if {S, (o, 4,¢);0<t<T} isa

tempered « -stable subordinator with zero drift by =0 and with parametersa, 4, and c,
then for every positive constantw :

WS, (@, 4,¢) d S, (@ A/ W,c),

which is equivalent to stating that the process S is self-similar (read section 6.6 for the
definition). Remember that if a Lévy process (i.e. includes subordinator) is self-similar,
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then it is strictly stable. This indicates by definition that a tempered « -stable
subordinator possesses this scale-invariance property. We saw in section 6.6 that a
standard Brownian motion process B, is a strictly 2 -stable Lévy process:

wB dB, .
Because of this scale invariance property of a tempered « -stable subordinator
{S,(a, 1,c);t = 0} and a standard Brownian motion process B,, we consider only

tempered « -stable subordinators with E[S,]=t in subordinated models. In other words,
we re-parameterize a tempered « -stable subordinator so that it has the mean t (i.e. called
unit mean rate). Remember that in the general case 0 < & <1 the mean of a tempered « -
stable subordinator is given by the equation (11.8). The re-parameterization is done by
setting:

1 l-« l-«

Cc= Y and A=——, 11.14
F(l—a)( K ) K ( )
such that:
1 l-«a l-«o
E[S,]=- et “-a]=t,
[S1=-Fig ) taC )Tl
I'(—c) 1 . . .
where use ) = And the Léevy measure is re-parameterized from three-

parameter measure (11.6) to two-parameter measure:

s(X)

(11.15)

1 (1—05}1‘“ exp{—(1-a)x/ x|

- rNl-«)\ « X ’

where « is the stability index and x>0 is a variance rate which is equal to the variance
of these subordinators at timel, i.e. Var[S,] =« . Thus, x determines the degree of the

randomness of the time change (i.e. subordination). When x =0, the process is
deterministic.

Following the Lévy-Khinchin representation of the equation (11.1), the MGF of the re-
parameterized tempered « -stable subordinator S, is:

M (@) = E[exp(@S,)] = exp{tL, ()},

where the Laplace exponent is given by substituting (11.15):
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Ly (@) =bso+ [ (€ ~1)¢5 (dX)

[ e 1 l1-a,_, exp{-(1-a)x/x}
_IO ("1 F(l—a)( K X dx

:1‘_“{1_(1_&)0} _ (11.16)
Ka l-a

From the MGF, the variance, skewness, and excess kurtosis of the tempered « -stable
subordinator with unit mean rate are calculated as:

Var[S,] = «t,
Skewness[S,] = 2_—05\/E ,
l-a \t

a’—5a+6

) (11.17)

Excess Kurtosis[S, ] :%

Note that the probability density of the tempered « -stable subordinator with unit mean
rate and zero drift b, =0 in the general case0 < o <1 is not known.

[11.2.5] Gamma Subordinator (Process): Special Case of Tempered a-Stable
Subordinator with Unit Mean Rate When o =0

Again, consider a special case whena =0, the tempered « -stable subordinator with unit
mean rate becomes a gamma subordinator with unit mean rate E[S,] =t. Its Lévy density

can be expressed by setting « =0 in the equation (11.15) as:

1.9 ziexp(—x//c)l
K X

(11.18)

x>0 *

Because the Laplace exponent of the gamma subordinator with unit mean rate cannot be
obtained by simply substituting & =0 in (11.16), we need to derive it step-by-step. The
MGF of the gamma subordinator S, with unit mean rate can be expressed as using Lévy-

Khinchin representation:
M (@) = E [exp(@S,)] = exp{ts ()}
where the Laplace exponent is given as using (11.18):

1 exp(—x/x)
_1)Zf

L () = j:(em 1) (5 (X)dx = j:(em dx
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1
—Iogzc—log[—a)j
K

= . (11.19)
K

The mean, variance, skewness, and excess kurtosis of the gamma subordinator with unit
mean rate are calculated as using MGF or by setting « =0 in (11.17):

E[St] =t,
Var[S,]=«t,

Skewness[S,] = 2\/tE ,

Excess Kurtosis[S,] = 6t—K (11.20)

Consider obtaining the probability density of the gamma subordinator S, with unit mean
rate. The equation (11.11) is the probability density of the gamma subordinator S, with
the mean rate ¢/ A (check the equation (11.12)):

ﬂ,m
Gamm == g%l M1 |
a‘t (g) F(Ct) g 9>0

Re-parameterization terms for the purpose of having unit mean rate for the gamma
subordinator case are obtained by setting & =0 in the equation (11.14):

c=l and i:l.
K K

Obviously, the mean rate after this re-parameterization is:

Thus, the probability density of a gamma subordinator S, with unit mean rate E[S,]=t
has a gamma density of the following form:

(1/ K_)(l//c)t

Gamma, (9) = m

AU k)t-1,-(1/x)g
g (] :|.g -0

1 tix
(Kj 1 -g/x
:T/K')gk e 1g>0 . (1121)
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[11.2.6] Subordinated Brownian Motion Process with Tempered a-Stable
Subordinator with Unit Mean Rate: Normal Tempered a-Stable Process

Firstly, we deal with a general case. Let {B,;0<t<T} be a standard Brownian motion
process and 6t +oB, ~ N(6t,o°t) be a Brownian motion with drift process. Define a new
stochastic process {X,;0<t<T} by random time changing (i.e. subordinating) a
Brownian motion with drift process 6t + o B, by a tempered « -stable subordinator with
unit mean rate{S,;0 <t <T}:

X, =6(S,) +0Bs .

Then, the stochastic process{X,;t >0} is said to be a normal tempered « -stable process.
The CF of a normal tempered « -stable process can be obtained by the use of the
subordination theorem of the equation (11.4). As the first step, obtain the CF of the
original Lévy process which is a Brownian motion with drift process 6t + oB, :

2 _2
s (@) = E[€" 7] = exp(iflot - 1) = exptys (o)},
where the characteristic exponent is:
02w2

v (@) =100 — (11.22)

We saw that the Laplace exponent of the tempered « -stable subordinator S, with
E[S,]=t can be expressed as in the general case 0 < & <1 by (11.16). Following the

subordination theorem of the equation (11.2), the CF of the normal tempered « -stable
process X, =06(S,)+oB; can be obtained by a substitution of (11.22) into (11.16):

b, (@) = E {exp(ioX,)} = exp {tL (vo (@)}

with its characteristic exponent:

<

>

S

Il

>

>

S

T

5

—

j )

T
qr\)
el\)

N—

o . ‘
1 K‘( > —Iﬁwj
A . . (11.23)
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Using the characteristic exponent (11.23), the mean, variance, skewness, and excess
kurtosis of the normal tempered « -stable process with unit mean rate are calculated as in
the general case0 < <1:

E[X,]=6t, (11.24)
var[X,]= (k0% + o)t
K6(k0° (o —2) + 30 (a —1)) ¢
a-1
k(x*0% (a® —5a +6) +6x6°c° (a® —3a + 2) + 30 (o —1)°) t
(a—1)?*(x6° + 0%)* '

Skewness[X,] =

Excess Kurtosis[ X,]=

Cont and Tankov (2004) shows that the Lévy density of the normal tempered « -stable
process is given by (again we assume the drift of the subordinator is zero for simplicity,
i.e. by =0):

|x|\/92+i02(1—a)

£(X) =exp (iz XJM K | 5 : (11.25)
O |X ot+E a+§ O

a 1
a.-

l-«

2
I'(1-a)V27zo? [ K

modified Bessel function of the second kind (Appendix 7 gives its details).

l-a
where F(a,K,O',H):{l92+EO'2(1—a)} j and K isa
K

Note that because the probability density of tempered « -stable subordinator is not
known in the general case (i.e. known only for & =0 and 1/2), the probability density of
the normal tempered « -stable process is not known in the general case 0 < & <1, either.

[11.2.7] Variance Gamma (VG) Process: Subordinated Brownian Motion Process
with Tempered 0-Stable Subordinator with Unit Mean Rate: Normal Tempered 0-

Stable Process

Consider a special case whena = 0. Define a new stochastic process {X,;0<t<T} by
random time changing (i.e. subordinating) a Brownian motion with drift process 6t + B,
by a tempered o =0 -stable subordinator{S,;0 <t <T} with unit mean rate:

X, =6(S,)+ 0B .
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Then, the stochastic process{X,;0<t <T} is a normal tempered 0-stable process which is

called a variance gamma (VG) process. Because the CF of VG process cannot be
obtained by simply substituting « =0 in (11.23), we need to do this step-by-step.

Following the subordination theorem of the equation (11.2), the characteristic function of
the VG (normal tempered 0-stable) process X, = 6(S,) + 0B, can be obtained by

substituting the CE of the Brownian motion with drift process (11.22) into the Laplace
exponent of the gamma subordinator {S,;0 <t <T} with unit mean rate (11.19):

dy () = E {exp(iwX, )} =exp{tL (v4 (@)},

with its characteristic exponent:

K

2_2 2_2
Wy (@) = Ly (wo (@) = E[iﬁa)— "2‘" J: —lln(n g 62" K —iGKa)J . (11.26)
The characteristic function of the VG process ¢, (w) can be explicitly calculated as
follows (corresponding to MCC (1998) equation 7):

2 2

By (@) =exp{tLs (vp (@)} = exp{t {—%In(ﬂ 9 ‘2‘) K —ieij

_t
g, (@) =——In| 1+ Z2% ik | =n| 1+ 2K _ione | ©
X K 2 2

2 2

(@) = [1+ Z C; . iﬁmj y (11.27)

Consider obtaining a probability density function of a VG process{X,;0 <t <T}. Start
from the fact that a Brownian motion with drift W, = 6t + oB, has a normal density:

P(W,)= 1 exp{—(Wt_et)}.

\27o%t 207t

Because of the subordination structure X, = 6(S,) + oB; , by conditioning on the fact that

the realized value of the random time change by a gamma subordinator S, with unit mean
rate is S, = g, the conditional probability density of VG process can be expressed as:
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_ ol (x=09) }

1
VG(Xt|t:St:g)_mex { 20—29

Therefore, the unconditional density of the VG process is calculated by multiplying out
the gamma probability density of the equation (11.21):

2 t/x t
(% —69) }(UK) g e tdg.  (11.28)

o 1
VG =| ————ex
which corresponds to MCC (1998) equation 6. After tedious algebra:
t 1
2 s 20°
Beo Sn)( . T |2
_ o X K

VG = ,
(%) Kt/KJ\/;r(t/K) 2;"27”92 - o’

(11.29)

K

which is MCC (1998) equation 23 and K is a modified Bessel function of the second
kind.

Using the CF (11.27), cumulants of the VG process are calculated as:

cumulant, = 6t,

cumulant, = (k6> + o)t

cumulant, = (26°x* +35°6x)t

cumulant, = (3c*x +66°x°® +125°0% k)t .

From these cumulants (or by setting « =0 in the equation (11.24)), annualized (per unit
of time) mean, variance, skewness, and excess kurtosis of the variance gamma process
are calculated as (corresponding to MCC (1998) equations 18, 19, and 20):

E[X,]=6,
var[X,]= 6%+ o7,
Skewness[X,] = 26°k* + 350,
30’k +660'K® +120%0°*

Excess Kurtosis[X,] = (<P 72
K9 +o

(11.30)

Note that these standardized moments are not equivalent to those of log-return density of
VG model. These are simply the moments of VG density. This point will be explained in
section 11.4. Several very interesting properties of VG density should be worth
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mentioning. If &=0 (i.e. subordination of zero-drift Brownian motion process with
gamma subordinator), then:

E[X,]=0,

var[X,]=0c7,
Skewness[X,]=0,

Excess Kurtosis[X,] =3« ,

which indicates that VG density is symmetric (zero-skewness) and its excess kurtosis (i.e.
tail behavior) is determined by the variance rate x of the gamma subordinator S, .
Generally, the sign of the drift parameter of the Brownian motion with drift process &
determines the skewness of VG density as illustrated in Figure 11.1. The case € =-0.2 is
a mirror image of the case#=0.2.

2

— 6=-0.2

Densi

3
-9
2
1.5
1

-9

0

o ——
0.5 0.5 0 0.25 0.5
Xt

Figure 11.1: VG Density for Different Values of Drift Parameter of the Brownian
Motion Process 0. Parameters fixed are t=0.5, 0=0.2, and x=0.1.

Table 11.1
Annualized Moments of VG Density in Figure 11.1
Model Mean Standard Deviation Skewness Excess Kurtosis
0=-0.2 -0.2 0.209762 -0.00256 0.352066
0=0 0 0.2 0 0.3
0=0.2 0.2 0.209762 0.00256 0.352066

Secondly, larger value of variance rate x (i.e. the variance rate of the gamma
subordinator S, with unit mean rate and determines the degree of randomness of the

subordination) makes the density fatter-tailed and higher-peaked as illustrated in Figure
11.2.
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Figure 11.2: VG Density for Different Values of Variance Rate Parameter k.
Parameters fixed aret=0.5, 0 =0.2,and 6=0.

Table 11.2
Annualized Moments of VG Density in Figure 11.2
Model Mean Standard Deviation Skewness Excess Kurtosis
x=0.001 0 0.2 0 0.003
xk=0.25 0 0.2 0 0.75
x=0.5 0 0.2 0 15

Also note that VG density has higher peak and fatter tails (more leptokurtic) when
matched to the Normal density as illustrated in Figure 11.3.

— VG 6=-0.2

20.6-0.4-0.2 0 0.2 0.4
Xt

Figure 11.3: VG Density vs. Normal Density. Parameters fixed for the VG density
aret=0.5, #=-0.2, 0=0.2,and x=0.1. Normal density is plotted by matching the
mean and variance to the VG.

Table 11.3
Annualized Moments of VG Density in Figure 11.3
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Model Mean Standard Deviation Skewness Excess Kurtosis

VG with
0=-0.2 -0.2 0.209762 -0.00256 0.352066
Normal -0.2 0.209762 0 0

[11.3] Lévy Measure for Variance Gamma (VG) Process

We saw that the Lévy measure for the normal tempered « -stable process in the general
case 0 <a <1 is given by the equation (11.25). The Lévy density of the VG process can
be obtained by setting & =0 in (11.25) as:

0(x) :ﬁexp{AX— B}, (11.31)

2¥‘2+6?2

where Azi2 and B =’(—2 and (11.31) corresponds to MCC (1998) equation 14.
o o

Tails of both Lévy density of the equation (11.31) and probability density of the equation

(11.29) of the VG process are exponentially decayed with rates A, = B— A (for the upper

tail) and A_ =B+ A (for the lower tail).

A VG process is an infinite activity Lévy process since the integral of Lévy measure
(11.31), f £(x)dx , does not converge in [0, ] (i.e. an infinite integral). This means that

a VG process has infinitely many small jumps but a finite number of large jumps
inheriting the infinite arrival rate of jumps from the gamma subordinator. In other words,
the Lévy measure ¢(x) of the VG process is concentrated around zero which will be

illustrated soon.

An example of Lévy measure ¢(x) for the VG process is plotted in Figure 11.4 where
panel A plots the lower tail and panel B plots the upper tail because ¢(x) becomes
complex infinity when x =0 (i.e. infinite arrival rate). Generally, the sign of the drift
parameter of the Brownian motion with drift process € determines the skewness of VG
Lévy density as illustrated and the case 8 =-0.2 is a mirror image of the case§=0.2.
This means that if =0, we have a symmetric VG Lévy density. Larger values of the
variance rate parameter x for the gamma subordinator with unit variance rate (i.e. higher
degree of randomness of the subordination) leads to lower exponential decay rate of the
Lévy measure /(x) (i.e. lower B in the above), thus the tails of Lévy measure becomes

fatter indicating higher probability of large jumps. This point is illustrated in Figure 11.5.
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Figure 11.4: Lévy Measure /(X) for VG Process with Different Values for the Drift

Parameter of the Brownian Motion Process 0. Parameters fixed are t =0.5, 0 =0.2,
and x=0.5.

A) Lower tail.
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Figure 11.5: Lévy Measure /(x) for VG Process with Different Values for the
Variance Rate Parameter k. Parameters fixed aret =0.5, =0, and o =0.2.

[11.4] Modeling Stock Price Dynamics with VG Process and VG Log-Return
Density

We saw in section 7.6 that in the BS case, a stock price process {S,;0<t<T} is modeled
as an exponential Lévy process of the form:

S, =S,e*,

where {X,;0<t<T} is a Lévy process. BS choose a Brownian motion with drift
(continuous diffusion process) as the Lévy process:

X, E(ﬂ—%azjt+08t.

The fact that an stock price S, is modeled as an exponential of Lévy process X, means

that its log-return In(%) is modeled as a Lévy process such that:
0

S 1
In(-4)=X, =| u—=0” |t+0B,.
(50) . (,u 20‘) oB,

BS model can be categorized as the only continuous exponential Lévy model apparently
because a Brownian motion process is the only continuous (i.e. no jumps) Lévy process.

Now by replacing a standard Brownian motion process B, with a VG process
VG(x,;6,0,x) and x being the variance rate of the gamma subordinator, stock price
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dynamics under historical probability measure P can be expressed as (MCC (1998)
equation 21):

2
Op Kp

S, =S, epom+iln(1—prp— J}t+VG(X[;t9P,O'P,K‘P):|, (11.32)

Kp

where m is the instantaneous rate of return on the stock under P.

A stock price process {S,;0 <t <T} is not a martingale under P because risk-averse
investors expect S, to grow at a rate greater than the constant risk-free interest rater :

Etp[e_mstm] > St :
Thus, for the purpose of option pricing we convert non-martingales into martingales by

changing the probability measure. In other words, we will try to find an equivalent
probability measure Q (called risk-neutral measure) under which the stock price

discounted by the risk-free interest rate becomes martingale:
El[e™S,.,]1=S,.
This risk-neutral dynamics is given by:
2

S =5, epor +i|n(1—t9@;c@ _ GQZK@ ]}t +VG(xt;¢9Q,aQ,/c@)} . (11.33)

Ko

In VG model, log-return z, =In(S, /S,) is modeled as under historical probability
measureP:

2

7, = {m +Lin (1—0PKP - "PZKP ]}t VG (X 0,04, K) . (11.34)

Kp

VG process X, has VG density of the form of equation (11.29). Use the relationship
(11.34):

2
X = zt—{m +i|n£1—epfcﬂm—%}t, (11.35)

Kp
where the term inside the curly bracket is deterministic. Therefore, log-return

z, =In(S,/S,) density under historical probability measure P in VG model can be
written as (MCC (1998) equation 23):
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t 1
7_, 2 2
ﬁexp(gz th , | \/th( Z +92j
o % (11.36)

B Kt/KG\/;F(t/K) 2;0'2_’_92 — o’ ’
K

VG(z,)

2
where x, =z, —{m +l In [1— Ok — GZKJ}t . This answers to the statement we made in
K

section 11.2 that those standardized moments of a VG process X, in the equation (11.30)
are not equivalent to those of log-return z, =In(S, /S,) density of VG model because of a

. 1 2 .

correction term —{m +—1In (1— Ok — GZKJ}t . VG log-return density VG(z,) does not
K

have a nice closed form expression for the standardized moments like those for a VG

process. Thus, we will simply numerically calculate those when necessary. By taking

care of this correction term we plot several figures here for the purpose of illustration.

Several very interesting properties of VG log-return density VG(zt) should be worth

mentioning. If =0 (i.e. subordination of zero-drift Brownian motion process with
gamma subordinator), VG log-return density is symmetric (zero-skewness). Generally,
the sign of the drift parameter of the Brownian motion with drift process € determines
the skewness of VG log-return density as illustrated in Figure 11.6. The case 8 =-0.2 is
a mirror image of the case4=0.2.
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-0.5 -0.25 0 0.25
log-retum z¢

Figure 11.6: VG Log-Return Density for Different Values of Drift Parameter of the
Brownian Motion Process 0. Parameters fixed aret =0.5, 60=0.2, ¥ =0.1, and
m=0.05.

Table 11.4
Annualized Moments of VG Log-Return Density in Figure 11.6
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Model Mean Standard Deviation Skewness Excess Kurtosis

0=-0.2 0.028399 0.209762 -0.392262 0.704132
6=0 0.02998 0.2 0 0.6
6=0.2 0.275439 0.209762 0.392262 0.704132

Secondly, larger value of variance rate x (which is the variance rate of the gamma
subordinator with E[S,] =t and determines how random the subordination is) makes the

density fatter-tailed and higher-peaked as illustrated in Figure 11.7.

5
4 A ~ x=0.001
1. 3
0 .
GCJ 2 — K—O.25
(M)
1 x=0.5
ol )

0.5 -0.25 O 0.25 0.5
log-retum z¢

Figure 11.7: VG Log-Return Density for Different Values of Variance Rate
Parameter k. Parameters fixed aret=0.5, =0, 0 =0.2, and m=0.05.

Table 11.5
Annualized Moments of VG Log-Return Density in Figure 11.7
Model Mean Standard Deviation Skewness Excess Kurtosis
x=0.001 0.0299998 0.2 0 0.006
x=0.25 0.0299498 0.2 0 15
k=05 0.0298993 0.2 0 3

Also note that VG log return density has higher peak and fatter tails (more leptokurtic)
when matched to the BS normal log return density as illustrated in Figure 11.8.
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Figure 11.8: VG Log-Return Density vs. Black-Scholes Normal Log-Return Density.
Parameters fixed for the VG log-return density aret =0.5, #=-0.2, 0 =0.2, ¥ =0.1,
and m=0.05. Black-Scholes normal density is plotted by matching the mean and
variance to the VG.

Table 11.6
Annualized Moments of VG Log-Return Density in Figure 11.8
Model Mean Standard Deviation Skewness Excess Kurtosis
VG with
0=-0.2 0.0283992 0.209762 -0.392262 0.704132
BS 0.0283992 0.209762 0 0

[11.5] Option Pricing with VG Model

We saw that the risk-neutral dynamics of a stock price is given by the equation (11.33):

1 oo K.
S, =S, exp r+——4n{1—6bKQ—— @Z(QJ t+VG(X;6y,00.K,) |
K
Q

where {x,;0<t<T} isa VG process on a space (€2, F,Q) and r is the constant risk-free
interest rate. Then, a European call option price C(S,;7 =T —t) is calculated as:

Cyo(Sii7) =e "E%[max (S, —K,0)|% |.
We saw in section 11.2.7 that because of the subordination structure X, = 6(S,) + o B, of

the VG process{X,;0<t <T}, the probability density of VG process can be expressed as
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the conditionally normal by conditioning on the fact that the realized value of the random
time change by a gamma subordinator S, with unit mean rate isS, =g:

1 (x —09)°
VG(x|t=S, =9 :—exp{—— .
( | t ) 27’y 2079
Using this conditional normality of VG process, the call price conditioned on the fact that

the realized value of the random time change by a gamma subordinator S, with unit mean
rate isS, = g can be obtained as a BS type formula (equation 6.5 in Madan and Milne

(1991)):
Cus |g =, (1_’((0[74'8)2]1( exp((a +23)Zg j N (\75 + (a+S)\/§]

Ko’ . a’y d
e j exp(TJN[E+a gJ, (11.37)

where N is a cumulative distribution function for a standard normal variable. And the
parameterizations are follows:

0 o K
é/:——z,S:—’a 0{+S ,sz_a y
o S 02 2

1+ =

1_C1=1+,<(9—%2) andd == {In(—)+r(T t)+—|( C)}

—Kexp(-rr) (1

1-c,

Unconditional call price is then obtained by integrating the conditional price C, |g with
respect to gamma density of the equation (11.21):

. k)™ Ly
Cus (Si7)=]; (Cue9 )( (t/) )9” e *’"dg. (11.38)

MCC (1998) defines a user specified function ¥ (a,b, y) :

» u” " exp(-u)
Y(a,b,y)= —+Db —d 11.39
@bn=|N (\f ' \F] r@) —

After numerous changes of variables, a European call price for VG model is obtained as
(MCC (1998) theorem 2):
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CVG(St;T):St\P(d\/l_qv(a"'s) a 11]
K \jl—c1 K

—Kexp(—rt)?(d\/l_cz,as\/ K ,EJ. (11.40)
K l-c,

Because the equation (11.39) is not a closed-form function, the call price (11.40) is not a
closed-from option pricing function. In order to obtain a closed-form option pricing
function, MCC (1998) rewrites (11.39) in terms of the modified Bessel function of the
second kind K and the confluent hypergeometric function of two variables

(e, B,7;%,y) as follows:

¥(ab,y)
o ex‘j;—f;g;;) K 00171 sign(aye )

—sign(a) ﬁl/ze)\(/girg(r;()?ii);l;u)w K, 1, (C)@+ 7/,1—7,2+7/;1+Tu,—sign(a)c(1+ u))
+sign(a) MeXpJ(ZS_E;((;;;) L0 @001yl y;lJrTu,—sign(a)c(1+ u)),
where:

e 73 = e D [l ) ) ey,

c=|a|v2+b*,
b
u= .
V2 +b?

We were unsuccessful implementing the, so called, closed form VG call price of the
equation (11.40) with (11.41). We believe this is due to the confluent hypergeometric
function of two variables ®(«, 3, 7; X, y) having the singularity atu =1. Therefore, we

use the numerical VG call price of the equation (11.40) with (11.39).

(11.41)

[11.6] Option Pricing Example of VG Model

In this section we calculate the numerical VG call prices of the equation (11.40) with
(11.39) and compare them with BS counterparts. Consider pricing a plain vanilla call
with common parameters and variables fixed S, =50, 0 =0.2, r=0.05, q=0.02, =

0.25. VG parameters are set at =-0.1 and x =0.1, unless mentioned otherwise.
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The first thing we noticed when implementing the numerical VG call price is that its
failure to achieve convergence since the integrand (11.39) has a non-integrable
singularity atu =0. Practical problem with this singularity is that the numerical VG call
price cannot be calculated for deep OTM calls with 60 < K as illustrated in Figure 11.9
where the numerical VG call prices are computed for the range of the strike

price0 <K <100. The level of out of moneyness of calls whose prices can be computed
with the numerical VG formula depends on the VG parameters & and « . This is a big
problem for the purpose of calibration because we are mainly interested in OTM options
due to their high liquidity. For puts, the numerical VG price cannot be calculated for deep
ITM puts. But this won’t be a huge problem.

w T

40

8

VG Call
8

0 10 20 30 40 50 60
Strike K

A) Call.

10

VG Put

0O 10 20 30 40 50 60
Strike K
B) Put.

Figure 11.9: Numerical VG Prices. S,=50, 0 =0.2, r=0.05, q=0.02, 7= 0.25. VG
parameters are setat d=-0.1 andx =0.1.

Figure 11.10 compares numerical VG call prices with BS counterparts. Note the
followings: (1) When VG parameters (€ and « ) are small, these two prices cannot be
distinguished by naked eyes in Panel A left. When the difference is plotted on the right,
the numerical VG price underprices ATM calls by approximately 0.008. (2) The size of
the drift parameter of the subordinated Brownian motion process & has very little impact
on the numerical VG call price. As the size of & increases from -0.01 to -0.3 (i.e.
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increased skewness of log-return density), the numerical VG price and the BS price are
virtually identical as illustrated in Panel B where the numerical VG price overprices
ATM call by approximately 0.0125. (3) As the variance rate parameter of the gamma
subordinator x increases (i.e. increased randomness associated with time change), VG
model underprices ATM call and overprices OTM call as illustrated in Panel C. Panel D
shows the distinct character of the numerical VG call price is that the overvaluation of

OTM call.
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A) VG parameters: #=-0.01 and x = 0.01.
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B) VG parameters: #=-0.3 and « = 0.01.
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C) VG parameters: #=-0.01 and x=0.3.
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D) VG parameters: d=-0.3 and x=0.3.

Figure 11.10: VG Call Price vs. Black-Scholes Call Price. Parameters and variables
used are S,=50, 0=0.2, r=0.05, q=0.02, and 7 =0.25.

Figure 11.11 compares numerical VG put prices with BS counterparts. Note the
followings: (1) When VG parameters (€ and « ) are small, these two prices cannot be
distinguished by naked eyes in Panel A left. When the difference is plotted on the right,
the numerical VG price slightly underprices ATM puts by approximately 0.008. (2) The
size of the drift parameter of the subordinated Brownian motion process € has very little
impact on the numerical VG put price. As the size of & increases from -0.01 to -0.3 (i.e.
increased skewness of log-return density), the numerical VG price and the BS price are
virtually identical as illustrated in Panel B where the numerical VG price overprices
ATM put slightly by approximately 0.0125. (3) As the variance rate parameter of the
gamma subordinator x increases (i.e. increased randomness associated with time
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change), VG model underprices ATM puts and overprices ITM calls as illustrated in
Panel C. Panel D shows the distinct character of the numerical VG put price is that the
overvaluation of ITM put.
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B) VG parameters: #=-0.3 and x = 0.01.
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C) VG parameters: #=-0.01 and x=0.3.
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Figure 11.11: VG Put Price vs. Black-Scholes Put Price. Parameters and variables
used are S,=50, 0=0.2, r=0.05, q=0.02, and 7 =0.25.

[11.7] Lévy Measure of VG Log-Return z;

We saw in section 11.3 that the Lévy measure of the VG process is given by the equation
(11.31). We saw in section 11.4 that the log-return z, =In(S, /S,) and a VG process X

are related by the equation (11.35). Therefore, the Lévy measure of the VG log-return z,
can be expressed as:

2) :ﬁexp{Ax— BIx| (11.43)

where:

2
X= z—{m+iln{l—epxp —Mj},
Kp 2
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An example of Levy measure of the VG log-return z, is plotted in Figure 11.12.
Generally, the sign of the drift parameter of the subordinated Brownian motion with drift
process & determines the skewness of Lévy measure /(z) of the VG log-return z, as
illustrated and the case @ =-0.2 is a mirror image of the case & =0.2. This means that
if@=0, we have a symmetric Lévy measure /(z) . Larger values of the variance rate

parameter x for the gamma subordinator with unit variance rate (i.e. higher degree of
randomness of the subordination) leads to lower exponential decay rate of the Lévy
measure v(dx), thus the tails of Lévy measure becomes fatter indicating higher

probability of large jumps. This point is illustrated in Figure 11.13.
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2 150

?100 |
4 50

04 02 0 02 0.4
log-retum z¢

/
S

Figure 11.12: Lévy Measures of VG Log-Return z; with Different Values for the
Drift Parameter of the Subordinated Brownian Motion Process 0. Parameters fixed
are 0=0.2, k=0.1, and m=0.05.
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Figure 11.13: Lévy Measures of VG Log-Return z; with Different Values for the
Variance Rate Parameter of the Gamma Subordinator k. Parameters fixed are
0=0.2,6=0,and m=0.05.
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[12] VG (Variance Gamma) Model with Fourier Transform Pricing

We saw in section 11 that the most important character of VG model is its conditional
normal property. Because of the subordination structure X, = 6(S,) + 0B, of the VG

process{X,;0<t <T}, the probability density of VG process can be expressed as the

conditionally normal by conditioning on the fact that the realized value of the random
time change by a gamma subordinator S, with unit mean rate isS, = g . Similarly, the

conditional call price can be obtained as a BS type formula of (11.37) and the
unconditional call price is then obtained by integrating the conditional price with respect
to gamma density. As a result, a call price can be expressed as single numerical
integration problem of the equation (11.40) with (11.39).

But as we realize MCC (1998) use very complicated process of numerous changes of
variables in order to obtain a closed form call price of the equation (11.40) with (11.41)
and to express the call price in terms of special functions of mathematics. This procedure
is not only cumbersome, but also deficient of generality.

As far as the numerical VG call price is concerned, it is simpler to implement, but it has a
critical problem of failing to achieve convergence for deep OTM calls since the integrand
(11.39) has a non-integrable singularity atu =0.

Thus, we are in desperate need of more general and simpler method of pricing for VG
model and other exponential Lévy models. In this section we present our version of
Fourier transform option pricing with VG model. We would like readers to appreciate its
generality and simplicity.

[12.1] VG Model with Fourier Transform Pricing Method

The first step to FT option pricing is to obtain the CF of the log stock priceIn S, . Risk-
neutral log stock price dynamics can be obtained from the equation (11.33) as:

K

2
IS, =Ins, +{r + L [1—9@KQ - U@ZK@ j}uve(xt;e@,a@,x@). (12.1)
Q

VG process X, has VG density of the form of equation (11.29). After rearrangement:

2
x =InS,—| NS, +1r+ - n| 1- 6, ~ 722 |t | (12.2)
Ky 2

where the term inside the square bracket is deterministic. Therefore, risk-neutral log stock
price density in VG model can be written as:
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0 ztixf% 2 20° 2
ﬁexp(zxtj , N
VG(Ins,)= o a K

K o JxT (t/x) 20° s = o’
K

, (12.3)

2

where x, =InS, {In S, +{r +i|n(l—9(@1(@ - GQZKQ ]}t} . By Fourier transforming

Ko

(12.3) with FT parameters (a,b,) = (1,1) , its CF can be calculated. But this direct
computation of CF is difficult because it involves the Bessel function.

Consider a following example. The CF function of a multiplicative standard Brownian
motion process {oB,;0<t<T} is:

© - 1 B’
— ioB, _ iwB, _ t
. (w) = Loe P(B,)dB, = Loe — exp[ Zaztjdst

B exp[— otw? ]
> .

When the drift term At is added, the CF function of a Brownian motion with drift
process {W, = At+oB,;0<t<T} is:

_[* Liow, o a1 (W, — At)’
%(w):f_we IP(\Nt)th—j_we \/ﬂexp{t&T dw,

2¢ 2

2 2
=exp[iAta)—0 lo j=exp(iAta))exp[—G;w ]

This implies that the CF of a Brownian motion with drift process can be obtained by
simple multiplication of the CF function of a multiplicative standard Brownian motion

process and exp(iAta)). Let’s use this logic in our context. We derived the CF of a VG
process X, which is given by the equation (11.27):

b () = [1+ 626202'( - ieij_K . (11.27)
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From the VG risk-neutral log stock price dynamics of the equation (12.1), by taking care
2

of the drift term At =1In S, +{r + L [1—9QKQ — %ZKQ j}t , the CF of log stock price

Ko

can be expressed as:

t
2 2 2 ‘;
s, (@) explia){ln S, +£r +iln(1—t9@lc@ - GQZKQ)]tH[H g 620 K—i@ij .
K
0

Sett=T and InS; =s;. And dropQ:

;
2 2 2 e
é. () = expliia){so +(r - GZK)jTH(H g ;) K_ iQKw] . (12.4)
K
By substituting the above CF into the general FT call pricing formula of the equation

(8.17), we obtain VG-FT call pricing formula:

e "¢ (o—(a+1)i)
a’+a-o’+i(2a+l)w

efak o
Clorr(TK)==—] ™ do, (12.5)

where:

¢ () = exp

)

2 2 2 *;

io]s, +| r+Lin—oc— 25y |1 L[ 1+ Z9% Jigew | "
K 2 2

We implement the VG-FT formula (12.5) with decay rate parameter « =1.5 and compare
the result to the numerical VG call price using common parameters and variables
fixedS, =50, 0=0.2, r=0.05, q=0.02, T =20/252, §=-0.1, and x =0.1. Figure

12.1 demonstrates two important points. One is that as previously mentioned, the
numerical VG price cannot be calculated for deep OTM calls because they fail to
converge which is shown in Panel B. The other is that although the VG-FT price can be
calculated for deep OTM calls but they also fail to achieve convergence at the acceptable
level of accuracy. On top of this, the additional issue with VG-FT price is that it oscillates
severely for the deep ITM and OTM calls as illustrated by Figure 12.2. Especially for the
deep OTM calls, this oscillation yields negative call prices. This interesting oscillation
pattern for deep OTM calls occur for the BS-FT call price with much smaller degree.
Merton-FT call price, in contrast, has no oscillation.
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A) VG-FT a =1.5 call price.
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B) Numerical VG call price.

Figure 12.1: VG-FT a = 1.5 Call Price Vs. Numerical VG Call Price. Common
parameters and variables fixed areS, =50, 0 =0.2, r=0.05, q=0.02, T =20/252,

6=-0.1,and x=0.1.
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A) Deep OTM call price for 60 < K <100 on the left and for80 < K <100 on the right.
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B) Deep ITM call price forl1<K <6.

Figure 12.2: Oscillation of VG-FT a = 1.5 Price for Deep ITM and Deep OTM Calls.
Common parameters and variables fixed are S, =50, o =0.2, r=0.05, q=0.02,

T=20/252, =-0.1,and x=0.1.

As a principle, VG-FT a =1.5 call price and the numerical VG call price are same (i.e.
they are supposed to be). Figure 12.3 plots the difference between the numerical VG and
VG-FT call price for the range of strikes with which the numerical VG price can be
computed. Panel A shows that the above mentioned oscillation of VG-FT price causes the
price difference to oscillate for deep ITM calls of1< K <5. For example, for K =1 call
the numerical VG price is 48.9247 while VG-FT price is 49.9419 leading to an error of
1.0173. But deep ITM calls are not most researchers’ interests. More important error
occurs around ATM calls of the strike 45 < K <55 which is illustrated in Panel B. The

maximum size of the error is about 0.1.

0.5

Call Price
o
[

-0.5 — VG-VGFT

0 10 20 30 40 50 60
Strike K

A) For the range of strike pricel < K <100.
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B) For the range of strike price 40 <K <60

Figure 12.3: Numerical VG Call Price Minus VG-FT a = 1.5 Call Price. Common
parameters and variables fixed areS, =50, 0=0.2, r=0.05, q=0.02, T =20/252,

0=-0.1,and x=0.1.

Next, we discuss CPU time considering calls withS, =50, 0 =0.2, r =0.05, q=0.02,

and T =20/252 as a function of varying strike price K. VG parameters are set as
¢ =-0.1and x=0.1. Table 12.1 reveals that VG-FT formula is slower than the
numerical VG formula, but speed is not an issue for most of the pricing purposes.

Table 12.1: CPU Time for Calls with Different Moneyness
Price is in the bracket.

Strike
Method K =20 K =50 K =80
VG (numerical) 0.08 seconds 0.05 seconds 0.11 seconds
(29.9999) (1.04663) (NA)
VG-FTa =1 0.17 seconds 0.09 seconds 0.16 seconds
(30) (1.04107) (-8.41091x10°°)

We investigate the level of decay rate parameter « for VG-FT formula. Figure 12.4
illustrates the pricing error of VG-FT price relative to the numerical VG price for a one
day to maturity T =1/252 call as a function of varying« and Figure 12.5 is for one
month to maturity T =20/252 call. First of all, Panel A and C of Figure 12.4 and 12.5
tell us that the size of the error does not vary significantly for 0.05 <« <10 in the case of
OTM and ATM call. Small exception is for OTM call with T =1/252 in Panel A of
Figure 12.4 where larger o makes the error smaller. While Panel B in Figure 12.4 and 5
shows that smaller « is better for deep ITM calls. Judging from these findings, we
recommend the choice of 1<« <2 for the purpose of general pricing (i.e. ATM, OTM,
and ITM calls) which includes the suggested value by MCC (1998) of ¢ =1.5.
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A) For an OTM Call with K =60. Numerical VG price cannot be calculated for deep
OTM calls with K =70 or 80.
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B) For an ITM Call withK =20.
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C) For an ATM Call withK =50.

Figure 12.4: Numerical VG Price Minus VG-FT Price for One Day to Maturity Call
as a Function of Decay Rate Parameter 0.05 < ¢ <10. Common parameters and
variables fixed are S, =50, 0 =0.2, r=0.05, q=0.02, T =1/252, §=-0.1, and

x=0.1.
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A) For an OTM Call with K =60. Numerical VG price cannot be calculated for deep
OTM calls with K =70 or 80.
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C) For an ATM Call withK =50.

Figure 12.5: Numerical VG Price Minus VG-FT Price for Call with T =20/252 as a
Function of Decay Rate Parameter 0.05 < o <10. Common parameters and variables
fixedareS, =50, 0=0.2, r=0.05, q=0.02, #=-0.1, and x=0.1.

Which is better, VG-FT price of the equation (12.5) or the numerical VG price (11.40)
with (11.39)? It is a tough call. Numerical VG call price has a critical problem of failing
to achieve convergence for deep OTM calls since the integrand (11.39) has a non-
integrable singularity atu =0. VG-FT formula calculates the prices for calls regardless of
the moneyness, but it also has convergence problem and oscillation problem for deep
ITM and OTM calls which yields negative prices. Can DFT solve these problems
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associated with FT price? Let’s see in the next section. The value of the decay rate
parameter « =1.5 suggested by MCC (1998) seems to be appropriate.

[12.2] Discrete Fourier Transform (DFT) Call Pricing Formula with VG Model

To improve computational time of the VG-FT call price, we apply our version of DFT
call price formula.

VG-DFT call price can be simply obtained by substituting the CF of VG log stock price
of the equation (12.5) into the general DFT call price of the equation (8.38):

exp(—ak,)exp(izn)exp(-izN/2)
Ak
X%ij {exp(i7 1)y (@)} exp(-i2z i/ N), (12.6)

j=0

C, (k) ~

where w,_, 5 are trapezoidal rule weights:

W= 1/2 for j=0 and N-1
7711 for others

and:

e g (0-(a +1)i)

a2+a—a)2+i(2a+l)a)’

Yy (w) =

with ¢ () given by (12.4).

[12.3] Implementation and Performance of DFT Pricing Method with VG Model

In this section, performance of VG-DFT « =1.5 call price of the equation (12.6) is tested
by comparing results to the VG-FT « =1.5 call price of the equation (12.5) under various
settings. VG-DFT « =1.5 call price is implemented using N = 4096 samples and log
strike space sampling interval Ak = 0.005. This corresponds to angular frequency domain
sampling interval of Aw = 0.306796 radians, the total sampling range in the log strike
space isK = NAk =20.48, its sampling rate is 200 samples per unit of k, and the total
sampling range in the angular frequency domain is Q = NAw =1256.64 .

Firstly, let’s investigate the difference in price and CPU time. Consider calculating 100-
point call prices for a range of strike price 1< K <100 with interval 1 with common
parameters and variablesS, =50, 0=0.2, r=0.05, q=0.02, T =20/252,6 =-0.1,

and x=0.1. Figure 12.6 reports the price and Table 12.2 compares CPU time. We notice
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that prices are basically same (i.e. they are supposed to be same because DFT is an
approximation of FT) and the use of DFT significantly improves the computational time.

50

Call Price

0 20 40 60 80 100
Strike K

Figure 12.6: VG-FT a = 1.5 Vs. VG-DFT a = 1.5. Common parameters and variables
fixed areS; =50, 0=0.2, r=0.05, q=0.02, T =20/252,6=-0.1, and x=0.1.

Table 12.2 CPU Time for Calculating 100-point call prices for a range of strike price
1<K <100 with interval 1 Common parameters and variables fixed are S, =50,

c=0.2,r=0.05,9=0.02, T=20/252, #=-0.1, and x=0.1.

Method CPU Time
VG-FTa=15 15.512 seconds
VG-DFTa =15 0.571 seconds

N =4096, Ak =0.005

Secondly, we saw in section 12.1 that VG-FT price has an oscillation pattern for deep
ITM and OTM calls. We find that VG-DFT price has almost zero oscillation for deep
ITM calls and very small (i.e. negligible) oscillation for deep OTM calls demonstrated by
Figure 12.7.

VG-DFT Call
IN
X
B

85 90 95 100
Strike K

A) Deep OTM call price for80 < K <100.
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Figure 12.7: Oscillation of VG-DFT o = 1.5 Price for Deep ITM and Deep OTM
Calls. Common parameters and variables fixed areS, =50, 0 =0.2, r =0.05, q=0.02,

T=20/252, =-0.1,and x=0.1.

Thirdly, we pay attention to the price difference between VG-DFT and VG-FT especially
for very near-maturity calls. Consider a call option with common parameters and
variablesS, =50, 0=0.2, r=0.05, and q=0.02. VG parameters are set asd =-0.1,

and x =0.1. Figures 12.8 t012.10 plot three series of price differences computed by the
VG-FTa =15 and VG-DFT o =1.5 with N =4096 and Ak =0.005 as a function of
time to maturity of less than a month 1/252 <T <20/252. These figures demonstrate
that, as we expected, the price difference tends to increases as the maturity nears
regardless of the moneyness of the call. We consider the maximum price difference of the
size 0.025 negligible.

0.00175
0.0015

S 0.00125
0.001
0.00075
0.0005
0.00025
0 -

0.010.02 0.030-04 0.050.06 0.07 0.08
Time to Maturity T

Figure 12.8: Plot of VG-FT a = 1.5 Price Minus VG-DFT a = 1.5 Price for Deep-
OTM Call as a Function of Time to Maturityl/252 <T <20/252. Common
parameters and variables fixed are S, =50, K =80, 0 =0.2, r =0.05, and

q=0.026¢=-0.1,andx=0.1.
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Figure 12.9: Plot of VG-FT a = 1.5 Price Minus VG-DFT a = 1.5 Price for ATM Call
as a Function of Time to Maturity 1/252 <T <20/252. Common parameters and

variables fixed areS; =50, K =50, 0=0.2, r=0.05, and q=0.02 §=-0.1,
andx =0.1.
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Figure 12.10: Plot of VG-FT a = 1.5 Price Minus VG-DFT a = 1.5 Price for Deep-
ITM Call as a Function of Time to Maturityl/252 <T <20/252. Common
parameters and variables fixed are S, =50, K =20, 0=0.2, r=0.05, and

q=0.026=-0.1,andx=0.1.

Figure 12.11 clarifies the superiority of VG-DFT price over VG-FT price for one day to
maturity call. Panel A exhibits the oscillation of VG-FT price for deep ITM and OTM
calls. In contrast, VG-DFT price has almost zero oscillation shown in Panel B. Panel C
reminds us that as a principle these two prices are same despite the large deviation for
deep ITM calls which is not so important.
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A) Oscillation of VG-FT prices for Deep ITM and OTM calls.
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B) Almost zero oscillation of VG-DFT prices for Deep ITM and OTM calls.
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Figure 12.11: VG-DFT a = 1.5 Price Vs. VG-FT a = 1.5 Price for 1-Day-to-Maturity
(T =1/252). Common parameters and variables fixed areS, =50, K =50, 0=0.2,

r=0.05,and q=0.02 4=-0.1,andx =0.1.

We conclude this section by stating the following remarks. As a principle, VG-DFT

a =15 price and VG-FT « =1.5 price are same. Which is better? The clear-cut answer
is VG-DFT price. One reason is that VG-DFT needs significantly smaller CPU time to
compute hundreds of option prices which is very important for the calibration. Another
reason is that VG-DFT price does not have the oscillation pattern observed with VG-FT
price for deep ITM and OTM options.
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[12.4] Summary of Formulae of Option Price with Fourier Transform in VG Model

Table 12.3: Summary of Formulae for VG Model

Method Formula

Numerical VG

Qm@Jﬂ=&W£%ﬁ_g&a+9J K,i]
K 1-¢ «
—Kexp(—rt)‘P(d\/l_Cz,as\/ K ,Z}
K 1-c, x

¥(ab,y)=["N (imﬁjmdu

Ju I'(y)
FT
e e o e g (0 (a+D)i)
CVG_FTU’k)_gLﬂe a2+a—a)2+i(2a+l)a)da)
¢ (w) = exp{ia){so +(r +lln(1—¢9/c— O-ZK)jTH(H o'w'K - i@xa)j_K
K 2 2
DFT
C.(k)~ exp(—ak,)exp(izn)exp(—izN/2)
Ak
x%iwj {exp(i7rj)1//T (a)j)}exp(—i27rjn/ N)
v (@) = M UiCasl)

ot +oc—a)j2+i(205+l)a)j
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[13] Conclusion

We implemented the general FT call price (8.17) and our version of the general DFT call
price (8.38) for three different types of exponential Lévy models. DFT call price is
implemented using N =4096 samples and log strike space sampling interval

Ak =0.005. This corresponds to angular frequency domain sampling interval of Aw =
0.306796 radians, the total sampling range in the log strike space isK = NAk = 20.48, its
sampling rate is 200 samples per unit of k, and the total sampling range in the angular
frequency domain is Q= NA@w =1256.64 .

In the classical Black-Scholes model, our version of DFT « =1 call price yields the price
virtually identical to the original BS price for OTM and ITM calls even for extreme near-
maturity case (i.e. T =1/252) although the size of error is larger than BS-FT formula.
But the error of BS-DFT price becomes relatively large around (i.e. £3) ATM. In our
example used, the maximum error is 0.0001345 which occurs at exactly ATM

atS, = K =50. Increasing the decay rate parameter & or sampling more points (i.e.

larger N ) cannot reduce the size of this error. But we can accept this size of error when
considering the dramatic improvement in the CPU time to compute hundreds of prices.

The result of Merton JD model is the same as that of the BS. Our Merton-DFT « =1 call
price yields the price virtually identical to the original Merton price for OTM and ITM
calls even for extreme near-maturity case (i.e. T =1/252) although the size of error is
larger than Merton-FT formula. But the error of Merton-DFT price becomes relatively
large around (i.e.£3) ATM. In our example used, the maximum error is 0.0001343 which
occurs at exactly ATM atS; = K =50.

In the VG model as a principle, VG-DFT a =1.5 price and VG-FT a =1.5 price are
same. As we expected, the price difference tends to increases as the maturity nears
regardless of the moneyness of the call. We consider the maximum price difference of the
size approximately 0.025 negligible. Which is better? The clear-cut answer is VG-DFT
price. One reason is that VG-DFT needs significantly smaller CPU time to compute
hundreds of option prices which is very important for the calibration. Another reason is
that VG-DFT price does not have the oscillation pattern observed with VG-FT price for
deep ITM and OTM options.

We hope readers appreciate the excellence of FT and DFT option pricing in the sense of
its simplicity and generality and this sequel would be a good starting point.
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Appendix

[A.1] Set Theory: Notation and Basics'

(0]

o O

O OO 0O O0OO0OOO0OO OO0OO

O O o0 oo

@]

R : Collection of all real numbers. Intervals in R are denoted via each endpoint.
A square bracket [ indicates its inclusion and an open bracket ( indicates its
exclusion. For example, [c, d) ={x € R:c < x < d}. Unbounded intervals are
described using « and —oo. Examples are (-, a) ={x e R:x < a} and

[0, ©)={xeR:x>0}=R".
R": Collection of nonnegative elements of R ..

N : Collection of all positive integers.

7 . Collection of all integers.

Q: Collection of all rational numbers.

Q: Universal set (a set of all scenarios).

& Empty set. It has no members.

X € A: Membership. The element X is a member of the set A.
A c B: Set inclusion. Every member of A isa member of B .
{x e A:P(x)}: The set of elements of A with property P .
P(A) : The set of all subsets (power set) of A.

ANB={x: xe Aand x € B}. Intersection.

AUB ={x: xe Aor xe B}. Union.

A°: The complement of A. The elements of Q which are not members of A.
A°=Q\A

B\ A: The difference between the set A andB. B\A={xeB:x¢ A}=BNA®
3: There exists.

v : For all.

NA ={x:xeA forall a e A}={x: VaeA, xeA}

aeA

UA, ={x: xeA, forsome a e A}={x: Ja €A, xeA}

aeA

de Morgan’s law: (UA,)° =NAS, (NA,)° =UAS
Disjoint sets: A andB are disjointif ANNB=4.

! Based on Capinski, Kopp, and Kopp (2004).
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o Pairwise disjoint sets: A family of sets (A))
A,NA, =0 whenevera = f (a, f e A).

o0 Cartesian product: Cartesian product Cx D of sets C and D is the set of ordered
pairs CxD ={(c,d):ceC,d € D}.

o Afunction f :C — D : Asubset of CxD where each first coordinate determines
the second. Its scope is described by its domain D, ={ceC: 3d € D, (c,d) e f}
andrangeR, ={d e D: 3ceC, (c,d) e f}. Afunction f associates elements of

D with those of C, such that each ¢ € C has at most one imaged € D . This is
written asd = f (c).
o Indicator function : Indicator function 1. of the set C is the function

lc(x):{l for xeC

is pairwise disjoint if

aelA

0 for xeC.

Upper bound: u is an upper bound foraset Ac R if a<u forallae A.
Lower bound: | is a lower bound foraset Ac R if | <a forallae A.
sup A: Supremum (least upper bound) of A. Minimum of all upper bounds.

inf A: Infimum (greatest lower bound) of A. Maximum of all lower bounds.

O O 0O

[A.2] Measure’
[A.2.1] Null Sets

Consider an interval to define the length of a set. Let H be a bounded interval

H =[a, b], H =[a, b), H =(a, b], or H =(a, b). In each case the length of H is
I(H)=b-a. A one element set is null since 1({b}) =1([b, b]) =0 (The length of a single
point isO). Next, consider the length of a finite set B ={1, 5, 20}. The length of a finite
setis 0 sincel(B) =1(1)+1(5)+1(20) =0. Thus the length of a set can be calculated by
adding the lengths of its pieces.

Definition: Null set
Anull set Ac R is a set that may be covered by a sequence of intervals of arbitrarily

small total length, that is, a sequence {H, :n>1} of intervals given any ¢ >0 such that

AcUH

n

T (8

[N

k

SI(H,)<é.

Any one-element set {x} is null. For example, when H, = (x—g, x+§) and H, =[0, 0]

forn>2,

? Based on Capinski, Kopp, and Kopp (2004).
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jiuHJ=qu=%<a

More generally, any countable set A={x,, x,, ...} is null.

Theorem: Union of a Sequence of Null Sets
Let (N,),., be asequence of null sets, then their union

N=UN,
k=1
is also null.

Any countable set is null since it is quite sparse when compared with an interval and it
does not contribute to its length.

[A.2.2] Outer Measure

Definition: (Lebesgue) Outer Measure
The (Lebesgue) outer measure of any set A< R is the non-negative real number

m*(A)=infZ,
where

ZAZ{ZKHn): H, are intervals, Angn}-

n=1 n=1

The outer measure is the infimum (greatest lower bound) of length of all possible covers
of A.

Theorem
Ac R isanull setifandonly if m*(A)=0.

Note thatm* () =0, m*({x}) =0 foranyxe R,m*(Q)=0,andm*(Y)=0 forany
countable Y .

Proposition
IfAcB, m*(A)<m*(B).

This means that m* is monotone: the larger the set, the greater its outer measure.

Theorem
The outer measure of an interval is equal to its length.

Theorem
Outer measure is countably subadditive, i.e. for any sequence of sets {B,}

m*(UB,) <> m*(8,).
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When an interval is shifted along the real line, there is no change in its length:
I([c, d])=I([c+u, d+u])=d —c.

Proposition
Outer measure is transition invariant,

m*(A)=m*(A+u)
where AcR,ucR,and A+u={a+u: ae A}.

[A.2.3] Lebesgue Measurable Sets and Lebesgue Measure

Consider the class of good sets for which outer measure is countably additive:
m* ’ B,)= 3 m* (B
(UB)=2m*(8)

for pairwise disjoint (B,).

Definition: Lebesgue Measurability
A set B R is (Lebesgue) measurable if for every set Ac R we have

m*(A)=m*(ANB)+m*(ANB®)
and we write Be M.

Theorem
Any null set is measurable. Any interval is measurable.

Theorem: Fundamental Properties of the Class M of All Lebesgue-Measurable
Subsets

(i) ReM.

(i) If Be M, then B¢ e M.

(i) If B, e M forall n=1,2,..., then U;_ B, e M.

n=1"n

If B,e M forall n=1,2,... and BJ.ﬂBk = for j=k,then

m*(UB,) =3 m*(8,).

A family of sets is a o -field if it contains the base set and is closed under complements
and countable unions. Thus, theorem above means that M is a o -field. A [0, «]-valued
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function defined on a o -field is called a measure if it satisfies the theorem above for
pairwise disjoint sets.

More general approach to measure theory is to begin with the above theorem as axioms.
Start with a measure space (Q, F, u) where Q is an abstractly given set (a set of given

scenarios), Fisa o -field of subsets of Q, and x: F [0, ] is a function satisfying the
above theorem.

Proposition
IfB, e M, k=12,..., then

B=ﬁBkeM.
k=1

M is closed under countable unions, countable intersections, and complements. M
contains intervals and all null sets.

Summary: Lebesgue Measure
Lebesgue measure m: M [0, 0] is a countably additive set function defined on the o -

field M of measurable sets. Lebesgue measure of an interval equals its length. Lebesgue
measure of a null set is zero.

[A.2.4] o -field®

Let Q be an arbitrary set and F be a family of subsets of Q, and A be a set of R?. F
is said to be a o -field on Q, if it satisfies:

(1) Qe F, DeF (Itcontains empty set.)
(2) If A e F for n=1,2,...(disjoint A)),then | J_ A eF and (] A eF.

Stability under unions and intersections.
(3) If Ae F,then A® e F (It contains the complements of every element.).

(Q, F) is called a measurable space.

Let B be asubset of A, i.e. B A, and the measure of a subset B be a positive finite
(possibly infinite) number, #(B) €[0,o]. B is said to be a measurable set. Properties of

measurable sets include:

1. Anempty set & has measureQ, i.e. u()=0.
2. Additive property: If B and C are disjoint measurable sets, the measure of the

union B[ JC is u(B| JC) = u(B)+ (C).

¥ Based on Cont and Tankov (2004).
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3. o -additivity: Let (B,),_, be a infinite sequence of disjoint measurable subsets.
Then:

w(JB,)=> u(B,).

nx>1 n=1

4. Itis possible that the measure of a set or subset is infinite, i.e. x(A) =0 and

u(B)=o0.
5. Ifaset A isfinite (i.e. u(A)<oo) for any measurable set B, the measure of the

complement B¢ (B[ JB® =A)is u(B®) = u(A)- u(B).

[A.2.5] Borel o-Field

Definition: Borel o-field
B=N{F:F isa o-field containing all intervals}.

Borel o -field is the collection of all Borel sets on R® which is denoted by B(R") . Borel
o -field is the o -field generated by the open sets inR® . In other words, it is the smallest
o -field containing all open sets inR® . A real-valued function f(x) on R" is said to be

measurable if it is B(R®) -measurable.

[A.2.6] Probability

Lebesgue measure restricted to [0,1] is a probability measure. We select a number from
[0,1] at random, restrict Lebesgue measure m to the interval B =[0,1], and consider the
o -field of M, of measurable subsets of [0,1]. m,,,, is a probability measure because it

is a measure on M, ;, with total mass 1.

Definition: Probability Space and Probability Measure (Q,F ,P)

Let €2 be an arbitrary set (a set of scenarios), F be a o -field of subsets of (2, and P be a
mapping from F intoR. Let A be aset of R?. A triplet (Q, F,P) is said to be a
probability space and P is said to be a probability measure if it satisfies the conditions:

(1) P(€2) =1. (A probability space is a measure space with total mass1.)
(2) 0<P(A)<1and P(D)=0.
(3) If A, € F for n=1,2,...and they are disjoint (i.e. A, N A, = for n=m),

then P(J" A)=>"" P(A).

Let B be an event which is a measurable set B € F . A probability measure P assigns a
probability between 0 and 1 to each event:
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P: F —[0,1]
B P(B).

If two probability measures P and Q on (Q, F) define the same impossible events, they
are said to be equivalent:

P-~Q < [VBeF,P(B)=0< Q(B)=0].

Definition: Random Variable
Consider a probability space (Q, F,P). A mapping X from Q intoR?, i.e.
X:Q—RY, issaid to be an R -valued random variable if it is F -measurable:

{w: X (w) € B}e F foreach BeB(R?).

We can interpret that X () is the outcome of the random variable when the scenario @
happens. Probability measures on B(R") are said to be distributions (laws) onRR? .

Definition: Property A Almost Surely (a.s.)
A random variable X is said to have a property A almost surely (or with probability1), if
there is Q, € F with P(Q),) =1 such that X (@) has the property A for every m € Q.

Definition: Conditional Probability
Let P(B) > 0. The conditional probability of the event A given B is
P(ANB)

P(A|B) = B(B)

Given some disjoint hypotheses, the probability of an event can be calculated by means
of conditional probabilities:

P(A)= Y P(AO)P(O)

where O, are pairwise disjoint events such that U;,0, € Q and P(O,) #0.

Definition: Independence
Let X; bean R -valued random variable for j =1,...,n. The family {X,,..., X} is said

to be independent if, for every B, € B(R"):

P(X,eB,,... X, eB )=P(X, €B,)..P(X, €B,).
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We often say that X,,..., X, are independent rather than saying that the family
{X,,..., X, } is independent.

[A.3] Stochastic Process

A stochastic process {X,} is a family {X,}, .., of random variables on R? defined on a
common probability space (Q2, 7, P) . For any increasing sequence of time
0<t <t, <...<t,, P(X(t)€eB,..., X(t,) € B,) determines a probability measure on

B((R")") . Sample function (path) of {X,} is X (t,®).

Let {X,} and {Y,} be two stochastic processes. {X,} and {Y,} are said to be identical in
law:

{X3d {"},
if the systems of their finite-dimensional distributions are identical.

A stochastic process {X,} on R? is said to be continuous in probability (stochastically
continuous) if, forevery t>0 and £>0:

limP(X, - X,|>¢)=0.

st

[A.3.1] Filtration (Information Flow)

An increasing family of o -fields (7)o, :Vt 2520, 7 < £ < F is called a filtration
or information flow on (Q, F,P) . We can interpret 7, as the information known at time
t. F, increases as time progresses.

[A.3.2] Non-anticipating (Adapted) Process

A stochastic process (X,),4o 1, IS said to be non-anticipating with respect to the filtration
(F)iqory OF JF; -adapted if the value of X, is revealed at time t for eacht [0, T].

[A.4] Martingales
[A.4.1] General Concept
Consider a trend of a time series of a stochastic process. A stochastic process is said to be

a martingale if its time series have no trend. A process with increasing trend is called a
submartingale and a process with decreasing trend is called a supermartingale.
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Definition: Martingale
Consider a probability space (2, F,P) with an filtration (information flow) 7 . A cadlag

process (X,).po, 1, 1S said to be a martingale with respect to its filtration 7 and the

probability measure PP if X is nonanticipating (adapted to 7, ), E[|Xt|] is finite for any
te[0, T] and:

vs>t, E[X|R]=X,.

The best prediction of a martingale’s future value is its present value. The definition of
martingale makes sense only when the underlying probability measure P and the
information flow (%), have been specified.

The fundamental property of a martingale process is that its future variations are
completely unpredictable with the information flow 7, :

vu >0, E[x,, —%|F]1=E[X,,

F]-Elx|F]=x -x =0.

Example of Continuous-Time Martingale 1H?
Let (X)o7 D€ @ continuous stochastic process whose increments are normally

distributed. Let A be a small time interval. Then:

AX, ~ N(uA,c°A)
Vs #t, E[(AX, — pA)(AX, — uA)] = 0.

Consider an expectation with the filtration F, and with respect to a probability
distribution described above:

t+u

Yu>0, X :Xt+t dX,

t+u

ELX,, 1= EDX, + [ X, 1= EDX, A1+ B[ 6X, [ ] = X, + 2 X..

thu

Obviously, (X,),4o 1, IS not a martingale. But the process (Y,), o1 :
Y, =X, —uu,

is a martingale since:

E[YH” |£] = E[XH“ —IIJU|£] = E[Xt +(Xt+u - Xt)_:uu|‘¢t.]

* Based on Neftci (2000).
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=E[Xt|f£]+E[X _Xt|ft.]+E[_:uu|‘;Et.]=Xt+:uu_/uu:Xt'

t+u

Example of Continuous-Time Martingale 2) Standard Brownian Motion Process
Consider a standard Brownian motion process (B,),, r; defined on some probability

space (Q2, 7, P) . Standard Brownian motion is a continuous adapted process with
properties that B, =0, increments B, —B, =0 for 0 <s <t are independent of ¥, and are
normally distributed with mean 0 and variance t —s. Obviously, (B,), 1; is
martingale:

vu>0, B, =B+ dB,

t+u t+u
E[Bt+u |ft.] = E[Bt +_[t dBv |]:t] = E[Bt |ft]+ E[L dBv |}:] = Bt +0= Bt .
[A.4.2] Martingale Asset Pricing

Most of financial asset prices are not martingales (i.e. are not completely unpredictable).
Consider a risky stock price S, attimet and let r be the risk-free interest rate. In a small

time interval A risk-averse investors expect S, to grow at some positive rate. This can be
written as under actual probability measure P :

EIP[S'HA] > St )

Obviously, S, is not a martingale. To be more precise risk-averse investors expect S,
to grow at a rate greater than r:

EtP [eimstm] >,

The stock price discounted by the risk-free interest rate e ™S
P.

.o 1S Not martingale under

But interestingly, non-martingales can be converted to martingales by changing the
probability measure. We will try to find an equivalent probability measure Q (called

risk-neutral measure) under which the stock price discounted by the risk-free interest rate
becomes martingale:
EtQ [e_rASHA] = St :

[A.4.3] Continuous Martingales, Right Continuous Martingales, Square-Integrable
Martingales
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Let {X,;0<t} be a continuous martingale. Continuous martingales have continuous
trajectories, whenA — 0:

P(AS, >¢)—>0 forall £>0.

It tells us when the time step becomes extremely small, the probability that the stock
price changes by some amount approaches zero. Example is a standard Brownian motion
process.

In contrast to continuous martingales, right continuous martingales basically change by
jumps. Compensated Poisson process is an example of right continuous martingales.

A continuous martingale {X,;0 <t} is said to be a continuous square integrable
martingale if X has a finite second moment:

E[X,’]<o.
[A.5] Poisson Process’

[A.5.1] Exponential Distribution

Suppose a positive random variable X follows an exponential distribution with
parameter A > 0. Its probability density function is:

f (x)=1e" forx>0.
The distribution function is:
F (X)=Pr(X <x)=1-e* for x>0.
Its mean and variance are:

1 1
E[X]== and Var[X]=—.
[X] p [X] 7

For example, the probability density function of an exponential random variable X with
A =0.01 is plotted below.

> Based on Cont and Tankov (2004).
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2=0.01, E[X]=100
0.0L [ T

0O 20 40 60 80 100 120 140
X

The exponential distribution has an important feature called memory-less property.
Suppose that the arrival time of a large earthquake, X , follows an exponential
distribution with mean 100 years. Consider a situation where s =10 years have passed

since the last large earthquake and let {X —s|X > s} be the remaining arrival time. Since
X and s are both positive,

Pr{X-s>xand X >s} Pr{X-s>x} Pr{X >x+s}

Pr{X —s>x|X >s}=

Pr{X >s} Pr{X > s} Pr{X >s}
C1-F(x+s)  1-(@1-et) e e (1-F, (X)L F(9)) _1F, (%)
LR 1-FK() =R 1-F(() "

=Pr{X > x}.
So the expected remaining arrival time of a next large earthquake is 100 years, i.e. the
exponential random variable X does not remember that 10years have passed since the
last large earthquake.

Memory-less property of exponential distribution
If a random variable X follows an exponential distribution,

VX,5>0, Pr{X >x+s|X >s}=Pr{X >x}.

If X isarandom time, the distribution of X —s given X > s is the same as the
distribution of X itself.

[A.5.2] Poisson Distribution

If (7,), ., are independent exponential random variables with parameter A, the random
variable forany t >0:

N, =inf{n>1> 7, >},
i=1
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follows a Poisson distribution with parameter At :

e M (At)"

vneN,P(N,=n)= |
n!

If X, and X, are independent Poisson variables with parameters 4, and 4, , then
X, + X, follows a Poisson distribution with parameter 4, + 4,. This indicates that a

Poisson random variable X is infinitely divisible, i.e. X can be divided into an arbitrary
number of i.i.d. random variables:

if X ~ Poisson(1),
vneN, X-= zi X i.i.d.Poisson(i).
n n

i1 N

[A.5.3] Compensated Poisson Process

A compensated Poisson process (N,),., is a centered version of a Poisson
process (N, )

N, =N, —At.
The mean and variance of a compensated Poisson process are:
E[N,]= E[N, - At] = At—At =0,
Var[N,]= E[N, 1= E[(N, — 2t)*]=Var[N,] = it .
Increments of N are independent and N isa martingale:

E[N, [N, ,s<t]=E[N, - N, +N|N,]= E[N, - N,]+ N,
= E[N,]-E[N,]+ N, =0-0+N, =N

(At),., called the compensator of a Poisson process (N,),., is the quantity which needs to
be subtracted in order to make the process a martingale.

Unlike a Poisson process, a compensated Poisson process is not integer-valued and not a
counting process.

A compensated Poisson process (Nvt)tZO behaves like a Brownian motion after rescaling
it by 1/ 4 because:
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N N
E[]=0 and Var[—]=t.
[z] [z]

Formally, when the intensity A of its jumps becomes larger, the compensated Poisson
process converges in distribution to a Brownian motion:

(%) = (B)iqor; When A —o.
t<[0,T]

[A.6] Other Distributions Used
[A.6.1] Gamma Function

Let ¢ be a complex number. The integral called gamma function:
r@:fﬁ@m
converges absolutely, if the real part of ¢ is positive. By integration by parts:
I'(c+1) =cI(c).
Since I'(1) =1, for all natural numbers n:
r'(n+1)=nl.
Properties of a gamma function which are often used in the process of calculation are:

I'(l—c)=-cI'(-c),

To) 1
ra-c) c'
I'l+c) e
rc)

I'(2+c) I'(2+c)I'(1+c)
r'c) TI(@+c) I(c)

=(1+c)c.

[A.6.2] Incomplete Gamma Function

The incomplete gamma function is defined by an indefinite integral of the same integrand
t*'e™". For xe R* and complex variablec, if the real part of ¢ is positive:
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I'(c,x)= J.wtcfle—tdt ’
7(c,X) = _[Oxtc’le’tdt ,
where T'(c, x) is when the lower limit of integration is variable and y(c, x) is when upper

limit of the integration is variable. Obviously, we have following relationship:

I'(c)=y(c,x)+I'(c,x)
I'(c)=T(c,0)
y(c,x) >TI'(c) as X—o.

[A.6.3] Gamma Distribution

Let X be a gamma distributed random variable with the shape parameter ¢ >0 and the
scale parameter (controls the tail behavior) A > 0. Its probability density function can be
expressed as:

/10
f(x)= x“e L.
F(C) x>0
c=3 and =2
0.5
0.4
80'3
[T
0.2
0.1
0
0 1 2 3 4 5

X

Figure A.6.1: The Gamma Density with c=3 and 4 =2

Its distribution function in terms of the incomplete gamma function is

FO = f(2)dz =%1X2O .

Its characteristic function ¢(w) for any @ € R is calculated as

1

#(0) = L[ (0](@) = fo e f (x)dx = E[e""] = ol

The mean, variance, skewness, and excess kurtosis of a gamma random variable are
follows:
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C
E[X]=—,
[X] P
c
Var[X]:?,
2
Skewness[X ]| =—

7

Excess Kurtosis[X ] = 6 :
C

A gamma distributed random variable X with the shape parameter ¢ >0 and the scale
parameter A >0 possesses the following properties:

o Suppose X,, X,, ..., X, are independent gamma distributed random variables
with parameters (c,, 4), (C,, 4), ..., (C,,4), then D" X, ~Gamma(}_’ ¢, 1).

o |If c=1, the gamma distribution reduces to an exponential distribution with
parameter 4.

c=1 and A=2

0.8

0.6
3

=04

0.2

0

0 1 2 3 4 5

X

Figure A.6.2: The Gamma Density with c=1 and AL =2

[A.7] Modified Bessel Functions: Modified Bessel Function of the First Kind I,(z)
and Second Kind K,(z)

Modified Bessel differential equation is the second-order ordinary differential equation of
the form

, d?y

z
dz?

+zﬂ—(z2 +v3)y=0.
dz
Its solutions can be expressed forn=0,1,2,...,

y= ai‘]n (—iZ) + a‘ZYn (—iZ)
=b1,(2) +b,K,(2),
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where J, (z) is called a Bessel function of the first kind of orderv, Y, (z) a Bessel
function of the second kind of orderv, 1,(z) a modified Bessel function of the first kind
of orderv, K,(z) a modified Bessel function of the second kind of orderv, and ve R".
The modified Bessel function of the first kind 1,(z) admits the series expansion

(Ezz)k v+k
|V(Z)=(12)v 4 => (2/2) for z>0and v>0,
2 " iokil(k+v+l) kIT(k+v+1)

which is the solution of the modified Bessel differential equation which is bounded when
z—>0.Forn=0,12,...

1..(2)=1,(2).

I,(z) has asymptotic behavior

z

e 1
1,(2)= 1+0(=)] when z—+wo,
J(2) «/ﬁ[ (Z)]
Iv(z)~(Z/2) when z—0.
r'(v+1)

T

6
N
=3

2

1

0o 1 6 7

Figure A.7.1: Plot of the modified Bessel functions of the first kind. 1 ,(z) for
v=123,4,5 from left to right.

The modified Bessel function of the second kind K, (z) admits the series expansion

Kv(z)=£M for z>0and v>0,
2 sin(zv)

which is the solution of the modified Bessel differential equation which is bounded when
Z — +oo . For all ordersv:
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K., (2)=K,(2).
I,(z) has asymptotic behavior:
L |z 1
K,(z)=e 1/2—[1+ o(=)] when z—+oo,
z z

K,(z)~—logz for v=0,
Kv(z)~%l“(v)(z/2)V for v>0.

0 1 2 3 4
z
Figure A.7.2: Plot of the modified Bessel functions of the second kind. K, (z) for
v=12,3,4,5 from left to right.

Ih(z)
o o

IN

N

[A.8] Ito Formula
[A.8.1] It6 Formula for Brownian Motion

Let B, ~ Normal(0,t) be a standard Brownian motion and f(B) be an arbitrary function

of a Brownian motion. Consider a very small time interval h. A Taylor series expansion
of a function f(B,,,) about a point B, is given by:

df (8) 1B L e g

dB? 2!
(Bt+h - Bt)3 +

f(Bt+h)_f(Bt): (Bt+h_Bt)+

B
L@ 1
dB® 3!

Thus:

n

Z( f (Btﬂ'h) — f (Bt+(j—l)h))

j=1

:( f (Bt+h)_ f(Bt))+( f (Bt+2h)_ f(Bt+h))+"'+( f (Bt+nh)_ f(BH(n—l)h))
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= T(Bew) — T(B)

df (B,) d2f(B) 1 d*f(B,) 1
= : (Bt+h_Bt) dB2 2|( t+h Btf"'Tgta(Bwh_Bt)g”'"'
df (B,.,,) d2f(B,,) 1 d*f(B,,) 1
+d—Bth(Bt+2h_Bt+h) deth (Bt+2h t+h)2 deth3|( t+2h
df (B, (hyyn) d*f (By,p ) 1
+%(Bt+nh t+(n—l)h) %2'( t+nh Bt+(n—l)h)2
d? f(Bunan) 1
+%3|( tnh Bt+(n—1)h)3+
L df(Bt+( “yn) 1. & d*f (B ayn)
; J ( t+jh t+(] 1)h) 2!; ngJ ( t+jh_Bt+(j—1)h)2
1. & d*f (B o)
+§Z dés‘“ = (Bt+jh t+(j—1)h)3+
j=1
Use the approximation:
dzf(Bt+(j—1)h) _ dzf(Bt) and d3f(Bt+(j—1)h) B d*f (B,)
2 - 2 3 - 3
dB dB dB dB
Thus,
0, df (B, ;i)
f(Bt+nh)_ f(Bt) = z%(Bﬂ—jh - Bt+(j—l)h)
j=1
L1d%(B) 1d°f(B) <
2| dBZ ;(Bﬁ-]h t+(]—1)h) | dB3 ;( t+]h t+(j—l)h)3+""
Note the following:

n df (B+('—1)h) t+at df
Z%(Btﬂ'h - Bt+(j—l)h) = .[t EdB '

=1 dB
1 df? (B) < 1 df? cteat 1 df?
21 dB? Z;‘( bein t+(j—1)h)2=§W : (dB)z_EFM
=
1 df? (B) <
3| dB? 21:( t+jh t+(j—1)h)3+---%0.
=

Therefore, we have the integral version of Itd formula for the Brownian motion:

t
® In the mean square IimitJ'O (dX)* =t.
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F(B..)— f(B) = Jmm df (B, )d zjt+At df *(B, )d

dB?

or in terms of time interval between 0 and t:

f(B)=f(B)+ Idf(B) S+2I;df (B) 4

dB?
Its differential version is:

df =idB
dB

l\)—h

—dt.

Q_Q_

Consider a simple example of f (B) = B*> where:

df d*f

—=2B and =2,
B B

Thus the function f (B) satisfies the stochastic differential equation (SDE):
df =2BdB +dt.’

[A.8.2] Wimott’s (1998) Rule of Thumb of 1t6 Formula for Brownian Motion

A Taylor series expansion of a function f (B +dB)about a point B is given by®:

f(B+dB)— f(B)_df(B)dB 1d° 1:(B)de

dB 2 dB?
o — df(B)dB 1d? f(ZB) dB?.
dB 2 dB

Since in the mean square Iimitj; (dX)? =t settingdB? = dt yields the 1t6 formula:

4 _9F(B) o 10 f(zB)dt
dB 2 dB

This is of course technically wrong, but it is very useful.

[A.8.3] It6 Formula for Brownian Motion with Drift

" In ordinary calculous (if B were deterministic variable), df =2BdB.
® Ignore higher order terms.
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Consider a function of a random variable V (S) and S is a Brownian motion with drift:
dS =a(S)dt+b(S)dB,

where the drift parameter a and the volatility parameter b depends on S . Using
Wilmott’s rule of thumb, the function V (S) satisfies the SDE:

RY
ds?

av =V gs Ly
as 0

dt.

In terms of a Bronwian motion B, the function V (S) satisfies the SDE:

, dAV

05 dt

dv =z—\8/(a(8)dt+b(5)dB)+%b(S)

= a(S)EJFEb(S) 457

dv—[ L 2d2vjdt+b(8)3—\S/dB.

[A.8.4] It6 Formula for Brownian Motion with Drift in Higher Dimensions
Consider a function of a random variable V (S,t) and S is a Brownian motion with drift
dS =a(S,t)dt +b(S,t)dB,

where the drift parameter a and the volatility parameter b depends on S and time t.
The function V (S,t) satisfies the SDE:

v =N+ Mg+ Lo OV gt
o es T 6

An example is that if S is a Brownian motion with drift of the form®:

dS = uSdt + oSdB

the function V (S,t) satisfies the SDE:

av =Yt N gs e Lors? Y gt
a7 5

[A.8.5] Itd Formula for Jump-Diffusion (Finite Activity Lévy) Processes

® Geometric Brownian motion.
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Let X be a jump-diffusion process of the form:

N,
X=X, + [ bds+[ o8, +Y AX,
i=1

where rb ds is a sum of a drift term, ItO' dB, is a stochastic integral of a

(multiplicative) Brownian motion process with E[I cldt] <o, and ZAX isa

i=1
compound Poisson Process. Drift and volatility processes b and o are continuous and
nonanticipating.

Let f:[0,T]xR — R be any C"* function. Then, the integral version of It formula for
jump-diffusion processes is:

F(X 1) - F(X,,0) = j{ﬁf(xs,s) baf(xs,s)}

OX
I , 0° 1‘(Xs,s)OI jtﬁf(XS,S)GSdB
0 OX
Z [f(X;_ +AX)—f(X 1.
{i=LT,
Its differential version becomes:
2
df(xt,t)_af(x“t)dt b af(x“t)dt at 0 f(x“t)dt
t OX 2 OX?
6f(x

T 4B w1 (X, +AX,) = F(X)].
OX

For more details, see Cont and Tankov (2004).

[A.8.6] It6 Formula for General (Finite and Infinite Activity) Scalar Lévy Processes

Let {X,;t >0} be a general scalar Lévy process with its characteristic triplet (¢*,v, 7)
and f:R — R beany C? function. Then, the integral version of It6 formula is:

f(X,)= f(0)< j“af(x)d j‘%dxs

+ 2, [F(X_+AX,) - f(XS_)—AXSM].

O<s<t
AX(#0
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Its differential version is:

df (X, )— A (Xt‘).

dX, + F(X,)— F(X_)=AX,

o azf(X ) af(Xt_)
ox? OX

The integral version of 1t6 formula in higher dimention is:

f(X,,t)= f(X,,0)= jmdx oy 8f(x .3) 622%]0'

For more details, see Cont and Tankov (2004).
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