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Abstract 
 
 
 
This sequel is designed as an introduction to Fourier transform option pricing for readers 
who have zero previous knowledge of Fourier transform. First part of this sequel is 
devoted for the basic understanding of Fourier transform and discrete Fourier transform 
using numerous examples and providing important properties. Second part of this sequel 
applies FT and DFT option pricing approach for three exponential Lévy models: Classic 
Black-Scholes model which is the only continuous exponential Lévy model, Merton 
jump-diffusion model (1976) which is an exponential Lévy model with finite arrival rate 
of jumps, and variance gamma model by Madan, Carr, and Chang (1998) which is an 
exponential Lévy model with infinite arrival rate of jumps. Some readers may question 
that what the need for FT option pricing is since all three models above can price options 
with closed form formulae. The answer is that these three models are special cases of 
more general exponential Lévy models. Options cannot be priced with general 
exponential Lévy models using the traditional approach of the use of the risk-neutral 
density of the terminal stock price because it is not available. Therefore, Carr and Madan 
(1999) rewrite the option price in terms of a characteristic function of the log terminal 
stock price by the use of FT. The advantage of FT option pricing is its generality in the 
sense that the only thing necessary for FT option pricing is a characteristic function of the 
log terminal stock price. This generality of FT option pricing speeds up the calibration 
and Monte Carlo simulation with various exponential Lévy models. It is no doubt to us 
that FT option pricing will be a standard option pricing method from now on.    
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[1] Introduction 
 
Many of the option pricing models assume that a stock price process {  
follows an exponential (geometric) Lévy process: 

;0 }tS t T≤ ≤

 
0 e tL

tS S= , 
 
where {  is a Lévy process. The reason of the popularity of exponential 
(geometric) Lévy models is its mathematical tractability which comes from the 
independent and stationary increments of Lévy processes. Classic Black-Scholes (BS) 
model chooses a Brownian motion with drift process which is the only continuous Lévy 
process as their choice of a (risk-neutral) Lévy process: 

;0 }tL t T≤ ≤

 
21

2t tL r t Bσ σ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

, 

 
where { ;0 }tB t T≤ ≤  is a standard Brownian motion process. This specification leads to a 
normally distributed conditional risk-neutral log return density:  
  

( )( )
( )

2
2

0

0 0 22

1ln /
21ln / exp

22

T

T

S S r T
S S

TT

σ

σπσ

⎡ ⎤⎧ ⎫⎛ ⎞− −⎢ ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭⎢ ⎥= −⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

Q F . 

 
BS call price can be simply calculated as the discounted value of the expected terminal 
payoff under risk-neutral measure : Q
 

                                        ( ) ( )0( , ) rT
T TK

C S T e S K S dS
∞−= −∫ Q F0 T ,                              (1.1) 

 

where ( )

2
2

0

0 22

1ln ln ( )
21 exp

22

T

T

T

S S r T
S

TS T

σ

σπσ

⎡ ⎤⎧ ⎫⎛ ⎞− + −⎢ ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭⎢ ⎥= −⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

Q F  which is a 

lognormal density.  
 
But even before BS model was developed, researchers knew that the empirical log return 
density is not normal, it shows excess kurtosis and skewness. Thus, all the option pricing 
models after BS (so called beyond BS) try to capture excess kurtosis and negative 
skewness of the risk-neutral log return density by the use of different techniques. 
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This sequel deals with Merton jump-diffusion model (we call it Merton JD model) and 
variance gamma model by Madan, Carr, and Chang (1998) (we call it VG model). These 
are both exponential Lévy models of different types. Merton’s choice of Lévy process is 
a Brownian motion with drift process plus a compound Poisson jump process which has a 
continuous path with occasional jumps: 
 

2

1
( )

2

tN

t t
i

L r k t B Yσ λ σ
=

= − − + + i∑ . 

 
Merton JD model can be categorized as a finite activity exponential Lévy model because 
the expected number of jumps per unit of time (i.e. intensityλ ) is finite and small. In 
other words, the Lévy measure  of Merton JD model is finite: ( )dx
 

( )dx < ∞∫ . 
 
The only but important difference between the BS and the Merton JD model is the 
addition of a compound Poisson jump process

1
tN

ii
Y

=∑ . Merton introduces three extra 
parameters λ  (intensity of the Poisson process), µ  (mean log stock price jump size), and 
δ  (standard deviation of log stock price jump size) to the original BS framework and 
controls the (negative) skewness and excess kurtosis of the log return density.      
 
Choice of Lévy process by Madan, Carr, and Chang (1998) is a VG process plus a drift: 
 

( )
21 ln 1 ; , ,
2t tL r t VG xσ κθκ θ

κ
⎧ ⎫⎛ ⎞⎪ ⎪≡ + − − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

σ κ

)

. 

 
A VG process ( ; , ,tVG x θ σ κ  is defined as a stochastic process { ;0 }tX t T≤ ≤  created by 
random time changing (i.e. subordinating) a Brownian motion with drift process tt Bθ σ+  
by a tempered 0-stable subordinator (i.e. a gamma subordinator) {  with unit 
mean rate: 

;0 }tS t T≤ ≤

 
( )

tt t SX S Bθ σ≡ + . 
 
A VG process ( ; , ,tVG x )θ σ κ  is characterized as a pure jump Lévy process with infinite 
arrival rate of jumps. In other words, the Lévy measure of a VG process has an infinite 
integral: 
 

( )x dx
∞

−∞
= ∞∫ . 

 
This means that a VG process has infinitely many small jumps but a finite number of 
large jumps. VG model introduces two extra parameters: One is variance rate parameter 
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κ  which controls the degree of the randomness of the subordination and the larger κ  
implies the fatter tails of the log return density. The other is the drift parameter of the 
subordinated Brownian motion process θ  which captures the skewness of the log return 
density.  
 
                                         Continuous Exponential Lévy models: No Jumps 
                                         Example: BS Model   
 
 
Exponential                      Finite Activity Exponential Lévy Models: Continuous with 
Lévy Models                    Occasional Discontinuous Paths 
                                         Example: Merton JD Model 
 
                                         Infinite Activity Exponential Lévy Models: Pure Jump Process 
                                         Example: VG Model   
 
Traditionally, both Merton JD call price and VG call price have been expressed as BS 
type closed form function using the conditional normality of both models. Merton JD call 
price can be expressed as the weighted average of the BS call price conditional on that 
the underlying stock price jumps i  times to the expiry with weights being the probability 
that the underlying jumps  times to the expiry. Because of the subordination structure i

( )
tt t SX S Bθ σ≡ +  of the VG process{ ;0 }tX t T≤ ≤ , the probability density of VG 

process can be expressed as the conditionally normal by conditioning on the fact that the 
realized value of the random time change by a gamma subordinator  with unit mean 
rate is S g : 

tS

t =
 

( )
2

22

( )1 exp
22
t

t t
x gVG x t S g

gg
θ

σπσ

⎧ ⎫−
= = = −⎨ ⎬

⎩ ⎭
. 

 
Using this conditional normality of VG process, the conditional call price can be obtained 
as a BS type formula after lengthy and tedious process of numerous changes of variables.   
 
The fact that a call price can be expressed as a BS type formula implies that the model 
has a closed form expression for the log return density ( )0 0ln( / )TS SQ F . Merton JD 
model has a log return density of the form:  
 

( )
2

2 2
0 0 00

( )ln( / ) ln( / ); ( ) ,
! 2

t i

Merton T Ti

e tS S N S S r k t i t i
i

λ λ σ λ µ σ δ
−

∞

=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑Q F + + , 
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where ( ) ( )2
1; , exp

22
x a

N x a b
bbπ

⎧ ⎫−⎪≡ −⎨
⎪ ⎪⎩ ⎭

⎪
⎬  which is a normal density. VG model has a 

log return density of the form: 
 

( )
( )

1 2
2 4 2 2

22

0 0 12 2/
2 2

2
2 exp

ln( / )
2/

T

TT
T

VG T TT

xx
xS S K

T

κ

κ
κ

σθ θ
κσ

σ σκ σ π κ θ
κ

−

−

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟+⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠= ⎜ ⎟ ⎜ ⎟Γ ⎜ ⎟ ⎜ ⎟+⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎝ ⎠

Q F , 

 

where 
2

0
1ln( / ) ln 1

2T Tx S S r tσ κθκ
κ

⎧ ⎫⎛ ⎞⎪≡ − + − −⎨ ⎜
⎪ ⎪⎝ ⎠⎩ ⎭

⎪
⎬⎟ . The existence of the closed form 

expression for the log return density ( )0 0ln( / )TS SQ F  enables the use of the equation 
(1.1) to calculate a call price.  
 
But Merton JD model and VG model are special cases of exponential Lévy models in the 
sense that more general exponential Lévy models do not have closed form log return 
densities ( )0 0ln( / )TS SQ F  or they cannot be expressed using special functions of 
mathematics. Therefore, we cannot price plain vanilla options using the equation (1.1). 
How do we price options using general exponential Lévy models? The answer is to use a 
very interesting fact that characteristic functions (CF) of general exponential Lévy 
processes are always known in closed-forms or can be expressed in terms of special 
functions of mathematics although their probability densities are not. There is one-to-one 
relationship between a probability density and a CF (i.e. CF is just a Fourier transform of 
a probability density with FT parameters ) and both of which uniquely determine a 
probability distribution. If we can somehow rewrite (1.1) in terms of a characteristic 
function of the conditional terminal stock price 

(1,1)

0TS F  (i.e. log of 0TS F  to be more 

precise) instead of its probability density 0( TSQ F ) , we will be able to price options in 
general exponential Lévy models.  
 
The purpose of this sequel is to introduce the basics of Fourier transform option pricing 
approach developed by Carr and Madan (1999) to the readers who have no previous 
knowledge of Fourier transforms. Carr and Madan (1999)’s contribution was rewriting 
the equation (1.1) in terms of a CF of the conditional log terminal stock price 
( )0ln TSφ F : 

 

                             
( )

( )2 2

( 1)
( , )

2 2

rTk
Ti k e ieC T k e d

i

α
ω φ ω α

1
ω

π α α ω α ω

−− ∞ −

−∞

− +
=

+ − + +∫ .                       (1.2) 
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And approximate the equation (1.2) using DFT (i.e. simply by taking a sample of size 
): N

 

                        ( ) ( )exp( )exp exp / 2
( ) n

T n

k i n i N
C k

k
α π π− −

≈
∆

         

                                               ( ){ } (
1

0

1 exp ( ) exp 2 /
N

j T j
j

w i j i jn
N

π ψ ω π
−

=

× −∑ )N ,             (1.3) 

 
which improves significant amount of computational time. This simple operation is 
critically important in the pricing with general exponential Lévy models. Why? Because 
without Fourier transform pricing approach, we cannot price options in general 
exponential Lévy models or we have to spend tremendous amount of energy just to come 
up with closed form solution like the VG model. The excellence of FT option pricing is 
its simplicity and generality and FT pricing works as long as a CF of the conditional log 
terminal stock price 0TS F  is obtained in closed form.  
 
The structure of this sequel is as follows. Chapter 2 provides readers with minimal 
necessary knowledge before learning Fourier transform. Chapter 3 defines FT and then, 
numerous examples are presented in order to intuitively understand the meaning of FT. 
We also present the important properties of FT. These are not necessary for the 
beginners, but we believe these will help readers as they proceed to more advanced 
integral transform pricing methods. In Chapter 4, a characteristic function is defined and 
its properties are discussed. We show, using several examples, how to obtain moments by 
using a CF (or characteristic exponent). Moment generating function is also dealt. 
Chapter 5 gives an introduction to the discrete Fourier transform which is just an 
approximation of FT. This approximation is done by sampling a finite number of points 

 of a continuous time domain function  with time domain sampling interval  
(seconds) and sampling a finite number of points  of a continuous FT 
N ( )g t t∆

N ( )ωG  with 
angular frequency sampling interval ω∆  Hz. In other words, both the original continuous 
time domain function  and the original continuous FT ( )g t ( )ωG  are approximated by a 
sample of  points. The use of DFT improves the computation time by a tremendous 
amount. Following Chapter 3, the examples of DFT and its properties are examined. In 
Chapter 6, a Lévy process is defined and its properties are discussed. We frequently use 
Lévy-Khinchin representation to obtain a CF of a Lévy process. Chapter 7 revisits the 
Black-Scholes model as an exponential Lévy model and its basic properties are reviewed. 
Chapter 8 gives Carr and Madan (1999)’s general FT call price and our version of general 
DFT call price. These general FT and DFT call prices are applied in the BS framework 
which shows that the original BS, BS-FT, and BS-DFT call prices are identical as 
expected. Chapter 9 illustrates the derivation of Merton JD model, factors which 
determine the skewness and the excess kurtosis of the log return density, Lévy measure 
of jump-diffusion process, and the traditional (i.e. PDE and martingale approach) option 
pricing with Merton JD model. Chapter 10 applies the general FT and DFT call price to 
the Merton JD model. This is simply done by substituting the CF of Merton JD log 
terminal stock price. Chapter 11 presents the derivation of VG model, factors which 

N
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determine the skewness and the excess kurtosis of the log return density, Lévy measure 
of VG process, and its closed form and numerical call price. Chapter 12 is an application 
of the general FT and DFT call price to the VG model which is simply done by 
substituting the CF of VG log terminal stock price. Chapter 13 gives concluding remarks.         
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[2] Prerequisite for Fourier Transform 
 
In this section we present prerequisite knowledge before moving to Fourier transform. 
 
[2.1] Radian 
 
Radian is the unit of angle. A complete circle has 2 6.28319π =  radians which is equal to 

. This in turn means that one radian is equal to: 360°
 

1 radian 360 57.2958
2π

°
= = ° . 

 
[2.2] Wavelength 
 
Wavelength λ  of a waveform is defined as a distance ( ) between peaks or troughs. In 
other words, wavelength is the distance at which a waveform completes one cycle: 

d

 

                                                             distance
1 cycle

λ ≡ .                                                     (2.1) 

 
Let v  be the speed (distance/second), and  be the frequency (cycles/second, explained 
soon) of a waveform. These are related by: 

f

 

                                        (distance/second)(distance / cycle)
(cycles/second)

v
f

λ ≡ .                              (2.2) 

Distance

tnemecalpsiD

 
Figure 2.1: Illustration of Wavelength λ. 
 
[2.3] Frequency, Angular Frequency, and Period of a Waveform  
 
Period T  of oscillation of a wave is the seconds (time) taken for a waveform to complete 
one wavelength: 
 

 7



                                                   seconds
1 wavelength (cycle)

T ≡ .                                           (2.3) 

 
Period is by definition a reciprocal of a frequency. Let  be the frequency of a wave. 
Then: 

f

 

                                         1(seconds/cycle)
(cycles/second)

T
f

≡ .                                 (2.4) 

 
Frequency of a wave measures the number of times for a wave to complete one 
wavelength (cycle) per second: 

f

 

                                           number of wavelengths (cycles)
1 second

f ≡ .                                 (2.5) 

 
By definition,  is calculated as a reciprocal of the period of a wave: f
 

                                         1(cycles/second)
(seconds/cycle)

f
T

≡ .                                 (2.6) 

 
Frequency  is measured in Hertz (Hz). 1 Hz wave is a wave which completes one 
wavelength (cycle) per second. The frequency of the AC (alternating current) in U.S. is 
60 Hz. Human beings can hear frequencies from about 20 to 20,000 Hz (called range of 
hearing). Alternatively, frequency can be calculated using the speed  and wavelength 

f

v λ  
of a wave as: 
 

                                          (distance/second)(cycles/second)
(distance/cycle)

vf
λ

≡ .                              (2.7) 

 
Angular frequency (also called angular speed or radian frequency) ω  is a measure of 
rotation rate (i.e. the speed at which an object rotates). The unit of measurement for ω  is 
radians per 1 second. Since one cycle equals 2π  radians, angular frequency ω  is 
calculated as: 
 

                       2 (radians)(radians/second) 2 (cycles/second)
(seconds/cycle)

f
T

πω π= = .             (2.8) 
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Figure 2.2: Definition of Angular Frequency. 
 
Consider a sine wave  which is illustrated in Figure 2.3 for the time 
between 0 and 2 seconds. This sine wave has frequency 

(( ) sin 2 (5)g t tπ= )
5f = Hz (5 cycles per second) 

and angular frequency 10ω π=  Hz (10π  radians per second). Its period is  
1 1 0.2

5
T

f
≡ = =  (seconds/cycle).  

0 1 2
time H Lseconds

-1

-0.5

0

0.5

1

gH
tL
=

nis
H2
π

t5
L

 
( )( ) sin 2 (5)g t tπ= . Figure 2.3: Plot of 5 Hz Sine Wave

 
[2.4] Sine and Cosine 
 
Let θ  be an angle which is measured counterclockwise from the -axis along an arc of a 
unit circle. Sine function (

x
sinθ ) is defines as a vertical coordinate of the arc endpoint. 

Cosine function ( cosθ ) is defined as a horizontal coordinate of the arc endpoint. Sine 
and cosine functions sinθ  and cosθ are periodic functions with period 2π  as illustrated 
in Figure 2.5: 
 

( )sin sin 2 hθ θ π= + , 
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( )cos cos 2 hθ θ π= + , 
 
where  is any integer. h

 
Figure 2.4: The Definition of Sine and Cosine Function with Unit Circle 

−2 π −π 0 π 2π
Angle θ

-1

-0.5

0

0.5

1

cosHθL

sinHθL

 
Figure 2.5: Sine and Cosine Function sin(θ) and cos(θ). 
 
Following Pythagorean theorem, we have the identity: 
 
                                                           2 2sin cos 1θ θ+ = .                                               (2.9) 
 
[2.5] Derivative and Integral of Sine and Cosine Function 
 
Let sin( )x  and cos( )x  be sine and cosine functions for x∈R . The derivative of sin( )x  
can be expressed as: 
 

                                                           sin( ) cos( )d x x
dx

= .                                              (2.10) 

 
The derivative of cos( )x  can be expressed as: 
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                                                          cos( ) sin( )d x x
dx

= − .                                            (2.11) 

 
The integral of sin( )x  can be expressed as: 
 

                                                     sin( ) cos( )x dx x
∞

−∞
= −∫ .                                           (2.12) 

 
Refer to any graduate school level trigonometry textbook for proofs. 
 
[2.6] Series Definition of Sine Function and Cosine Function 
 
For any : x∈R
 

                                  
3 5 7

2 1

0

( 1)sin( ) ...
3! 5! 7! (2 1)!

n
n

n

x x xx x x
n

∞
+

=

−
= − + − + =

+∑ ,                       (2.13) 

                                  
2 4 6

2

0

( 1)cos( ) 1 ...
2! 4! 6! (2 )!

n
n

n

x x xx x
n

∞

=

−
= − + − + =∑ .                              (2.14) 

 
Refer to any graduate school level trigonometry textbook for proofs. 
 
[2.7] Euler’s Formula 
 
Euler’s formula gives a very important relationship between the complex (imaginary) 
exponential function and the trigonometric functions. For any x∈R : 
 
                                                       .                                            (2.15)       cos( ) sin( )ixe x i= + x

x

 
From (2.15), variants of Euler’s formula are derived: 
 
                                                       ,                                           (2.16) cos( ) sin( )ixe x i− = −
                                                       ,                                               (2.17) 2cos( )ix ixe e x−+ =
                                                       .                                               (2.18) 2 sin( )ix ixe e i x−− =
 
Consider sine and cosine functions with complex arguments . Then, Euler’s formula 
tells: 

z

 

                                     2 1

0

( 1)sin Im( )
(2 1)! 2

n iz
iz n

n

e ez e z
n i

iz−∞
+

=

−
= = =

+∑ − ,                          (2.19) 

                                     2

0

( 1)cos Re( )
(2 )! 2

n iz
iz n

n

e ez e z
n

iz−∞

=

−
= = =∑ + .                                (2.20) 
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Refer to any graduate school level trigonometry textbook for proofs. 
 
[2.8] Sine Wave: Sinusoid 
 
Sine wave is generally defined as a function of time  (seconds): t
 
                                                     ( )0( ) sin 2g t a f t bπ= + ,                                           (2.21) 
 
where  is the amplitude, a 0f  is the fundamental frequency (cycles/second, Hz), and b  
changes the phase (angular position) of a sinusoid. In terms of a fundamental angular 
frequency 0ω  (radians/second), a sine wave is defined as (i.e. 0 02 fω π≡ ): 
 
                                                        ( )0( ) sing t a t bω= + .                                            (2.22) 
 
Figure 2.6 illustrates the role of a fundamental frequency 0f . When a fundamental 
frequency 0f  doubles from 1 (1 cycle /second) to 2 (cycles/second), its period becomes 
half from 1 to 1/2 seconds as illustrated in Panel A.  

0 1 2 3
time t

-1

-0.5

0

0.5

1

gH
tL

sinH2πH2LtL

sinH2πH1LtL

 
A) 1 Hz sine wave  versus 2 Hz sine wave(sin 2 (1)tπ ) ( )sin 2 (2)tπ . 

0 1 2
time t

-1

-0.5

0

0.5

1

gH
tL

 
B) 30 Hz sine wave . ( )sin 2 (30)tπ
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Figure 2.6: Plot of a Sine Wave ( )( ) sin 2g t ftπ=  with Different Fundamental 
Frequency 0f . 
 
The role of amplitude  is to increase or decrease the magnitude of an oscillation. Figure 
2.7 illustrates how magnitude of an oscillation changes for three different amplitudes 

1/2, 1, and 2. In audio study amplitude a  determines how loud a sound is.  

a

a =

0 1 2 3
time t

-2

-1

0

1

2

gH
tL

2sinH2πtL

sinH2πtL

1
cccc
2

sinH2πtL

 
Figure 2.7: Plot of a 1 Hz Sine Wave ( )( ) sin 2g t a tπ=  with Different Amplitudes a = 
1/2, 1, and 2. 
 

Consider three 1 Hz sine waves sin(2 )tπ , sin(2 )
2

t ππ + , and sin(2 )
2

t ππ − . A sine wave 

sin(2 )tπ  has a phase 0 , sin(2 ) cos(2 )
2

t tππ π+ =  has a phase / 2π , and sin(2 )
2

t ππ −  has 

a phase / 2π− . The role of a parameter b  is to change the position of a waveform by an 
amount  as illustrated in Figure 2.8. b

-1 0 1
time t

-1

-0.5

0

0.5

1

gH
tL

sinH2πt− πcccc
2
L

sinH2πt+ πcccc
2
L

sinH2πtL

 
Figure 2.8: Plot of a 1 Hz Sine Wave ( )( ) sin 2g t t bπ= +  with Different Phase b = 0, 
π/2, and - π/2. 
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This means that  is a sinusoid at phase zero and  
is a sinusoid at phase

( 0( ) sin 2g t a f tπ= ) ( )0( ) cos 2g t a f tπ=
/ 2π . For the purpose of defining a sinusoid, it really does not 

matter whether ( )sin or  is used.   ( )cos
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[3] Fourier Transform (FT) 
 
[3.1] Definition of Fourier Transform 
 
We consider Fourier transform of a function  from a time domain  into an angular 
frequency domain 

( )g t t
ω  (radians/second). This follows the convention in physics. In the 

field of signal processing which is a major application of FT, frequency  (cycles 
/second) is used instead of 

f
ω . But this difference is not important because ω  and  are 

measuring the same thing (rotation speed) in different units and related by (2.8): 
f

 
                                                                2 fω π= .                                                        (3.1) 
 
Table 3.1 gives a clear-cut relationship between frequency  and angular frequencyf ω . 
 

Table 3.1: Relationship between Frequency  and Angular Frequency f ω  
Frequency  (cycles/second)                     Angular Frequency f ω  (radians/second) 
                       1 Hz                                                            2 360π = °  Hz 
                      10 Hz                                                        20 360 10π = °×  Hz 
                     100 Hz                                                      200 360 100π = °×  Hz 
 
We start from the most general definition of FT. FT from a function  to a function ( )g t

( )ωG  (thus, switching domains from t  to ω ) is defined using two arbitrary constants  
and b  called FT parameters as: 

a

 

                                   [ ] 1( ) ( ) ( ) ( )
(2 )

ib t
a

b
g t e g t dtωω ω

π
∞

− −∞
≡ ≡ ∫G F .                           (3.2) 

 
Inverse Fourier transform from a function ( )ωG  to a function  (thus, switching 
domains from 

( )g t
ω  to t ) is defined as (i.e. the reverse procedure of (3.2)): 

 

                                  [ ]1
1( ) ( ) ( ) ( )

(2 )
ib t

a

b
g t t e dωω ω ω

π
∞−

+ −∞
≡ ≡ ∫F G G− .                      (3.3) 

 
For our purpose which is to calculate characteristic functions, FT parameters are set as 

. Thus, (3.2) and (3.3) become: ( , ) (1,1)a b =
 

                                      ,                                         (3.4) [ ]( ) ( ) ( ) ( )i tg t e g t dtωω ω
∞

−∞
≡ ≡ ∫G F

                                      [ ]1 1( ) ( ) ( ) ( )
2

i tg t t e dωω ω ω
π

∞− −

−∞
≡ ≡ ∫F G G .                             (3.5) 

 
Euler’s formula (2.15) is for : t∈R
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cos sinite t i= + t . 
 
Thus, the FT of (3.4) can be rewritten as: 
 

[ ]( ) ( ) ( ) cos( ) ( ) sin( ) ( )g t t g t dt i t g t dtω ω ω ω
∞ ∞

−∞ −∞
≡ ≡ +∫ ∫G F . 

 
Intuitively speaking, FT is a decomposition of a waveform  (i.e. in time domain t ) 
into a sum of sinusoids (i.e. sine and cosine functions) of different frequencies (Hz) 
which sum to the original waveform. In other words, FT enables any function in time 
domain to be represented by an infinite number of sinusoidal functions. Therefore, FT is 
an angular frequency representation (i.e. different look) of a function  and 

( )g t

( )g t ( )ωG  
contains the exact same information as the original function .  ( )g t
 
We can check if the inverse Fourier transform (3.5) is true: 
 

( )1 1( ) ( )
2 2

i t i i te d e g d eω ωτ dωω ω τ τ
π π

∞ ∞ ∞− −

−∞ −∞ −∞
=∫ ∫ ∫G ω  

                                                              ( )( )1 ( )
2

i tg e dω τ dτ ω τ
π

∞ ∞ −

−∞ −∞
= ∫ ∫  

                                                              ( ) ( )g t dτ δ τ τ
∞

−∞
= −∫  

                                                              ( )g t= , 
 
where we used the identity of Dirac’s delta function (3.12) which is proven soon. 
 
Although FT parameters ( ,  are used for calculating characteristic functions, 
different pairs of  are used for other purposes. For example,  in pure 
mathematics: 

) (1,1)a b =
( , )a b ( , ) (1, 1)a b = −

 

                                           , [ ]( ) ( ) ( ) ( )i t
t g t e g t dtωω ω

∞ −

−∞
≡ ≡ ∫G F

                                           [ ]1 1( ) ( ) ( ) ( )
2

i tg t t e dω
ω ω ω ω

π
∞−

−∞
≡ ≡ ∫F G G . 

 
Modern physics uses : ( , ) (0,1)a b =
 

                                           [ ] 1( ) ( ) ( ) ( )
2

i t
t g t e g t dtωω ω

π
∞

−∞
≡ ≡ ∫G F , 

                                           [ ]1 1( ) ( ) ( ) ( )
2

i tg t t e dω
ω ω ω ω

π
∞− −

−∞
≡ ≡ ∫F G G . 

 
In the field of signal processing and most of the standard textbooks of FT, FT parameters  
( , ) (0, 2 )a b π= −  are used (i.e. they use frequency  instead of angular frequencyf ω ): 
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                                           [ ] 2( ) ( ) ( ) ( )ift
tf g t f e g t dtπ∞ −

−∞
≡ ≡ ∫G F ,                                (3.6) 

                                           .                               (3.7) 1 2( ) [ ( )]( ) ( )ift
fg t f t e f dfπ∞−

−∞
≡ ≡ ∫F G G

 
We use (3.6) and (3.7) frequently because this definition of FT is mathematically simpler 
to handle for the purpose of proofs.  
 
In general, Fourier transform ( )ωG  is a complex quantity: 
 
                                          ( )( ) Re( ) Im( ) ( ) ii e θ ωω ω ω ω= + =G G ,                                 (3.8) 
 
where Re( )ω  is the real part of the FT ( )ωG , Im( )ω  is the imaginary part of the FT, 

( )ωG  is the amplitude of a time domain function , and ( )g t ( )θ ω  is the phase angle of 

the FT ( )ωG . ( )ωG  and ( )θ ω  can be expressed in terms of Re( )ω  and Im( )ω  as: 
 
                                                 2 2( ) Re ( ) Im ( )ω ω= +G ω ,                                         (3.9) 

                                                 1 Im( )( ) tan
Re( )

ωθ ω
ω

− ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
.                                                (3.10) 

 
[3.2] Examples of Fourier Transform 
 
Before discussing important properties of FT, we present representative examples of FT 
in this section to get the feeling of what FT does. 
 
[3.2.1] Double-Sided Exponential Function 
 
Consider a double-sided exponential function with ,A α ∈R : 
 

 ( ) tg t Ae α−= . 
 
From (3.4): 
 

( )0

0
( ) ( ) ti t i t i t t i t te g t dt e Ae dt A e e dt e e dtαω ω ω α ωω

∞ ∞ ∞− −

−∞ −∞ −∞
≡ = = +∫ ∫ ∫ ∫G α  

                 2 2

1 1 2( ) AA
i i

αω
α ω α ω α ω
⎛ ⎞= + =⎜ ⎟+ − +⎝ ⎠

G . 

 
When 1A =  and 3α = , the time domain function 3   ( ) tg t e−=  and its Fourier transform 

2

6( )
9

ω
ω

=
+

G  is plotted in Figure 3.1.  
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3   ( ) tg t e−= . A) Plot of a double-sided exponential function
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B) Plot of FT of 3   ( ) tg t e−=  in Angular Frequency Domain, ( )ωG . 
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C) Plot of FT of 3   ( ) tg t e−=  in Frequency Domain, . ( )fG
 
Figure 3.1: Plot of Double-Sided Exponential Function  and Its Fourier 
Transforms 

( )g t
( )ωG  and . ( )fG

 
Using the signal processing definition of FT ( , ) (0, 2 )a b π= −  of the definition (3.6), FT of 

  ( ) tg t Ae α−=  is computed as (which is simply obtained by substituting 2 fω π=  
into ( )ωG ): 
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2 2

2( )
4
Af 2f
α

α π
=

+
G . 

 

When 1A =  and 3α = , 2 2

6( )
9 4

f
fπ

=
+

G  which is plotted in Panel C of Figure 3.1. 

 
[3.2.2] Rectangular Pulse 
 
Consider a rectangular pulse with 0,A T ∈R : 
 

0 0

0

     -
( )

0        
A T t T

g t
t T
≤ ≤⎧⎪= ⎨ >⎪⎩

, 

 
which is an even function of t  (symmetric with respect to t ). 
 
From (3.4) and use Euler’s formula (2.18) : 2 sin( )ix ixe e i x−− =
 

( )0 0
0

0

( ) ( )
i T i T

Ti t i t

T

e e
e g t dt A e dt A

i

ω ω
ω ωω

ω

−
∞

−∞ −

⎧ ⎫− −⎪ ⎪≡ = = ⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫G , 

                                   0 02 sin( ) 2 sin( )i T A TA
i
ω ω
ω ω

⎧ ⎫= =⎨ ⎬
⎩ ⎭

. 

 
Using the signal processing definition of FT ( , ) (0, 2 )a b π= −  of the definition (3.6), FT of 
a rectangular pulse is computed as: 
 

0

0

2 2 0sin(2 )( ) ( )
Tift ift

T

A fTf e g t dt A e dt
f

π π π
π

∞ − −

−∞ −
≡ = =∫ ∫G . 

 
When 1A =  and , the time domain function , Fourier transform 0 2T = ( )g t

2sin(2 )( ) ωω
ω

=G  in angular frequency, and Fourier transform sin(4 )( ) ff
f
π

π
=G  in 

frequency domain are plotted in Figure 3.2.  
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A) Plot of a rectangular pulse . ( )g t
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B) Plot of the FT of  in Angular Frequency Domain, ( )g t ( )ωG . 
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C) Plot of the FT of  in Frequency Domain, . ( )g t ( )fG
 
Figure 3.2: Plot of Rectangular Pulse  and Its Fourier Transforms ( )g t ( )ωG  and 

. ( )fG
 
[3.2.3] Dirac’s Delta Function (Impulse Function) 
 
Consider Dirac’s delta function scaled by a +∈R  (Dirac’s delta function is discussed in 
detail in section 3.3.1.): 
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( ) ( )g t a tδ= . 
 
From (3.4): 
 

0( ) ( ) ( )i t i t ie g t dt e a t dt ae aω ωω δ
∞ ∞

−∞ −∞
≡ = =∫ ∫G ω = . 

 
Using the signal processing definition of FT ( , ) (0, 2 )a b π= −  of the definition (3.6), FT of 
a scaled Dirac’s delta is computed as: 
 

2 2 2( ) ( ) ( )ift ift if 0f e g t dt e a t dt ae aπ π δ
∞ ∞− − −

−∞ −∞
≡ = =∫ ∫G π = . 

 
When  (i.e. pure Dirac’s delta), the time domain function1a = ( ) ( )g t tδ=  and Fourier 
transforms ( ) 1ω =G  and  are plotted in Figure 3.3.  ( ) 1f =G

 
A) Plot of ( ) ( )g t tδ= . 

 
B) Plot of FT of  in Angular Frequency Domain, ( )g t ( ) 1ω =G . 
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C) Plot of FT of  in Frequency Domain, ( )g t ( ) 1f =G . 
 
Figure 3.3: Plot of Dirac’s Delta Function ( ) ( )g t tδ=  and Its Fourier 
Transforms ( )ωG  and . ( )fG
 
[3.2.4] Gaussian Function 
 
Consider a Gaussian function with A +∈R : 
 

2

( ) Atg t e−= . 
 
From (3.4): 
 

2

( ) ( )i t i t Ate g t dt e e dtω ωω
∞ ∞ −

−∞ −∞
≡ =∫ ∫G . 

 
Use Euler’s formula (2.15): 
 

                               { }2

( ) cos( ) sin( )Ate t i tω ω
∞ −

−∞
= +∫G dtω

t dt
2 2

cos( ) sin( )At Ate t dt i eω ω
∞ ∞− −

−∞ −∞
= +∫ ∫  

                                        
2 2/ 4 / 40A Ae i e

A A
ω ωπ π− −= + = . 

 
Using the signal processing definition of FT ( , ) (0, 2 )a b π= −  of the definition (3.6), FT of 
a Gaussian function is computed as: 
 

2 22 2( ) ( )ift ift At f Af e g t dt e e dt e
A

π π π∞ ∞− − −

−∞ −∞
≡ = =∫ ∫G

2 /π− . 
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When 2A = , the time domain function  and its Fourier transforms 
22( ) tg t e−=

2 /8( )
2

e ωπω −=G  and 
2 2 / 2( )

2
ff e ππ −=G  are plotted in Figure 3.4. Note that FT of a 

Gaussian Function is another Gaussian function.  
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A) Plot of Gaussian function . 
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B) Plot of FT of  in Angular Frequency Domain, ( )g t ( )ωG . 
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C) Plot of FT of  in Frequency Domain, . ( )g t ( )fG
 
Figure 3.4: Plot of Gaussian Function  and Fourier Transforms 

22( ) tg t e−= ( )ωG  and 
. ( )fG
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[3.2.5] Cosine Wave 0 0( ) cos(2 ) cos( )g t A f t A tπ ω= =  
 
Consider a sinusoid 0( ) cos(2 ) cos( )g t A f t A t0π ω= = . Using the signal processing 
definition of FT ( , ) (0, 2 )a b π= −  of the definition (3.6), FT of a cosine wave is computed 
as: 
 

2 2
0( ) ( ) cos(2 )ift iftf e g t dt e A f t dtπ π π

∞ ∞− −

−∞ −∞
≡ =∫ ∫G . 

 
From Euler’s formula (2.17): 
 

                            ( )0 02 22 1( )
2

i f t i f tiftf A e e e dπ ππ∞ −−

−∞
= +∫G t  

{ }0 02 22 21
2

i f t i f tift iftA e e dt e e dtπ ππ π∞ ∞ −− −

−∞ −∞
= +∫ ∫  

                                     { }0 02 ( ) 2 ( )1
2

i f f t i f f tA e dt eπ π∞ ∞− − − +

−∞ −∞
= +∫ ∫ dt . 

 
Use the identity (3.12) of Dirac’s delta function: 
 

( )1( )
2

i x ax a e ω dδ ω
π

∞ −

−∞
− ≡ ∫ . 

                                                  
Therefore, we obtain: 
 

{ }0 0
1( ) ( ) ( )
2

f A f f f fδ δ= − + +G  

                                           0 0( ) ( ) ( )
2 2
A Af f f f fδ δ= − + +G , 

 
which is two impulse functions at 0f f= ± . Thus, FT of a cosine wave (which is an even 
function) is a real valued even function which means  is symmetric about . ( )fG 0f =
 
Next, in terms of angular frequency ω  from (3.4): 
 

0( ) ( ) cos( )i t i te g t dt e A t dtω ωω ω
∞ ∞

−∞ −∞
≡ =∫ ∫G . 

 
From Euler’s formula (2.17): 
 

2cos( )ix ixe e x−+ = . 
 
Therefore: 
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       0 0
0

1( ) cos( ) ( )
2

i t i ti t i tA e t dt A e e eω ωω ωω ω
∞ ∞ −

−∞ −∞
dt⎧ ⎫= = +⎨ ⎬

⎩ ⎭∫ ∫G  

0 0 0( ) ( )

2 2 2 2
i t i t i t i ti t i tA A A Ae e dt e e dt e dt e dtω ω ω ωω ω∞ ∞ ∞ ∞− +

−∞ −∞ −∞ −∞
= + = +∫ ∫ ∫ ∫ 0ω ω− . 

 
Use the identity of Dirac’s delta function (3.12): 
 

( )1( )
2

i x ax a e ω dδ ω
π

∞ −

−∞
− ≡ ∫ . 

 
Thus: 
 

0 0( ) 2 ( ) 2 ( )
2 2
A Aω πδ ω ω πδ ω ω= + + −G  

                                        0 0( ) ( ) ( )A Aω πδ ω ω πδ ω ω= + + −G , 
 
which is two impulse functions at 0ω ω= ± . Figure 3.5 illustrates a cosine 
wave 0( ) cos(2 ) cos( )g t A f t A t0π ω= =  and FTs 0 0( ) ( ) ( )A Aω πδ ω ω πδ ω ω= + + −G  and 

0 0( ) ( ) ( )
2 2
A Af f f f fδ δ= − + +G .  

t Hseconds L

gH
tL

 
A) Plot of a Cosine Wave 0( ) cos(2 ) cos( )g t A f t A t0π ω= = . Amplitude of the wave is 
given by A .  
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B) Plot of FT of  in Angular Frequency Domain, ( )g t ( )ωG . 

 
C) Plot of FT of  in Frequency Domain, . ( )g t ( )fG
 
Figure 3.5: Plot of a Cosine Wave 0( ) cos(2 ) cos( )g t A f t A t0π ω= =  and Fourier 
Transforms ( )ωG  and . ( )fG
  
[3.2.6] Sine Wave 0 0( ) sin(2 ) sin( )g t A f t A tπ ω= =  
 
Consider a sinusoid 0( ) sin(2 ) sin( )g t A f t A t0π ω= = . Using the signal processing 
definition of FT ( , ) (0, 2 )a b π= − of the equation (3.6), FT of a sine wave is computed as: 
 

2 2
0( ) ( ) sin(2 )ift iftf e g t dt e A f t dπ π π

∞ ∞− −

−∞ −∞
≡ =∫ ∫G t . 

                  
From Euler’s formula (2.18): 
 

                            ( )0 02 22 1( )
2

i f t i f tiftf A e e e d
i

π ππ∞ −−

−∞
= −∫G t  

{ }0 02 22 21
2

i f t i f tift iftA e e dt e e dt
i

π ππ π∞ ∞ −− −

−∞ −∞
= −∫ ∫  
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                                     { }0 02 ( ) 2 ( )1
2

i f f t i f f tA e dt e
i

π π∞ ∞− − − +

−∞ −∞
= −∫ ∫ dt . 

 
Multiply 1  to the right hand side: /i i=
 

{ }0 02 ( ) 2 ( )
2( )

2
i f f t i f f tif A e dt e dt

i
π π∞ ∞− − − +

−∞ −∞
= −∫ ∫G  

                                           { }0 02 ( ) 2 ( )

2
i f f t i f f ti A e dt eπ π∞ ∞− + − −

−∞ −∞
= −∫ ∫ dt . 

 
Using the identity (3.12) of Dirac’s delta function, we obtain: 
 

{ }0 0( ) ( ) ( )
2
if A f f f fδ δ= + − −G  

                                                     0 0( ) (
2 2
A Ai f f i f fδ δ= + − − ) , 

 
which is two complex impulse functions at 0f f= ±  which are not symmetric about 

. 0f =
 
Next, in terms of angular frequency ω  from (3.4): 
 

0( ) ( ) sin( )i t i te g t dt A e t dtω ωω ω
∞ ∞

−∞ −∞
≡ =∫ ∫G . 

 
Using Euler’s formula (2.18): 
   

            0 0 0 0
1( ) ( )
2 2 2

i t i t i t i ti t i t i tA AA e e e dt e e dt e e
i i i

ω ω ω ωω ωω
∞ ∞− −

−∞ −∞ −∞

⎧ ⎫= − = −⎨ ⎬
⎩ ⎭∫ ∫G dtω∞

∫
 

                     
0 0 0( ) ( ) ( ) ( )

2 22 2 2 2
i t i t i t i tA A Ai Aie dt e dt e dt e

i i i i
ω ω ω ω ω ω ω ω∞ ∞ ∞ ∞+ − +

−∞ −∞ −∞ −∞
= − = −∫ ∫ ∫ ∫ 0 dt−

 

                     
0 0( ) ( )

2 2
i t i tAi Aie dt eω ω ω ω∞ ∞− +

−∞ −∞
= −∫ ∫ dt

 
 
Use the identity (3.12) of Dirac’s delta function: 
 

0 0( ) 2 ( ) 2 ( )
2 2
Ai Aiω πδ ω ω πδ ω ω= − − +G  

                                                0 0( ) (Ai Ai )πδ ω ω πδ ω ω= − − + . 
 
Figure 3.6 plots a sine wave 0( ) sin(2 ) sin( )g t A f t A t0π ω= =  and its Fourier transforms 

0 0( ) ( ) ( )Ai Aiω πδ ω ω πδ ω ω= − − +G  and 0 0( ) ( ) ( )
2 2
A Af i f f i f fδ δ= + − −G .  
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A) Plot of a Sine Wave 0 0( ) sin(2 ) sin( )g t A f t A tπ ω= = . 

 
B) Plot of FT of  in Angular Frequency Domain, ( )g t ( )ωG . 

 
C) Plot of FT of  in Frequency Domain, . ( )g t ( )fG
 
Figure 3.6: Plot of a Sine Wave 0( ) sin(2 ) sin( )g t A f t A t0π ω= =  and Fourier 
Transforms ( )ωG  and . ( )fG
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[3.3] Properties of Fourier Transform 
 
We will discuss important properties of Fourier transform in this section starting from 
Dirac’s delta function which is essential to the understanding of properties of Fourier 
transform. 
 
[3.3.1] Dirac’s Delta Function (Impulse Function) 
 
Consider a function of the form with n +∈R : 
 

                                                      ( 2 2( ) expnh x n x
π

= − ) .                                         (3.11) 

 
This function is plotted in Figure 3.7 for three different values for n . The function  
becomes more and more concentrated around zero as the value of  increases. The 
function  has a unit integral: 

( )h x
n

( )h x
 

    ( )2 2( ) exp 1nh x dx n x dx
π

∞ ∞

−∞ −∞
= − =∫ ∫ .   
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Figure 3.7: Plot of A Function h(x) for n = 1, n = 101/2, and n = 10. 
 
Dirac’s delta function denoted by ( )xδ  can be considered as a limit of  when 

. In other words, 
( )h x

n →∞ ( )xδ  is a pulse of unbounded height and zero width with a unit 
integral: 
 

( ) 1x dxδ
∞

−∞
=∫ . 

 
Dirac’s delta function ( )xδ  evaluates to 0 at all x∈R  other than 0x = : 
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(0)   if   0
( )

0        otherwise
x

x
δ

δ
=⎧

= ⎨
⎩

 

 
where (0)δ  is undefined. ( )xδ  is called a generalized function not a function because of 
undefined (0)δ . Therefore, ( )xδ  is a distribution with compact support {0} meaning that 

( )xδ  does not occur alone but occurs combined with any continuous functions  and 
is well defined only when it is integrated.  

( )f x

 
Dirac’s delta function can be defined more generally by its sampling property. Suppose 
that a function  is defined at( )f x 0x = . Applying ( )xδ  to  yields : ( )f x (0)f
 

( ) ( ) (0)f x x dx fδ
∞

−∞
=∫ . 

 
This is why Dirac’s delta function ( )xδ  is called a functional because the use of ( )xδ  
assigns a number  to a function . More generally for(0)f ( )f x a∈R : 
 

(0)   if   
( )

0        otherwise
x a

x a
δ

δ
=⎧

− = ⎨
⎩

 

 
and: 
 

( ) ( ) ( )f x x a dx f aδ
∞

−∞
− =∫ , 

 
or for 0ε > : 
 

( ) ( ) ( )
a

a
f x x a dx f a

ε

ε
δ

+

−
− =∫ . 

 
( )xδ  has identities such as: 

 

                                         1( ) ( )ax x
a

δ δ= , 

[ ]2 2 1( ) ( ) (
2

)x a x a x
a

δ δ δ− = + + − a . 

 
Dirac’s delta function ( )xδ  can be defined as the limit  of a class of delta 
sequences: 

n →∞

 
( ) lim ( )nn
x xδ δ

→∞
= , 
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such that: 
 

lim ( ) ( ) (0)nn
x f x dx fδ

∞

−∞→∞
=∫ , 

 
where ( )n xδ  is a class of delta sequences. Examples of ( )n xδ  other than (3.8) are: 
 

                                                 , 
n   if   -1/ 2 1/ 2

( )
0         otherwisen

n x n
xδ

< <⎧
= ⎨
⎩

                                                 ( )1( ) exp
2

n

n n
x iux duδ

π −
= ∫ , 

                                                 1( )
2

inx inx

n
e ex

x i
δ

π

−−
= , 

( )
( )

sin 1/ 21( )
2 sin / 2n

n x
x

x
δ

π
⎡ ⎤+⎣ ⎦= . 

 
[3.3.2] Useful Identity: Dirac’s Delta Function 
 
Dirac’s delta function ( )xδ  has the following very useful identity which we have used 
many times before: 
 

                                                   ( )1( )
2

i x ax a e ω dδ ω
π

∞ −

−∞
− ≡ ∫ .                                      (3.12) 

 
PROOF1  
 
First step is to prove a proposition for all d =  2, 3, 4, … and j =  0, 1, 2, …,  (note 
that  depends on d ): 

1d −
j

 

                                      
1

0
0

1   if   01 2exp 1
0   otherwise

d

j
k

ji jk
d d

π−

=
=

=⎧⎛ ⎞ = = ⎨⎜ ⎟
⎝ ⎠ ⎩

∑                              (3.13) 

 
First, we deal an informal proof of a proposition (3.13). 
 
When  and : 2d = 0j =
 

1 2 1

0 0

1 2 1 2 1 2 2exp exp 0 exp 00 exp 01
2 2 2 2 2

d

k k

i i ijk k
d d

π π π− −

= =

iπ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛= = + ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎩ ⎭
∑ ∑ ⎟

⎠

                                                

 

 
1 This is based on “Option Pricing Using Integral Transforms” by Carr, P., Geman, H., Madan, D., and Yor, 
M. 
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            ( ) ( ){ }1 exp 0 exp 0 1
2

= + = . 

 
When  and : 2d = 1j =
 

1 2 1

0 0

1 2 1 2 1 2 2exp exp 1 exp 10 exp 11
2 2 2 2 2

d

k k

i i ijk k
d d

π π π− −

= =

iπ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛= = + ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎩ ⎭
∑ ∑ ⎟

⎠
 

            ( ) ( ){ } { }1 1exp 0 exp 1 1 0
2 2

iπ= + = − = . 

 
When  and : 3d = 0j =
 

                               
1 3 1

0 0

1 2 1 2exp exp 0
3 3

d

k k

i ijk k
d d

π π− −

= =

⎛ ⎞ ⎛=⎜ ⎟ ⎜
⎝ ⎠ ⎝

∑ ∑ ⎞
⎟
⎠

 

1 2 2 2exp 00 exp 01 exp 02
3 3 3 3

i iπ π π⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

i  

                               ( ) ( ) ( ){ }1 exp 0 exp 0 exp 0 1
3

= + + = . 

 
When  and : 3d = 1j =
 

                                
1 3 1

0 0

1 2 1 2exp exp 1
3 3

d

k k

i ijk k
d d

π π− −

= =

⎛ ⎞ ⎛=⎜ ⎟ ⎜
⎝ ⎠ ⎝

∑ ∑ ⎞
⎟
⎠

 

1 2 2 2exp 10 exp 11 exp 12
3 3 3 3

i iπ π π⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

i  

                                ( )1 2exp 0 exp exp
3 3

i iπ π⎧ ⎫⎛ ⎞ ⎛ ⎞= + +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

4
3

 

                                ( ) ({ }1 1 0.866025 0.5 0.866025 0.5
3

i i= + − + − − )  

                                . 0=
 
When  and : 3d = 2j =
 

                               
1 3 1

0 0

1 2 1 2exp exp 2
3 3

d

k k

i ijk k
d d

π π− −

= =

⎛ ⎞ ⎛=⎜ ⎟ ⎜
⎝ ⎠ ⎝

∑ ∑ ⎞
⎟
⎠

 

1 2 2 2exp 20 exp 21 exp 22
3 3 3 3

i iπ π π⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

i  

                               ( )1 4exp 0 exp exp
3 3

i iπ π⎧ ⎫⎛ ⎞ ⎛ ⎞= + +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

8
3
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                               ( ) ({ }1 1 0.866025 0.5 0.866025 0.5
3

i i= + − − + − )  

                               . 0=
 

 
(Formal) PROOF of a proposition (3.13) 
 
Rewrite as the below: 
 

                                                 
1 1

0 0

1 2 1exp
d d

k

k k

i jk
d d d

π β
− −

= =

⎛ ⎞ =⎜ ⎟
⎝ ⎠

∑ ∑ ,                                    (3.14) 

 

where 2exp i j
d
πβ ⎛= ⎜

⎝ ⎠
⎞
⎟ . When , 0j = 2exp 0 1i

d
πβ ⎛ ⎞= =⎜ ⎟

⎝ ⎠
. Thus, from (3.14): 

 
1 1 1

0 0 0

1 1 11 1
d d d

k k

k k kd d d
β

− − −

= = =

1= = =∑ ∑ ∑ . 

 

When , consider the term 0j ≠
1

0

d
k

k
β

−

=
∑ which is a geometric series: 

 

                                
1

2 3 2
1

0
1 .....

d
k

d
k

S 1d dβ β β β β β
−

− −
−

=

= = + + + + + +∑ .                       (3.15) 

 
Multiply β  to (3.12): 
 
                                    2 3 2 1

1 ..... d d
dS dβ β β β β β β− −
− = + + + + + + .                          (3.16) 

 
Subtract (3.16) from (3.15): 
 

1(1 ) 1 d
dSβ β−− = −  

                                                           1
1
(1 )

d

dS β
β−

−
=

−
.                                                   (3.17) 

 
Note that for : 0j ≠
 

( )2exp exp 2 1
d

d i j i
d
πβ π⎛ ⎞= =⎜ ⎟

⎝ ⎠
j = . 

 
From (3.17): 
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1

1
0

1 1 0
(1 )

d
k

d
k

S β
β

−

−
=

−
= = =

−∑ . 

 
From (3.14): 
 

1

0

1 2 1exp 0 0
d

k

i jk
d d d

π−

=

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

∑ . 

 
 
Now we have completed the proof of a proposition (3.13) and we use this now. Multiply 

 to both sides of a proposition (3.13): d
 

                                                    
1

0
0

21 exp
d

j
k

id
d
π−

=
=

⎛= ⎜
⎝ ⎠

∑ jk ⎞⎟ .                                          (3.18) 

 
As the limit  and plug , (3.18) becomes: d →∞ j x a= −
 

                                                    2 ( )( ) i f x ax a e πδ
∞ −

−∞
− = ∫ df .                                        (3.19) 

 
Convert frequency  into angular frequency f ω  by the equation (3.1) which is 

2 2 f
T
πω π= = . From (3.19): 

 
( )( )

2
i x ax a e dω ωδ

π
∞ −

−∞
− = ∫ . 

 
This completes the proof of an identity (3.12). 

 
 
[3.3.3] Linearity of Fourier Transform  
 
Consider time domain functions  and  which have Fourier transforms ( )f t ( )g t ( )ωF  
and ( )ωG  defined by the equation (3.4). Then: 
 

{ }( ) ( ) ( ) ( )i t i t i taf t bg t e dt a f t e dt b g t e dtω ω∞ ∞

−∞ −∞ −∞
+ = +∫ ∫ ∫ ω∞

 

                                                                 ( ) ( )a bω ω= +F G .                                       (3.20) 
 
Or, we can write: 
 

[ ] [ ] [ ]( ) ( ) ( ) ( ) ( ) ( ) ( )af t bg t a f t b g tω ω ω+ = +F F F . 
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Linearity means two things: homogeneity and additivity. Homogeneity of Fourier 
transform indicates that if the amplitude is changed in one domain by , the amplitude in 
the other domain changes by an exactly the same amount  (i.e. scaling property):  

a
a

 
[ ] [ ]( ) ( ) ( ) ( )af t a f tω ω=F F . 

 
Additivity of Fourier transform indicates that an addition in one domain corresponds to 
an addition in other domain: 
 

[ ] [ ] [ ]( ) ( ) ( ) ( ) ( ) ( ) ( )f t g t f t g tω ω ω+ = +F F F . 
 
[3.3.4] FT of Even and Odd Functions 
 
A function  is said to be even if for( )g x x∈R : 
 
                                                             ( ) ( )g x g x= − ,                                                  (3.21) 
  
which implies that even functions are symmetric with respect to vertical axis. Examples 
of even functions are illustrated in Panel A of Figure 3.8.  
 
A function  is said to be odd if for( )g x x∈R : 
 
                                                           ( ) ( )g x g x− = − ,                                                 (3.22) 
  
which implies that odd functions are symmetric with respect to the origin. Examples of 
odd functions are illustrated in Panel B of Figure 3.8. 
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A) Even Functions: , ( ) 1g x = 21( )

2
g x x= , and ( ) cos(2 )g x xπ= . 
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B) Odd Functions: , ( )g x x= 31( )

2
g x x= , and ( ) sin(2 )g x xπ= . 

 
Figure 3.8: Plot of Even and Odd Functions 
 
There are several important properties of even and odd functions. The sum of even 
functions is even and the sum of odd functions is odd. The product of two even functions 
is even and the product of two odd functions is also even. The product of an even and an 
odd function is odd.  
 
Let  be an even function and  be an odd function. Integral properties of 
even and odd functions are: 

( )even x ( )odd x

 

                                                ( ) 0
A

A
odd x dx

−
=∫ ,                                                         (3.23) 

                                                .                                    (3.24) 
0

( ) 2 ( )
A A

A
even x dx even x dx

−
=∫ ∫

 
Consider FT of an even function . From the definition (3.4) and use Euler’s formula: ( )g t
 

                        .             (3.25) ( ) ( ) cos( ) ( ) sin( ) ( )i te g t dt t g t dt i t g t dtωω ω
∞ ∞ ∞

−∞ −∞ −∞
≡ = +∫ ∫ ∫G ω

 

Since the imaginary part  is zero (because sin(sin( ) ( )t g t dtω
∞

−∞∫ ) ( )t g tω  is odd and use 

the integral property (3.23)), FT ( )ωG  is real and symmetric with respect to 0ω = . In 
other words, FT of an even function is also even.  
 

Next, consider FT of an odd function . Since the term  in (3.25) 

becomes zero (

( )g t cos( ) ( )t g t dtω
∞

−∞∫
cos( ) ( )t g tω  is odd and the integral property (3.23)), FT is given as: 

 

( ) ( ) sin( ) ( )i te g t dt i t g t dtωω ω
∞ ∞

−∞ −∞
≡ =∫ ∫G . 
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This means that FT of an odd function ( )ωG  is complex and asymmetric with respect 
to 0ω = . This property is also illustrated in the section 3.2.5 and 3.2.6. 
 
[3.3.5] Symmetry of Fourier Transform  
 
By the definition of an inverse Fourier transform (3.5): 
 

1( ) ( )
2

i tf t e ω dω ω
π

∞ −

−∞
= ∫ F . 

 
Change the variable in the integration to : y
 

1( ) ( )
2

iytf t e
π

∞ −

−∞
= ∫ F y dy

)

. 

 
Consider 2 (f tπ − : 
 

                                                   2 ( ) ( )iytf t e yπ
∞

−∞
− = ∫ F dy .                                         (3.26) 

 
We can say that the right hand side of (3.26) is by definition the Fourier transform of a 
function . Replace  by ( )yF t ω  and  by t  and (3.26) becomes: y
 

                                                   2 ( ) ( )itf e t dωπ ω
∞

−∞
− = ∫ F t .                                        (3.27) 

 
The equation (3.27) is called a symmetry property of FT. It means that if a function  
has a FT 

( )f t
( )ωF ,  has a FT ( )tF 2 (f )π ω− . In other words, if ( )( ), ( )f t ωF  is a FT pair, 

( ( ), 2 ( )t f )π ω−F  is another FT pair. 
 
This symmetry property of FT can be shown with mathematically simpler form in the 
frequency domain  Hz (cycles/second). By the definition of an inverse FT (3.7): f
 

2( ) ( )iftg t e f dfπ∞

−∞
≡ ∫ G . 

 
Change the variable in the integration to y : 
 

2( ) ( )iytg t e y dyπ∞

−∞
≡ ∫ G . 

 
Consider : ( )g t−
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                                                    .                                          (3.28) 2( ) ( )iytg t e y dyπ∞ −

−∞
− ≡ ∫ G

 
We can say that the right hand side of (3.28) is by definition the FT of a function . 
Replace  by  and  by  and (3.28) becomes: 

( )yG
t f y t

 

                                                    .                                          (3.29) 2( ) ( )itfg f e t dtπ∞ −

−∞
− ≡ ∫ G

 
We can state in this case that if ( )( ), ( )g t fG  is a FT pair, ( )( ), ( )t g f−G  is another FT 
pair. 
 
[3.3.6] Differentiation of Fourier Transform  
 
By the definition of an inverse Fourier transform (3.5): 
 

1( ) ( )
2

i tf t e ω dω ω
π

∞ −

−∞
= ∫ F . 

 
Differentiate with respect to t : 
 

( )( ) 1 1( ) ( )
2 2

i t
i tf t ed d i

t t

ω

e ωω ω ω ω ω
π π

−∞ ∞ −

−∞ −∞

∂ ∂
= = −

∂ ∂∫ ∫F F  

                                  1 ( )
2

i ti e ω dω ω
π

∞ −

−∞
= − ∫ F ω .                                                        (3.30) 

 
By the definition of an inverse FT (3.5), the equation (3.30) becomes: 
 

                                                           ( ) ( )f t i f t
t

ω∂
= −

∂
.                                               (3.31) 

 
Equation (3.31) tells us that FT of ( ) /f t t∂ ∂  is equal to a FT of  multiplied by( )f t iω− : 
 
                                           [ ] [ ]( ) / ( ) ( ) ( )f t t i f tω ω∂ ∂ = −F F ω .                                 (3.32) 
 
Next, consider FT in frequency domain . By the definition of an inverse FT (3.7): f
 

2( ) ( )iftg t e f dfπ∞

−∞
≡ ∫ G . 

 
Differentiate with respect to t : 
 

                                        2( ) 2 ( ) 2iftg t if e f df ifg t
t

ππ
∞

−∞

∂
=

∂ ∫ G ( )π= .                              (3.33) 
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Equation (3.33) tells us that FT of ( ) /g t t∂ ∂  is equal to a Fourier transform of  
multiplied by

( )g t
2 ifπ : 

 
[ ] [ ]( ) / ( ) 2 ( ) ( )g t t f if g t fπ∂ ∂ =F F . 

 
[3.3.7] Time Scaling of Fourier Transform  
 
Consider a time domain function  and its Fourier transform ( )f t ( )ωF  by the equation 
(3.4): 
 

( ) ( )i te f t dtωω
∞

−∞
= ∫F . 

 
Then, FT of a function  (i.e. scaled by a real non-zero constant ) can be expressed 
in terms of 

( )f at a
( )ωF  as: 

 

                                                  1 ( ) ( )i te f at dt
a a

ωω ∞

−∞
= ∫F

��
.                                        (3.34) 

 
PROOF 
 
Set . When : at s= 0a >
 

( )// 1( ) ( ) ( )i a si t i s a se f at dt e f s d e f s ds
a a

ωω ω∞ ∞ ∞

−∞ −∞ −∞

⎛ ⎞= =⎜ ⎟
⎝ ⎠∫ ∫ ∫  

                                                  1 ( )
a a

ω
= F . 

 
When : 0a <
 

( )// 1( ) ( ) ( )i a si t i s a se f at dt e f s d e f s ds
a a

ωω ω∞ ∞ ∞

−∞ −∞ −∞

⎛ ⎞= = −⎜ ⎟
⎝ ⎠∫ ∫ ∫  

                                                1 ( )
a a

ω
= − F . 

 
 
Similarly, FT of a function  can be expressed in terms of  in frequency 
domain  as: 

( )g at ( )fG
f

 
21 ( ) ( )iftf e g at dt

a a
π∞ −

−∞
= ∫G

��
. 
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[3.3.8] Time Shifting of Fourier Transform  
 
Consider a function  and its Fourier transform ( )f t ( )ωF  by the definition (3.4): 
 

( ) ( )i te f t dtωω
∞

−∞
= ∫F . 

 
Then, FT of a function 0( )f t t−  (i.e. time  is shifted byt 0t ∈R ) can be expressed in 
terms of ( )ωF  as: 
 

                                                0
0( ) (i ti te f t t dt e ωω )ω

∞

−∞
− =∫ F .                                      (3.35) 

 
PROOF 
 
Set : 0 *t t t− =
 

                               0( * )
0 0( ) ( *) ( *i t ti te f t t dt e f t d t tωω∞ ∞ +

−∞ −∞
− = +∫ ∫ )

t                                                             0 * ( *) *i t i te e f t dω ω∞

−∞
= ∫

                                                          0 ( )i te ω ω= F .                     
 

 
Next, consider FT in frequency domain . FT of a time domain function  is defined 
by the definition (3.6) as: 

f ( )g t

  
2( ) ( )iftf e g t dπ∞ −

−∞
≡ ∫G � t

)

. 

 
Then, FT of a function  (i.e. time  is shifted by0(g t t− t 0t ∈R ) can be expressed in 
terms of  as: ( )fG
 

                                             .                                   (3.36) 022
0( ) (iftifte g t t dt e fππ∞ −−

−∞
− =∫ � )G

)

02 fπ− G

 
PROOF 
 
Set : 0 *t t t− =
 

                        02 ( * )2
0 0( ) ( *) ( *if t tifte g t t dt e g t d t tππ∞ ∞ − +−

−∞ −∞
− = +∫ ∫� �

                                                      .                                                       02 2 * ( *) * ( )ift iftifte e g t dt eπ π∞− −

−∞
= =∫ �
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[3.3.9] Convolution: Time Convolution Theorem 
 
Convolution of time domain functions  and  over a finite interval [0  is 
defined as: 

( )f t ( )g t , ]t

 

                                                    
0

( ) ( )
t

f g f g t dτ τ τ∗ ≡ −∫ .                                        (3.37) 

 
Convolution of time domain functions  and  over an infinite interval [ ,  is 
defined as: 

( )f t ( )g t ]−∞ ∞

 

                               ( ) ( ) ( ) ( )f g f g t d g f t dτ τ τ τ τ τ
∞ ∞

−∞ −∞
∗ ≡ − = −∫ ∫ .                          (3.38) 

 
Convolution can be considered as an integral which measures the amount of overlapping 
of one function  when  is shifted over another function . Website by 
mathworld provides an excellent description of convolution with animation. For example, 
suppose  and  are Gaussian functions: 

( )g t ( )g t ( )f t

( )f t ( )g t
 

2
1
22

11

( )1( ) exp{ }
22

tf t µ
σπσ

−
= − , 

2
2
22

22

( )1( ) exp{ }
22

tg t µ
σπσ

−
= − . 

 
Then, the convolution of two Gaussian functions is calculated as from (3.38): 
 

( )2
1 2

2 22 2
1 21 2

( )1 exp{ }
2( )2 ( )

t
f g

µ µ
σ σπ σ σ

− +
∗ = −

++ � ��

, 

 
which is another Gaussian function. The convolution f g∗  of two Gaussians for the case 

1µ  = 0, 2µ  = 0, 1σ � = 1, and 2σ  =2 is plotted in Figure 3.8. 
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Figure 3.8: Plot of Two Gaussian functions  and  and their convolution . f g f g∗
 
Consider time domain functions  and  with Fourier transforms ( )f t ( )g t ( )ωF  and 

( )ωG . FT of the convolution of  and  in the time domain is equal to the 
multiplication in the angular frequency domain (called time-convolution theorem): 

( )f t ( )g t

 

                                 ( ) ( )( ) ( ) ( ) ( )f g f g t dτ τ τ ω ω
∞

−∞
∗ ≡ − =∫F F F G .                      (3.39) 

 
PROOF 
 

( ) ( )( ) ( ) ( ) ( )i tf g f g t d e f g tω d dtτ τ τ τ τ τ
∞ ∞ ∞

−∞ −∞ −∞
∗ ≡ − = −∫ ∫ ∫F F  

                                     ( )( ) ( ) i tf d g t e dωτ τ τ
∞ ∞

−∞ −∞
= −∫ ∫ t . 

 
Use the time shifting property of Fourier transform of the equation (3.35): 
 

( ) ( )( ) ( ) ( ) ( )i if g f d e f eωτ ωτdτ τ ω ω τ
∞ ∞

−∞ −∞
∗ = =∫ ∫F G G τ  

                                            ( ) ( )ω ω= F G . 
 

 
[3.3.10] Frequency-Convolution Theorem 
 
Consider time domain functions  and  with Fourier transforms ( )f t ( )g t ( )ωF  and ( )ωG . 
Frequency-convolution theorem states that convolution in the angular frequency domain 

(scaled by 1
2π

) is equal to the multiplication in the time domain. In other words, FT of 

the product  in the time domain is equal to the convolution ( ) ( )f t g t ( ) ( )ω ω∗F G  (scaled 

by 1
2π

) in the angular frequency domain: 
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                     [ ] 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

f t g t dω ω ω ϖ ω ϖ
π π

∞

−∞
= ∗ ≡ −∫F F G F G ϖ .          (3.40) 

 
PROOF 
 
There are several different ways to prove the frequency convolution theorem. But we 
prove this by showing that the inverse FT of the convolution ∗F G  in the angular 
frequency domain is equal to the multiplication  (scaled by( ) ( )f t g t 2π ) in the time 
domain.  
 
Following the definition of inverse FT (3.5): 
 

                    [ ]1 1( ) ( ) ( ) ( ) ( )
2

i tt e ω
ω dω ω ω

π
∞− −

−∞
∗ ≡ ∗∫F F G F G ω ω  

                                                       1 ( ) ( )
2

i te dω dϖ ω ϖ ϖ ω
π

∞ ∞−

−∞ −∞
= −∫ ∫ F G  

                                                       1( ) ( )
2

i td e ω dϖ ϖ ω
π

∞ ∞ −

−∞ −∞

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫ ∫F G ϖ ω

t

. 

 
Using the frequency shifting (modulation) property of FT (discussed in section 3.3.11): 
 

                     [ ]1 ( ) ( ) ( ) ( ) ( )i tt d e gϖ
ω ω ω ϖ ϖ

∞− −

−∞
∗ = ∫F F G F

                                                       . ( ) ( ) ( )2 ( )i tg t d e g t f tϖϖ ϖ π
∞ −

−∞
= =∫ F

 
 
Next, consider FT in the frequency domain . Following the definition of inverse FT 
(3.7): 

f

 

                    [ ]1 2( ) ( ) ( ) ( ) ( )ift
f f f t e f f dfπ∞−

−∞
∗ ≡ ∗∫F F G F G  

                                                        2 ( *) ( *) *ifte f f f df dfπ∞ ∞

−∞ −∞
= −∫ ∫ F G

                                                       ( )2* ( *) ( *)iftdf f e f f dfπ∞ ∞

−∞ −∞
= −∫ ∫F G . 

 
Using the frequency shifting (modulation) property of FT (discussed in section 3.3.11): 
 

                    [ ]1 2( ) ( ) ( ) * ( *) ( )if t
f

*f f t df f e g tπ∞−

−∞
∗ = ∫F F G F  

                                                       . 2 *( ) * ( *) ( ) ( )if tg t df f e f t g tπ∞

−∞
= =∫ F
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[3.3.11] Frequency Shifting: Modulation 
 
Consider time domain function  with Fourier transform( )f t ( )ωF . If FT ( )ωF  is shifted 
by 0ω ∈R  in the angular frequency domain, then the inverse FT  is multiplied 
by

( )f t
0i te ω : 

 
                                                    0 1

0( ) ( )i te f tω ω ω− −= −F ,                                          (3.41)     

                                                    ( )0
0( ) ( )i te f tω ω ω− = −F F .                                      (3.42) 

 
PROOF 
 
Let 0s ω ω= − . From the definition of an inverse Fourier transform (3.5): 
 

0( )1
0 0

1 1( ) ( ) ( ) (
2 2

i s ti te d e s d sωω
0 )ω ω ω ω ω

π π
∞ ∞ − +− −

−∞ −∞
− ≡ − = +∫ ∫F F F ω  

                                    0 0
1 ( ) ( )

2
i t i tiste e s ds eω ω

π
∞− −−

−∞
= =∫ F f t . 

 
 
Similarly, if FT  is shifted by ( )fF 0f ∈R  in the frequency domain, then the inverse FT 

 is multiplied by : ( )g t 02 if te π

 
                                                  [ ]02 1

0( ) ( )if te g t f fπ −= −F �G ,                                       (3.43)     

                                                  ( )02
0( ) ( )if te g t f fπ = −F G .                                         (3.44) 

 
[3.3.12] Parseval’s Relation 
                                  
Let  and  be -complex functions. A -function can be informally 
considered as a square integrable function (i.e. A function  is said to be square-

integrable if

( )f t ( )g t 2L 2L
( )f t

2( )f t dt
∞

−∞
< ∞∫ .) Let ( )ωF  and ( )ωG  be the Fourier transforms of  

and  defined by (3.4): 

( )f t

( )g t
 

( ) ( )i te f t dtωω
∞

−∞
= ∫F , 

( ) ( )i te g t dtωω
∞

−∞
= ∫G . 

 
Let ( )g t  be a complex conjugate of  and ( )f t ( )ωG be a complex conjugate of ( )ωF 2: 

                                                 
2 A complex conjugate of a complex number z a bi≡ +  is z a bi≡ − . 
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                                                      2( ) ( ) ( )f t f t g= t , 

2( ) ( ) ( )ω ω ω=F F G . 
 
Then, Parseval’s relation is: 
 

                                           2 21( ) ( )
2

f t dt dω ω
π

∞ ∞

−∞ −∞
=∫ ∫ F , 

                                           1( ) ( ) ( ) ( )
2

f t g t dt dω ω ω
π

∞ ∞

−∞ −∞
=∫ ∫ F G .                             (3.45) 

 
Parseval’s relation in the case of FT parameters ( , ) (1,1)a b =  indicates that there is a very 
simple relationship between the power of a signal function  computed in signal 
space  or transform space

( )f t
t ω  of the form (3.45). 

 
Parseval’s relation becomes simpler when considered in the frequency domain  instead 
of angular frequency domain

f
ω . Let  and  be the Fourier transforms of  

and  defined by (3.6): 
( )fF ( )fG ( )f t

( )g t
 

2( ) ( )iftf e f t dπ∞ −

−∞
≡ ∫F t , 

2( ) ( )iftf e g t dπ∞ −

−∞
≡ ∫G t . 

 
Let ( )g t  be a complex conjugate of  and ( )f t ( )fG be a complex conjugate of : ( )fF
 
                                                      2( ) ( ) ( )f t f t g= t , 

2( ) ( ) ( )f f f=F F G . 
 
Then, Parseval’s relation is: 
 

                                                2 2( ) ( )f t dt f df
∞ ∞

−∞ −∞
=∫ ∫ F , 

                                                ( ) ( ) ( ) ( )f t g t dt f f df
∞ ∞

−∞ −∞
=∫ ∫ F G .                               (3.46) 

 
This version of Parseval’s relation means that the power of a signal function  is same 
whether it is computed in signal space t  or in transform space .  

( )f t
f

 
PROOF 
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Using inverse Fourier transforms of (3.5): 
      

2 '1 1( ) ( ) ( ) ( ) ( ') '
2 2

i t i tf t dt f t g t dt e d e d dtω ωω ω ω ω
π π

∞ ∞ ∞ ∞ ∞−

−∞ −∞ −∞ −∞ −∞

⎡ ⎤ ⎡ ⎤= = ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ∫ ∫ ∫F G  

                          ( ' )1 1( ) ( ') '
2 2

ite dt d dω ωω ω ω
π π

∞ ∞ ∞ −

−∞ −∞ −∞

⎡ ⎤= ⎢ ⎥⎣ ⎦∫ ∫ ∫F G ω .                          

 
Use the identity of Dirac’s delta function (3.12): 
                                                                

( )1( )
2

i t at a e dωδ ω
π

∞ −

−∞
− ≡ ∫ . 

 
Thus: 
 

                          2 1( ) ( ) ( ') ( ' ) '
2

f t dt d dω ω δ ω ω ω ω
π

∞ ∞ ∞

−∞ −∞ −∞
= −∫ ∫  ∫F G

2 21 1( ) ( ) ( ) ( )
2 2

f t dt d dω ω ω ω ω
π π

∞ ∞ ∞

−∞ −∞ −∞
= =∫ ∫ ∫F G F . 

 
 
[3.3.13] Summary of Important Properties of Fourier Transform  
  

Table 3.1: Summary of Important Properties of Fourier Transform in Angular 
Frequency Domain ω Hz (radians/second) 

 
Property               Time Domain Function                 Fourier Transform ( )y t [ ]( ) ( )y t ωF  
 
Linearity                                                                 ( ) ( )af t bg t+ ( ) ( )a bω ω+F G  
 
Even Function                  is even                                            ( )f t ( )ω ∈RF      
 
Odd Function                   is odd                                             ( )f t ( )ω ∈ IF  
 
Symmetry                                                                                ( )tF 2 (f )π ω−  
 

Differentiation                      ( )df t
dt

                                                  ( )iω ω− F  

 

                                             ( )k

k

d f t
dt

                                               ( ) ( )kiω ω− F  

 

Time Scaling                                                                            ( )f at
1 ( )
a a

ω
F  
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Time Shifting                      0( )f t t−                                                  0 ( )i te ω ωF  
 

Convolution            ( ) ( )f g f g t dτ τ τ
∞

−∞
∗ ≡ −∫                                 ( ) ( )ω ωF G  

 

Multiplication                                                            ( ) ( )f t g t 1 ( ) ( )
2

dϖ ω ϖ ϖ
π

∞

−∞
−∫ F G  

 
Modulation                                                                         0 ( )i te f tω−

0( )ω ω−F  
(Frequency Shifting) 
 
 

Table 3.2: Summary of Important Properties of Fourier Transform in Frequency 
Domain f Hz (cycles/second) 

 
Property               Time Domain Function                 Fourier Transform ( )y t [ ]( ) ( )y t fF  
 
Linearity                                                                  ( ) ( )af t bg t+ ( ) ( )a f b f+F G
 
Even Function                  is even                                            G      ( )g t ( )f ∈R
 
Odd Function                   is odd                                              G  ( )g t ( )f ∈ I
 
Symmetry                                                                                  ( )tG ( )g f−  
 

Differentiation                     ( )dg t
dt

                                                 2 ( )if fπ G  

 

                                            ( )k

k

d g t
dt

                                               (2 ) ( )kif fπ G

 

Time Scaling                                                                         ( )g at
1 ( )f
a a
G

��
             

 
Time Shifting                                                                   e f  0(g t t− ) π− G02 ( )ift

 

Convolution            ( ) ( )f g f g t dτ τ τ
∞

−∞
∗ ≡ −∫                                ( ) ( )f fF G

 
Multiplication                                                                      ( ) ( )f t g t ∗F G  
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Modulation                                                                      02 ( )if te g tπ
0( )f f−G  

(Frequency Shifting) 
 
 
[3.4] Existence of the Fourier Integral 
 
Thus far, we’ve assumed that Fourier integral and its inverse of the definitions (3.4) and 
(3.5) of a FT pair ( )( ), ( )g t ωG  do exist (i.e. they are well-defined for all functions).  
 
Sufficient (but not necessary) condition for the existence of Fourier transform and its 
inverse is: 
 

                                                           ( )g t dt
∞

−∞
< ∞∫ ,                                                 (3.47) 

 
which is an integrability condition. 
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[4] Characteristic Function 
 
[4.1] Definition of a Characteristic Function 
 
Let X  be a random variable with its probability density function ( )xP . A characteristic 
function ( )φ ω  with ω∈R  is defined as the Fourier transform of the probability density 
function ( )xP  using Fourier transform parameters ( , ) (1,1)a b = . From the definition (3.4): 
 

                                      [ ]( ) ( ) ( )i x i xx e x dx E eωφ ω
∞

−∞

ω⎡ ⎤≡ ≡ = ⎣ ⎦∫P PF .                            (4.1) 

 
Using the Euler’s formula (2.15), ( )φ ω  can be expressed as: 
 

[ ] [ ]( ) cos( ) sin( )i xE e E x iE xωφ ω ω ω⎡ ⎤= = +⎣ ⎦ . 
 
Taylor series expansion of a real function  in one dimension about a point  is 
given by: 

( )f x x b=

 

                    2''( ) '''( )( ) ( ) '( )( ) ( ) ( ) ...
2! 3!

f b f bf x f b f b x b x b x b= + − + − + − +3 .              (4.2) 

 
Taylor series expansion of an exponential function exp( )i xω  in one dimension about a 
point  is given by from (4.2) as: 0x =
 

            
2

2
0 02

exp( ) 1 exp( )exp( ) exp( 0) ( 0) ( 0)
2!x x

i x i xi x i x x
x x
ω ωω ω = =

∂ ∂
= + − + −

∂ ∂
 

                           
3

3
03

1 exp( ) ( 0) ...
3! x

i x x
x
ω

=
∂

+ −
∂

+  

            2 2
0 0

1exp( ) exp( 0) exp( ) ( 0) ( ) exp( ) ( 0)
2!x xi x i i i x x i i x xω ω ω ω ω ω= == + − + −  

                           3 3
0

1 ( ) exp( ) ( 0) ...
3! xi i x xω ω =+ − +  

                           2 3 41 1 1exp( ) 1 ( ) ( ) ( ) .
2! 3! 4!

i x i x i x i x i xω ω ω ω ω= + + + + ..+ .                  (4.3) 

 
Therefore, a characteristic function ( )φ ω  can be rewritten as from equations (4.1) and 
(4.3) as: 
 

  ( ) ( )i xe x dωφ ω
∞

−∞
≡ ∫ P x

          2 3 41 1 11 ( ) ( ) ( ) ... ( )
2! 3! 4!

i x i x i x i x x dxω ω ω ω
∞

−∞

⎛ ⎞= + + + + +⎜ ⎟
⎝ ⎠∫ P  
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 2 2 3 31 1( ) ( ) ( ) ( ) ( ) ( ) ...
2! 3!

x dx i x x dx i x x dx i x x dxω ω ω
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞
= + + +∫ ∫ ∫ ∫P P P P +  

          2 3 4
0 1 2 3 4

1 1 1 ...
2! 3! 4!

r i r r i r rω ω ω ω= + − − + +  

          
0

( )
!

n

n
n

i r
n
ω∞

=

=∑ ,                                                                                                         (4.4) 

 
where  is the n -th moment about 0 (called raw moment).  nr
 
Probability density function ( )xP  can be obtained by inverse Fourier transform of the 
characteristic function using the equation (3.5): 
 

                                       [ ]1 1( ) ( ) ( )
2

i xx e ω dφ ω φ
π

∞− −

−∞
= = ∫P F ω ω .                                (4.5) 

 
If X  is a discrete random variable with possible values 0{ }k kx ∞

=  and Pr{ }k kX x a= = , 
then ( )φ ω  is obtained by a series expansion instead of an integration as: 
 

                                                     .                                             (4.6) 
0

( ) exp( )k k
k

i x aφ ω ω
∞

=

≡∑
 
[4.2] Properties of a Characteristic Function 
 
Let X  be a random variable and ( )Xφ ω  be its characteristic function. A characteristic 
function ( )Xφ ω  is: 1) bounded by 1 (i.e. ( ) 1Xφ ω ≤ , ω∈R ), 2) (0) 1Xφ = , and 3) 
uniformly continuous in .  R
 
A statistical distribution is uniquely determined by its characteristic function, i.e. one-to-
one relationship between distribution functions and characteristic functions. In other 
words, if two random variables X  and Y  have the same characteristic functions 
(i.e. ( ) ( )X Yφ ω φ ω= ), they have the same distribution.  
 
If { }, 1,...,kX k n=  are independent random variables, the characteristic function of their 
sum 1 2 ... nX X+ + + X

k

 is the product of their characteristic functions: 
 

                                                 
1 2 ...

1

( ) ( )
n

n

X X X X
k

φ ω φ+ + +
=

=∏� ω .                                          (4.7) 

 
A random variable X  has a symmetric probability density function ( )xP  if and only if 
its characteristic function ( )Xφ ω  is a real-valued function, i.e.: 
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( )Xφ ω ∈R  for ω∈R . 
 
For : ,a b∈R
 
                                                      ( ) ( )i b

aX b Xe aωφ ω φ+ = ω .                                             (4.8) 
 
[4.3] Characteristic Exponent: Cumulant-Generating Function 
 
A characteristic exponent of a random variable X , ( )X ωΨ , is defined as a log of a 
characteristic function ( )Xφ ω : 
 
                                                         ( ) ln ( )X Xω φ ωΨ ≡ .                                                (4.9) 
 
The -th cumulant is defined as: n
 

                                                0
( )1 n

X
n n ncumulant

i ω
ω

ω =

∂ Ψ
=

∂
.                                     (4.10) 

 
Mean, variance, skewness, and excess kurtosis of the random variable X  can be obtained 
from cumulants as follows: 
 
                Mean of X  = [ ]E X  = , 1cumulant

                Variance of X  =  = , ( )2( )E X E X⎡ ⎤−⎣ ⎦ 2cumulant

                Skewness of X  = 
( )

( )

3

3
2

( )

( )

E X E X

E X E X

⎡ ⎤−⎣ ⎦
⎛ ⎞⎡ ⎤−⎜ ⎟⎣ ⎦⎝ ⎠

 = 3
3/ 2

2( )
cumulant

cumulant
, 

                Excess kurtosis of X  = 
( )

( )

4

4
2

( )
3

( )

E X E X

E X E X

⎡ ⎤−⎣ ⎦ −
⎛ ⎞⎡ ⎤−⎜ ⎟⎣ ⎦⎝ ⎠

 = 4
2

2( )
cumulant
cumulant

.       (4.11) 

 
Let’s consider one fundamental example. A normal random variable X  with mean µ  
and variance 2σ  has a density: 
 

( )2

22

1( ) exp
22

X
x

µ
σπσ

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

P . 

                                       
Its characteristic function can be calculated as from the definition (4.1):  
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[ ]
2 2

( ) ( ) ( ) exp( )
2

i xx e x dx iω σ ωφ ω µω
∞

−∞
≡ ≡ = −∫F P P . 

 
Its characteristic exponent is: 
 

2 2 2 2

( ) ln ( ) ln exp( )
2 2

i iσ ω σω φ ω µω µω
⎧ ⎫

Ψ ≡ = − = −⎨ ⎬
⎩ ⎭

ω . 

 
Cumulants are calculated using ( )ωΨ  from (4.10): 
 
                                                          1cumulant µ= , 
                                                          2

2cumulant σ= , 
                                                          3 0cumulant = , 
                                                          4 0cumulant = . 
 
This tells us that a normal random variable X  has a mean µ  and variance 2σ , zero 
skewness, and zero excess kurtosis.  
 
[4.4] Laplace Transform 
 
For nonnegative random variables we replace the Fourier transform by Laplace transform 
in order to obtain characteristic functions. The (unilateral) Laplace transform L  of a 
function  is defined as: ( )f x
 

                                                   
0

[ ( )] ( ) xf x f x e ω∞ −≡ ∫�L dx ,                                          (4.12) 

 
where  is defined for . Thus, the characteristic function of a nonnegative 
random variable 

( )f x 0x ≥
X  with its density function ( )xP  is given by: 

 

                                             
0

( ) [ ( )] ( ) x
X x x e dxωφ ω

∞ −= ≡ ∫�L P P .                                  (4.13) 

 
[4.5] Relationship with Moment Generating Function 
 
Let X  be a random variable on  and R ( )xP  be its probability density function. A 
function ( )M ω  with ω∈R  is called a moment generating function if there exists an 

 for 0h > hω <  such that (i.e. if the expectation in (4.14) converges): 
 

                                          ( ) ( ) [exp( )]xM e x dx E xωω
∞

−∞
≡ ≡∫ P ω .                                 (4.14) 
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For a continuous random variable X , again using the equation (4.3):  
 

               ( ) ( )xM e x dωω
∞

−∞
≡ ∫ P x  

2 3 41 1 11 ( ) ( ) ( ) ... ( )
2! 3! 4!

x x x x xω ω ω ω
∞

−∞

⎛ ⎞= + + + + +⎜ ⎟
⎝ ⎠∫ P dx  

                          2 3 4
1 2 3 4

1 1 11 ...
2! 3! 4!

c c c cω ω ω ω= + + + + + ,  

           
where  is the -th central moment.  nc n
 
If { }, 1,...,kX k n=  are independent random variables, the moment generating function of 
their sum 1 2 ... nX X+ + + X

k
M

 is the product of their moment generating functions: 
 

                                                
1 2 ...

1

( ) ( )
n

n

X X X X
k

M ω ω+ + +
=

=∏� .                                     (4.15) 

 
Its proof is very simple: 
 
                    ( ){ }

1 2 ... 1 2( ) exp ...
nX X X nM E X Xω ω+ + + X⎡ ⎤= + + +⎣ ⎦�  

                                              { }1 2exp ... nE X X Xω ω ω⎡ ⎤= + + +⎣ ⎦  

                                              { } { } { }1 2exp exp ...exp nE X X Xω ω ω⎡ ⎤= ⎣ ⎦  

                                              { } { } { }1 2exp exp ... exp nE X E X E Xω ω ω⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

                                              
1 2
( ) ( )... ( )

nX X XM M Mω ω ω=
1

( )
k

n

X
k

M ω
=

=∏ .        

 
If the moment generating function ( )M ω  is differentiable at zero (defined on a 
neighborhood [ , ]ε ε−  of zero), then the -th raw moments  can be obtained by:  n nr
 

                                                           0
( )n

n n

Mr ω
ω

ω =
∂

=
∂

.                                              (4.16) 

 
Thus: 
 
                                                       1 '(0) [ ]r M E X= = , 
                                                       , 2

2 ''(0) [ ]r M E X= =

                                                       , 3
3 '''(0) [ ]r M E X= =

                                                       . 4
4 ''''(0) [ ]r M E X= =
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For example, the mean and variance of the random variable X  are computed using raw 
moments as (discussed in detail in section 4.6): 
 
                                      Mean of X 1[ ]E X r= = , 

Variance of X 2 2
2 1[ ] [ ] 2E X E X r r= − = − . 

 
A characteristic function is always well-defined since it is the Fourier transform of a 
probability measure. But because the integral in (4.14) ( ω∀ ∈R ) may not converge for 
some (all) values ofω , a moment generating function is not always well-defined. When 

( )M ω  is well-defined, the relationship between the moment generating function ( )M ω  
and the characteristic function ( )φ ω  is given by: 
 
                                                         ( ) ( )M iω φ ω= − .                                                  (4.17) 
 
Let’s consider one fundamental example. If ( ),X Normal µ σ∼ , its moment generating 
function can be calculated as following the definition (4.14):  
 

2 2

( ) ( ) [exp( )] exp
2

xM e x dx E xω σ ωω ω
∞

−∞

⎛ ⎞
≡ ≡ = +⎜ ⎟

⎝ ⎠
∫ P µω . 

 
You can confirm that (4.17) is true for the normal case. Raw moments are calculated as 
the following: 
 
                                            1 '(0)r M µ= = , 
                                            2

2 ''(0)r M 2µ σ= = + ,                                         
                                            3

3 '''(0) 3r M 2µ µσ= = + ,                                                        
                                            4 2 2

4 ''''(0) 6 3r M 4µ µ σ σ= = + + .                                                                            
 
Using these raw moments, central moments can be calculated as: 
 
                       1[ ]E X r µ= = , 

2 2 2 2 2 2
2 1[ ] [ ] [ ]Variance X E X E X r r 2µ σ µ σ= − = − = + − = , 

                       
33

1 1 2 3
2 3/ 22 3

2 1

2 3{ [ ]}[ ] 0
( )( { [ ]} )
r r r rE X E XSkewness X
r rE X E X
− +−

= =
−−

= , 

                       
4

2 4

{ [ ]} [ ] 3
( { [ ]} )

E X E XExcess Kurtosis X
E X E X

−
= −

−
 

                                                        
4 2 2

1 1 2 2 1 3 4
2 2

2 1

6 12 3 4 0
( )

r r r r r r r
r r

− + − − +
= =

−
. 
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[4.6] Summary: How to Calculate Standardized Moments from Characteristic 
Function and Moment Generating function 
 
Following is a summary of the relationship between standardized moments, , 
and raw moments . Let 

ncumulant

nr X  be a random variable. -th cumulant and -th raw moment 
are defined by (5.10) and (5.16): 

n n

 

0
( )1 n

X
n n ncum

i ω
ω

ω =

∂ Ψ
=

∂
, 

                                                    0
( )n

n n

Mr ω
ω

ω =
∂

=
∂

. 

 
Table 4.1: How to Calculate Standardized Moments from Characteristic Function 

and Moment Generating function 
             Moments                             -th cumulant                  n -th raw moment n
 
Mean                   [ ]E X                                                                  1cum 1r
 
Variance                          cum                                    r r2{ [ ]E X E X− } 2

2
2 1−  

 

Skewness   
( )

3

3
2

{ [ ]}

{ [ ]}

E X E X

E X E X

−

−
           3

3/ 2
2

cum
cum

                         
3

1 1 2
2 3/ 2

2 1

2 3
( )
r r r r
r r

3− +
−

 

 
Excess Kurtosis 

                 
( )

4

4
2

{ [ ]} 3
{ [ ]}

E X E X

E X E X

−
−

−
         4

2
2

cum
cum

               
4 2 2

1 1 2 2 1 3
2 2

2 1

6 12 3 4
( )

r r r r r r
r r

4r− + − − +
−

 

 
Note: 
 

o -nd central moment of2 2 2 2]{ [ ]} [ ] [X E X E X E X E X= − = − [ ]Var X=  
            . 2

2 2 1cum r r= = −

o -rd central moment of 3 X 3{ [ ]} 3cumE X E X= − = 3
1 1 22 3r r r 3r= − + . 

o Skewness of X
( )

3
3

3 3/ 2
2 2

{ [ ]}[ ]
{ [ ]}

cumE X E XSkewness X
cumE X E X

−
= = =

−
 

            
3

1 1 2
2 3/ 2

2 1

2 3
( )
r r r r
r r
− +

=
−

3 . 

o -th central moment of 4 X 4 2
4{ [ ]} 3{ { [ ]}E X E X cum E X E X= − = + − 2}

2

 
            . 2

4 23cum cum= + 4 2 2 2
1 1 2 2 1 3 4 2 1( 6 12 3 4 ) 3( )r r r r r r r r r= − + − − + + −
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o Excess Kurtosiss of X
( )

24
4 2

4 2
2 2

3{ [ ]} 3 3
{ [ ]}

cum cumE X E X
cumE X E X

+−
= − =

−
−  

            
4 2 2

1 1 2 2 1 34
2 2 2

2 2 1

6 12 3 4
( )

r r r r r rcum
cum r r

− + − − +
= =

−
4r . 

 
[4.7] Examples of Characteristic Functions 
 
Several examples of characteristic functions using the definition (4.1) for continuous 
distributions and (4.6) for discrete distributions are given in the Table 4.2. 
                  

Table 4.2: Examples of Characteristic Functions 
Distribution                               ( )xP                                            ( )φ ω  
 

Normal                      
( )2

22

1 exp
22

X µ
σπσ

⎧ ⎫−⎪ ⎪−⎨ ⎬
⎪ ⎪⎩ ⎭

                  
2 2

exp( )
2

i σ ωµω −  

 

Exponential                                 ae ax−                                            a
a iω−

 

 

Gamma                                    
/ 1

( )

a x b ab e x
a

− − −

Γ
                                 ( )1 aibω −−  

 

Poisson                                        
!

xe
x

λλ−

                                    exp ( 1)ixeλ⎡ ⎤−⎣ ⎦  
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[5] Discrete Fourier Transform (DFT) 
 
DFT is a special case of (continuous) Fourier transform. The results obtained from FT 
and DFT are identical and the only difference is how we interpret these results. 
 
[5.1] Intuitive Derivation of DFT: Approximation of FT  
 
We first consider DFT of a time domain function  into an angular frequency 
domain

( )g t
ω  Hz (radians/second). This follows the convention in physics. In the field of 

signal processing which is a major application of FT, frequency  Hz (cycles/second) is 
used instead of

f
ω . But this difference is not important because ω  and  are measuring 

the same thing (rotation speed/second) in different units and related by: 
f

 
                                                                2 fω π= .                                                        (5.1) 
 
We saw in section 3 that continuous FT of  and inverse FT of ( )g t ( )ωG  using FT 
parameters  are defined as: ( , ) (1,1)a b =
 

                                      ,                                        (5.2) [ ]( ) ( ) ( ) ( )i t
t g t e g t dtωω ω

∞

−∞
≡ ≡ ∫G F

                                      [ ]1 1( ) ( ) ( ) ( )
2

i tg t t e dω
ω ω ω ω

π
∞− −

−∞
≡ ≡ ∫F G G .                             (5.3) 

 
The purpose of DFT is to approximate FT as close as possible by sampling a finite 
number of points  of a continuous time domain function  with time domain 
sampling interval  (seconds) and sampling a finite number of points  of a continuous 
FT 

N ( )g t
t∆ N

( )ωG  with angular frequency sampling interval ω∆  Hz. In other words, both the 
original continuous time domain function  and the original continuous FT ( )g t ( )ωG  are 
approximated by a sample of  points.   N
 
We begin with the notation. Let  be the number of discrete samples taken to 
approximate  and

N
( )g t ( )ωG . Let t∆  (seconds/sample) be the time domain sampling 

interval which is the time increment between samples. Its inverse 1/sf t≡ ∆  
(samples/second) is called a sampling rate. Let T  be the total sampling time: 
 
                                                               /t T N∆ ≡ .                                                       (5.4) 
 
It is extremely important to mention that total sampling time T  defined by (5.4) has 
absolutely nothing to do with period T  of oscillation of a wave (i.e. the seconds (time) 
taken for the wave to complete one wavelength defined by the equation (2.3)). To avoid 
confusion, period T  of oscillation of a wave is called a fundamental period. 
 
If  is assumed to be 1, the total sampling time and the number of samples taken are 
same (i.e. for example,  seconds and 

t∆
10T = 10N =  samples). If 0.01t∆ = , 1 sample is 
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taken in every 0.01 second in a time domain which in turn means that 100 samples are 
taken every second (i.e. sampling rate 1/ 100sf t≡ ∆ =  Hz).  
 
The first step to DFT is to take  discrete samples of a continuous time domain function 

 at -th sampling instant 
N

( )g t n nt n t= ∆  (seconds) with 0,1,..., 1n N= − . When  
seconds and  samples (i.e. time domain sampling interval 

10T =
10N = 1t∆ = ),  is sampled 

at 0 second, 1 second, 2 seconds, ….., and 9 seconds. Let 
( )g t

( )ng t n t= ∆  be the sampled 
values of . In a special case of( )g t 1t∆ = : 
 
                                                              ( ) ( )ng t g n= .                                                    (5.5) 
 
We call this process as time domain sampling.  
 
Next consider angular frequency domain (ω  Hz) sampling. Let ω∆  Hz (radians/second) 
be angular frequency sampling interval: 
 

                                                          2 2
N t T
π πω∆ ≡ ≡
∆

.                                                 (5.6) 

 
The second step to DFT is to take  samples of a continuous FT N ( )ωG  at -th angular 
frequency sampling instant 

k

k kω ω= ∆  (radians) with 0,1,..., 1k N= − . When  
seconds and  samples (i.e.

10T =
10N = 1t∆ = ), ( )ωG  is sampled at 0 radian, / 5π  radians, 

2 / 5π  radians, 3 / 5π  radians,  …, and 9 / 5π  radians. Let ( )kωG  be the sampled values 
of ( )ωG : 
 

                                        2( ) ( ) ( ) ( )k k k k
N t T

2π πω ω≡ ∆ ≡ ≡
∆

G G G G .                               (5.7) 

 
( )kωG  is called a spectrum of  at angular frequency ( )ng t kω  and it is a complex number.  

 
DFT defines the relationship between the sampled wave in time domain  and its 
spectrum at angular frequency

( )ng t�

kω , ( )kωG , as: 
 

                                     { }
1

0

2( ) ( ) exp
N

k n
n

k g t n t i
N t
πω ω

−

=

≡ ≡ ≡ ∆
∆ ∑G � k nt  

                                     {
1

0

2( ) ( ) exp 2 /
N

n
k g n t ikn

N t
π π

−

=

≡ ∆
∆ ∑G � }N ,                                    (5.8) 

 
and: 
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                                     ( )
1

0

1 2( ) ( ) exp
N

n k
k

g t n t k i t
N N t

πω ω
−

=

≡ ∆ ≡ ≡ −
∆∑� G k n  

                                     (
1

0

1 2( ) ( ) exp 2 /
N

k
g n t k ikn N

N N t
π π

−

=

∆ ≡ −
∆∑� G ) .                             (5.9) 

 
As you can see, DFT replaces an infinite integral of FT with summation of  points.  N
 
[5.2] Definition of DFT 
 
[5.2.1] Physicists’ Definition of DFT 
 
Likewise FT, there are several different definitions of DFT depending on the field of 
study. We first follow physicists’ convention. We begin with the most general definition 
of DFT of a continuous time domain function  into angular frequency domain 
function 

( )g t
( )ωG  and its inverse using DFT parameters ( ,  as: )a b

 

                               {
1

1
02

2 1( ) ( ) exp
N

k na
n

k g t n t
N t

N

πω ω
−

−
=

≡ ≡ ≡ ∆
∆ ∑G � }k nib t ,                     (5.10) 

                               (
1

1
02

1 2( ) ( ) exp
N

n ka
k

g t n t k ib t
N t

N

πω
−

+
=

≡ ∆ ≡ ≡ −
∆∑� G )k nω .                   (5.11) 

 
When DFT parameters are ( , ) (1,1)a b =  for the purpose of calculating characteristic  
functions, the definitions (5.10) and (5.11) become the definitions (5.8) and (5.9).  
 
[5.2.2] Signal Processing Definition of DFT 
 
In the field of signal processing (and most of the textbooks about FT), frequency  Hz 
(cycles/second) is used instead of

f
ω  Hz (radians/second). Consider frequency domain  

sampling. Let  Hz be frequency domain sampling interval (also called frequency 
resolution): 

f
f∆

 

                                                          1f
N t T

1
∆ ≡ ≡

∆
.                                                  (5.12) 

 
Take  samples of a continuous FT  at -th frequency sampling instant N ( )fG k kf k f= ∆  
Hz with . When 0,1,..., 1k N= − 10T =  seconds and 10N =  samples (i.e. ),  is 
sampled at 0 Hz, 1/10 Hz, 2/10 Hz, …, and 9/10 Hz. Let 

1t∆ = ( )fG
( )kfG  be the sampled values of 

: ( )fG
 

                                         1( ) ( ) ( ) ( )k
1f k f k k

N t T
≡ ∆ ≡ ≡

∆
G G G G .                               (5.13) 
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( )kfG  is called a spectrum of  at frequency ( )ng t� kf  Hz and it is a complex number.  

 
The general definition of DFT of a continuous time domain function  into frequency 
domain function  and its inverse using DFT parameters ( ,  become (i.e. 
equivalent to (5.10) and (5.11)): 

( )g t
( )fG )a b

 

                            {
1

1
02

1 1( ) ( ) exp 2
N

k na
n

}/f k g t n t i
N t

N
π

−

−
=

≡ ≡ ≡ ∆
∆ ∑G � bkn N ,                 (5.14) 

                            (
1

1
02

1 1( ) ( ) exp 2 /
N

n ka
k

g t n t f k ibkn N
N t

N
π

−

+
=

≡ ∆ ≡ ≡ −
∆∑� G ) .               (5.15) 

 
In the signal processing, DFT parameters (1, 1)−  are used: 
 

                                 {
1

0

( ) ( ) exp 2 /
N

k n
n

k }f g t n t ikn N
N t

π
−

=

≡ ≡ ≡ ∆ −
∆ ∑G � ,                        (5.16) 

                                 (
1

0

1( ) ( ) exp 2 /
N

n k
k

kg t n t f ikn N
N N t

π
−

=

≡ ∆ ≡ ≡
∆∑� G ) .                      (5.17) 

 
[5.2.3] Requirement of DFT 
    
FT and inverse FT defined by the equations (5.10) and (5.11) require both the time 

domain function  and the angular frequency domain function ( )ng t n t≡ ∆� 2( )k k
N t
πω ≡
∆

G  

to be periodic. This means for 0, 1, 2,θ = ± ± …: 
 
                                          ( )( )ng t n t g N n tθ⎡ ⎤≡ ∆ = + ∆⎣ ⎦� , 

( )2 2( )k k N k
N t N t
π πω θ⎡ ⎤≡ = +⎢ ⎥∆ ∆⎣ ⎦

G G . 

 
FT and inverse FT defined by the equations (5.16) and (5.17) require both the time 

domain function  and the frequency domain function ( )ng t n t≡ ∆� ( )k
kf

N t
≡

∆
G  to be 

periodic. This means for 0, 1, 2,θ = ± ± …: 
 

( )( )ng t n t g N n tθ⎡ ⎤≡ ∆ = + ∆⎣ ⎦� , 

                                               
( )( )k

N kkf
N t N t

θ⎡ ⎤+
≡ = ⎢ ⎥∆ ∆⎣ ⎦

G G . 
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[5.2.4] Sampling Theorem and Nyquist Rule: How to Determine the Time Domain 
Sampling Interval ∆t 
 
At this point we are very familiar with the definition of DFT at least in terms of concept. 
DFT is simply a discrete approximation of FT by taking a  point sample both in the 
time domain t  (seconds) and frequency (angular frequency) domain  (

N
f ω ) Hz. When 

implementing DFT, the following very important question about the frequency of 
sampling arises. What is the appropriate time domain sampling interval  
(seconds/sample), 1 second, 0.5 seconds, or 0.01 seconds? In terms of sampling rate  

t∆

1/sf t= ∆  (samples/second), question becomes the following. What is the appropriate 
sampling rate sf , 1 Hz, 2 Hz, or 100 Hz? 
 
If time domain function  is not sampled at an appropriately high rate (i.e. you chose 
too large time domain sampling interval

( )g t
t∆  or you chose too small sampling rate sf  Hz), 

it turns out that DFT yields distorted (overlapped) approximation of FT known as 
aliasing. According to the sampling theorem of Fourier transform, a continuous time 
domain function  can be uniquely determined by its sampled values  by 

choosing the time domain sampling interval of 

( )g t ( )ng t n t≡ ∆�
1

2 c

t
f

∆ =  (seconds) if the FT  of 

 is zero for all frequencies greater than 

( )fG

( )g t cf  Hz (i.e. if the FT  of  is band-
limited at the frequency 

( )fG ( )g t

cf  Hz): 
 

( ) 0f =G    if   cf f> . 
 

The time domain sampling interval of 1
2 c

t
f

∆ =  (seconds) is the maximum value of the 

interval without aliasing. In other words, aliasing occurs if 1
2 c

t
f

∆ >  and aliasing does 

not occur if 1
2 c

t
f

∆ < .  

 
In terms of a sampling rate 1/sf t= ∆  Hz, the sampling theorem becomes the following.  
A continuous time domain function  can be uniquely determined by its sampled 
values  by choosing the sampling rate of: 

( )g t
( )ng t n t≡ ∆�

 
                                                               2s cf f=  Hz,                                                  (5.18) 
 
where cf  is the folding frequency of the waveform . The sampling rate of ( )g t 2s cf f=   
Hz is the minimum value of sampling rate without aliasing. In other words, aliasing 
occurs if 2s cf f<  and aliasing does not occur if 2s cf f≥ .  
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After simple rearrangement: 
 

                                                             1
2 c

t
f

∆ <  

1 2s cf f
t
≡ <

∆
 

                                                             1
2 s cf f< . 

 
Nyquist rule states that when we sample a time domain function  with sampling rate ( )g t

sf  Hz (samples/second), its FT  is reliable (i.e. without aliasing) only up to 
frequency 

( )fG
/ 2sf  Hz . The maximum frequency without aliasing / 2s cf f=  is called a 

folding frequency.  
 
Nyquist rule can be stated in terms of -th frequency sampling instant k kf k f= ∆  Hz 
with . We solve for the value of k  such that: 0,1,..., 1k N= −
 

/ 2sk f f∆ = . 
 
Since 1/sf t= ∆  and : 1/f N∆ = ∆t
 

1 1 1
2

k
N t t

=
∆ ∆

 

                                                            
2
Nk = . 

 
This means that when we take a  point sample of a time domain function , its FT 

 is reliable (i.e. without aliasing) only up to 
N ( )g t

( )fG / 2k N= -th frequency sampling 
instant. In other words, only half of  point DFT outputs are reliable.  N
 
Consider DFT of a continuous time domain function  with the sampling rate 

 Hz (samples/second) for the total sampling time 
( )g t

200sf = 3T =  (seconds).  is 
sampled in the time domain with the interval 

( )g t
1/ 1/ 200 0.005st f∆ = = =  

(seconds/sample). The number of samples taken is / 3/ 0.005 600N T t= ∆ = = . Frequency 
resolution (frequency domain sampling interval) is 1/ 1/ 1/ 3f N t T∆ ≡ ∆ ≡ =  Hz. 
Following Nyquist rule, FT  is reliable (i.e. without aliasing) only up to frequency  

 Hz. In other words, out of 600 DFT outputs 

( )fG

/ 2 200 / 2 100sf = = ( )k
kf

N t
≡

∆
G  with k =  

0, 1, 2, …, 599 only the half / 2 600 / 2 300N = =  are reliable.  
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Read the chapter 5 of Brigham (1988) which is an excellent book for more rigorous 
treatment of the sampling theorem. 
 
[5.3] Examples of DFT 
 
Above all, section 5.3.1 is the most important example. Using an example of a sine wave 

0( ) sin(2 ) sin( )g t A f t A t0π ω= = , following important features of DFT are explained in 
detail: 1) Approximation error inherent in DFT called leakage, 2) Leakage cannot always 
be reduced by increasing a sampling rate sf  Hz (cycles/second) with holding the number 
of samples taken  constant, 3) Guideline of choosing the optimal sampling rateN sf  Hz 
when the folding frequency cf  of the waveform is known  (Nyquist rule), and 4) The 
only remedy for leakage is to sample more points (i.e. higher ).   N
 
[5.3.1] Sine Wave 0 0( ) sin(2 ) sin( )g t A f t A tπ ω= =  
 
Consider 10 Hz (cycles/second) sine wave (i.e. fundamental frequency ) with 
amplitude 

0 10f =
1A =  volt plotted in Panel A of Figure 5.1:  

 
                                                          ( ) sin(2 10 )g t tπ= .                                              (5.19) 
 
We saw in section 3.2.6 that the ideal FT of (5.19) is an impulse function of normalized 
magnitude (frequency spectrum) 1 volt at frequency 10f =  Hz plotted in Panel B of 
Figure 5.1 which implies that the frequency 10f =  Hz contains all the energy of the 
waveform. Normalized magnitude is normalized so that it equals the amplitude A  of the 
waveform . ( )g t

0 1
time t

-1

-0.5

0

0.5

1

gH
tL

 
A) Plot of a 10 Hz sine wave ( ) sin(2 10 )g t tπ= . 
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B) Plot of the ideal normalized FT of ( ) sin(2 10 )g t tπ= .  
 
Figure 5.1: Plot of a 10 Hz Sine Wave and Its Ideal Normalized FT 
 
Next, we consider DFT. Since DFT is only an approximation of FT, the frequency 
spectrum produced by DFT is not as clean as the Panel B Figure 5.1 meaning that it 
contains a lot of noise. This degree of cleanness (noise) depends on such factors as the 
sampling rate sf  Hz (or 1/ st∆ = f ), the point of sample , and the total sampling time T  
which are all related by: 

N

 
                                                               /sf N T≡ .                                                     (5.20) 
 
First, we sample a time domain function (5.19) by a sampling rate of  Hz 
(samples/second) and the number of samples 

200sf =
256N =  (samples). In other words, we take 

a  point sample of (5.19) with a time domain sampling interval: 256N =
 

1/ 1/ 200 0.005st f∆ = = =  (seconds/sample), 
 
and total sampling time: 
 

256 0.005 1.28T N t= ∆ = × =  (seconds). 
 
Sampled 10 Hz sine wave (5.19) is plotted in Panel A of Figure 5.2.  
 
Secondly, consider frequency domain  sampling. Frequency resolution (frequency 
domain sampling interval)  Hz (cycles/second) is following (5.12): 

f
f∆

 
1 1 0.78125

1.28
f

T N t
∆ ≡ = =

≡ ∆
. 
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A) Plot of sampled 10 Hz sine wave ( ) sin(2 10 )g t tπ=  on the left. Points are joined on the 
right. 
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B) Plot of DFT non-normalized frequency spectrum of sampled 10 Hz sine wave 

( ) sin(2 10 )g t tπ=  on the left. Points are joined on the right. 
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C) Plot of DFT normalized frequency spectrum of sampled 10 Hz sine wave 

( ) sin(2 10 )g t tπ=  on the left. Points are joined on the right. 
 
Figure 5.2: Plot of Sampled 10 Hz Sine Wave and Its DFT Output 
 
Following the signal processing definition of DFT (5.16), frequency spectrum of sampled 
10 Hz sine wave (5.19) is plotted in Panel B of Figure 5.2. The frequency axis goes from 
0 to 100 Hz because aliasing does not occur up to the folding frequency / 2sf 200 / 2=  = 
100 Hz. Frequency spectrum in Panel C is normalized so that the normalized magnitude 
equals the amplitude A  of the waveform  (i.e. in this example( )g t 1A = ). This 
normalization is done by weighting the non-normalized magnitude by: 
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1
/ 2N

. 

 
Several important features should be noticed from the Panel C of Figure 5.2. Continuous 
(normalized) FT  of a sine wave (5.19) is a unit impulse function at the frequency 

 Hz (this fundamental frequency is also a folding frequency) as depicted in the 
Panel B of Figure 5.1. Its approximation by DFT is not an impulse function, but it is 
rather a spike with significant portion of the energy distributed around 10 Hz (i.e. positive 
energy in the interval 5  Hz). In other words, the approximation by DFT leaks 
the energy around the original impulse. This approximation error inherent in DFT is 
called a leakage which occurs when the time domain sampling does not end at the phase 
of the sine wave as it started. As a consequence of leakage, the normalized maximum 
magnitude of DFT  is less than 1 compared to the exactly 1 normalized maximum 
magnitude of an original impulse. Theoretically speaking, the only remedy for leakage is 
to take infinitely many samples (i.e. ). But practically speaking, DFT always 
contains leakage because it is impossible to take infinitely many samples.         

( )fG

0 10f =

15f< <

( )fG

N →∞

 
Some readers might think that the degree of leakage can be reduced by taking samples 
with higher sampling rate sf  Hz with no change in . The answer is no. To show why 
this is the case, we redo DFT of a sine wave (5.19) with higher sampling rate  
Hz (5 times faster). First, we sample a time domain function (5.19) by a sampling rate of 

 Hz (samples/second) and the number of samples 

N
1000sf =

1000sf = 256N =  (samples). In other 
words, we take a  point sample of (5.19) with a time domain sampling interval: 256N =
 

1/ 1/1000 0.001st f∆ = = =  (seconds/sample), 
 
and total sampling time: 
 

256 0.001 0.256T N t= ∆ = × =  (seconds). 
 
Sampled 10 Hz sine wave (5.19) is plotted in Panel A of Figure 5.3. Secondly, consider 
frequency domain  sampling. Frequency resolution (frequency domain sampling 
interval)  Hz (cycles/second) is following (5.12): 

f
f∆

 
1 1 3.90625

0.256
f

T N t
∆ ≡ = =

≡ ∆
. 
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A) Plot of sampled 10 Hz sine wave with the sampling rate 1000sf =  Hz. 
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B) Plot of DFT norm ized frequency spectrum of sampled 10 Hz sine wave al

( ) sin(2 10 )g t tπ=  with the sampling rate 1000sf = Hz. 
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C) Points are joined. 
 
Figure 5.3: Plot of Sampled 10 Hz Sine Wave and Its Normalized DFT Output with 
Sampling Rate fs = 1000 Hz. 
 
Following the signal processing definition of DFT (5.16), normalized frequency spectrum 
of sampled 10 Hz sine wave (5.19) with 1000sf =  Hz is plotted in Panel B and C of 
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Figure 5.3. The frequency axis goes from 0 to 500 Hz because aliasing does not occur up 
to the folding frequency  = 500 Hz according to Nyquist rule. As 
you realize now, leakage gets worse as a result of an increase in a sampling rate 

/ 2 1000 / 2 500sf = =

sf  from 
200 to 1000 Hz. We can see that the normalized maximum magnitude of DFT  is 
0.6573267 (significantly less than 1 which is the original normalized magnitude) which 
in turn indicates that the degree of leakage of energy around 10 Hz is greater. In addition, 

( )fG

the normalized maximum magnitude 0.6573267 occurs at 11.7188 Hz, although 
continuous normalized FT is a unit impulse function at the frequency  Hz. The 
reason that the accuracy of the approximation by DFT gets poorer is the fact that the 
frequency resolution gets poorer from: 

0 10f =

 
1 1 0.78125

1.28
f

T N t
∆ ≡ = =

≡ ∆
 Hz, 

 
to: 
 

1 1 3.90625
0.256

f
T N t

∆ ≡ = =
≡ ∆

 Hz, 

 
as a result of an increase in a sampling rate sf  from 200 to 1000 Hz (i.e. because an 

increase in sf  is an decrease in  through the relationship t∆ 1
sf t
≡
∆

). The bottom line is 

that the degree of leakage cannot necessarily be reduced by taking samples with higher 
sampling rate sf  Hz with no change in . N
 
The above example indicates that for a 10 Hz sine wave using 1000 Hz sampling rate sf  
is too much (i.e. frequency resolution becomes too poor). So the next natural question 
arises that how can we determine the appropriate sampling rate sf  Hz? Following 
Nyquist rule of (5.18), the sampling rate of 2s cf f=   Hz is the minimum value of 
sampling rate without aliasing. As long as the folding frequency cf  of the waveform 

 is known (in our example ( )g t 10cf =  Hz), the minimum value of sampling rate without 
aliasing can be obtained by doubling cf . Although this is a nice rule, its practical 
usefulness is very doubtful because in other than textbook examples the folding 
frequency cf  of the waveform  is not known a priori. Redo DFT of a sine wave 
(5.19) using the sampling rate

( )g t
50sf =  Hz. We take a 256N =  point sample of (5.19) 

with a time domain sampling interval: 
 

1/ 1/ 50 0.02st f∆ = = =  (seconds/sample), 
 
and total sampling time: 
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256 0.02 5.12T N t= ∆ = × =  (seconds). 
 
Sampled 10 Hz sine wave (5.19) is plotted in Panel A of Figure 5.4. Frequency resolution 
of DFT (frequency domain sampling interval) f∆  Hz (cycles/second) is following (5.12): 
 

1 1 0.1953125
5.12

f
T N t

∆ ≡ = =
≡ ∆

. 
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A) Plot of sampled 10 Hz sine wave ( ) sin(2 10 )g t tπ=  using the sampling rate  Hz 
on the left. Points are joined on the right. 
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B) Plot of DFT normalized frequency spectrum of sampled 10 Hz sine wave 

( ) sin(2 10 )g t tπ=  using the sampling rate 50sf =  Hz on the left. Points are joined on the 
right. 
 
Figure 5.4: Plot of Sampled 10 Hz Sine Wave and Its Normalized DFT Output with 
Sampling Rate fs = 50 Hz. 
 
By reducing the sampling rate from 1000sf =  Hz to 50sf =  Hz, DFT approximates 
continuous FT (a unit impulse function at 10 Hz in this example) much better because the 
frequency resolution  increases from 3.90625 Hz to 0.1953125 Hz. Again, the 
important result is the fact that higher sampling rate 

f∆

sf  does not always reduce leakage 
(DFT inherent error) depending on the folding frequency  cf  of the waveform.  
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The only way to reduce leakage is to sample more points. To illustrate this, we take a 
 point sample of (5.19) using the sampling rate4 256 1024N = × = 50sf =  Hz with a time 

domain sampling interval: 
 

1/ 1/ 50 0.02st f∆ = = =  (seconds/sample), 
 
and total sampling time: 
 

1024 0.02 20.48T N t= ∆ = × =  (seconds). 
 
Sampled 10 Hz sine wave (5.19) is plotted in Figure 5.5. Frequency resolution of DFT 
(frequency domain sampling interval) f∆  Hz (cycles/second) is following (5.12): 
 

1 1 0.048828125
20.48

f
T N t

∆ ≡ = =
≡ ∆

. 

 
Note that the frequency resolution f∆  become 4 times finer because the number of 
samples taken  increased by four-fold. As a result, leakage has been dramatically 
reduced. In fact, in F re 5.5 the peak magnitude is 0.935 at a frequency of 10.01 Hz 
which is really close (i.e. a good approximation) to the continuous FT of the peak 
magnitude 1 at 10 Hz

N
igu

.   
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A) Plot of N = 1,024 point-DFT normalized frequency spectrum of 10 Hz sine wave 

( ) sin(2 10 )g t tπ= . Sampling rate 50sf =  Hz is used.  
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B) Points are joined. 
 
Figure 5.5: Plot of N = 1,024 Point-DFT of a 10-Hz Sine Wave and Its Normalized 
DFT Output with Sampling Rate fs = 50 Hz. 
 
[5.3.2] Double-Sided Exponential  
 
Consider a double-sided exponential function with ,A α ∈R : 
 

 ( ) tg t Ae α−= . 
 
Set 1A =  and 3α = . Following the definition (5.16), 256N =  point DFT of a double-
sided exponential function with 40sf =  Hz (samples/second) sampling rate is performed 
on Figure 5.6. Time domain sampling interval t∆  (seconds/sample), total sampling time 

 (seconds), and frequency resolution T f∆  Hz (cycles/second) are: 
 
                                         , 1/ 1/ 40 0.025st f∆ = = =
                                          , 256 0.025 6.4T N t= ∆ = × =

1/ 1/ 1/ 6.4 0.15625f N t T∆ ≡ ∆ ≡ = = . 
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A) Plot of sampled 3   ( ) tg t e−=  using the sampling rate 40sf =  Hz. Points are joined on 
the right. 
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B) Plot of  point DFT frequency spectrum of sampled 256N = 3   ( ) tg t e−=  using the 
sampling rate  Hz. Points are joined on the right. 40sf =
 
Figure 5.6: Plot of Sampled Double-Sided Exponential Function 3   ( ) tg t e−=  and N = 
256 Point DFT with Sampling Rate fs = 40 Hz. 
 
[5.3.3] Rectangular Pulse  
 
Consider a rectangular pulse with 0,A T ∈R : 
 

0 0

0

     -
( )

0        
A T t T

g t
t T
≤ ≤⎧⎪= ⎨ >⎪⎩

, 

 
which is an even function of t  (symmetric with respect to t ).  
 
Set 1A =  and . Following the definition (5.16), 0 2T = 256N =  point DFT of a 
rectangular pulse with  Hz (samples/second) sampling rate is performed on 
Figure 5.7. Time domain sampling interval 

40sf =
t∆  (seconds/sample), total sampling time T  

(seconds), and frequency resolution f∆  Hz (cycles/second) are: 
 
                                         , 1/ 1/ 40 0.025st f∆ = = =
                                          , 256 0.025 6.4T N t= ∆ = × =

1/ 1/ 1/ 6.4 0.15625f N t T∆ ≡ ∆ ≡ = = . 
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A) Plot of sampled rectangular pulse using the sampling rate 40sf =  Hz. Points are 
joined on the right. 
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B) Plot of  point DFT frequency spectrum of sampled rectangular pulse using 
the sampling rate  Hz. Points are joined on the right. 

256N =
40sf =

 
Figure 5.7: Plot of Sampled Rectangular Pulse and N = 256 Point DFT with 
Sampling Rate fs = 40 Hz. 
 
[5.3.4] Gaussian Function 
 
Consider a Gaussian function with A +∈R : 
 

2

( ) Atg t e−= . 
 
Set 2A = . Following the definition (5.16), 256N =  point DFT of a Gaussian function 
with  Hz (samples/second) sampling rate is performed on Figure 5.8. Time 
domain sampling interval  (seconds/sample), total sampling time T  (seconds), and 
frequency resolution  Hz (cycles/second) are: 

40sf =
t∆

f∆
 
                                         , 1/ 1/ 40 0.025st f∆ = = =
                                          , 256 0.025 6.4T N t= ∆ = × =

1/ 1/ 1/ 6.4 0.15625f N t T∆ ≡ ∆ ≡ = = . 
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A) Plot of sampled  using the sampling rate

22( ) tg t e−= 40sf =  Hz. Points are joined on 
the right. 
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B) Plot of  point DFT frequency spectrum of sampled  using the 
sampling rate  Hz. Points are joined on the right. 

256N =
22( ) tg t e−=

40sf =
 
Figure 5.8: Plot of Sampled Gaussian Function and N = 256 Point DFT 
with Sampling Rate f

22( ) tg t e−=
s = 40 Hz. 

 
[5.3.5] Cosine Wave 0 0( ) cos(2 ) cos( )g t A f t A tπ ω= =  
 
Consider 10 Hz (cycles/second) cosine wave (i.e. fundamental frequency ) with 
amplitude 

0 10f =
1A =  volt:  

 
( ) cos(2 10 )g t tπ= . 

 
Following the definition (5.16), 256N =  point DFT of a cosine function with  
Hz (samples/second) sampling rate is performed on Figure 5.9. Time domain sampling 
interval  (seconds/sample), total sampling time T  (seconds), and frequency resolution 

 Hz (cycles/second) are: 

40sf =

t∆
f∆

 
                                         , 1/ 1/ 40 0.025st f∆ = = =
                                          , 256 0.025 6.4T N t= ∆ = × =

1/ 1/ 1/ 6.4 0.15625f N t T∆ ≡ ∆ ≡ = = . 
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A) Plot of sampled ( ) cos(2 10 )g t tπ=  using the sampling rate 40sf =  Hz. Points are 
joined on the right. 
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B) Plot of  point DFT frequency spectrum of sampled 256N = ( ) cos(2 10 )g t tπ=  using 
the sampling rate  Hz. Points are joined on the right. 40sf =
 
Figure 5.9: Plot of Sampled Cosine Wave ( ) cos(2 10 )g t tπ=  and N = 256 Point DFT 
with Sampling Rate fs = 40 Hz. 
 
[5.4] Properties of DFT  
 
DFT retains all the properties of continuous FT since DFT is a special case of FT. 
 
[5.4.1] Linearity of DFT 
 
Suppose that the time domain sequence { ( ) : 0,1,..., 1}nf t n N= −  and 

 have discrete Fourier transforms {{ ( ) : 0,1,..., 1}ng t n N=� − ( ) : 0,1,... 1}kf k N= −F  and 
 defined by the equation (5.16). Then: { ( ) : 0,1,... 1}kf k N=G −

}

}

 

                           .                (5.21) ( ) {
1

0
( ) ( ) ( ) ( ) exp 2 /

N

k k n n
n

a f b f af t bg t ikn Nπ
−

=

+ ≡ + −∑F G � �

 
PROOF 
 

                          ( ) {
1

0

( ) ( ) exp 2 /
N

n n
n

af t bg t ikn Nπ
−

=

+ −∑ � �

{ } { }
1 1

0 0

( ) exp 2 / ( ) exp 2 /
N N

n n
n n

a f t ikn N b g t ikn Nπ π
− −

= =

= − + −∑ ∑� �  

                          . ( ) ( )k ka f b f= +F G
 
[5.4.2] DFT of Even and Odd Functions 
 
Let  be an even function and  be an odd function. Integral properties of 
even and odd functions are: 

( )even x ( )odd x
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                                                ( ) 0
A

A
odd x dx

−
=∫ ,                                                          

                                                .                                     
0

( ) 2 ( )
A A

A
even x dx even x dx

−
=∫ ∫

 
If the time domain sequence { ( ) : 0,1,..., 1}ng t n N= −�  is even, i.e. , then its 
DFT {  defined by the equation (5.16) is a real-valued even 
function: 

( ) ( )ng t g t= −� n

−( ) : 0,1,... 1}kf k N=G

 

                                                 
1

0

2( ) ( ) cos
N

k n
n

knf g t
N
π−

=

⎛= ⎜
⎝ ⎠

∑G � ⎞
⎟ .                                     (5.22)    

 
PROOF 
 
Start from the DFT definition (5.16): 
 

{ }
1

0
( ) ( ) exp 2 /

N

k n
n

kf g t n t ikn N
N t

π
−

=

≡ ≡ ≡ ∆ −
∆ ∑G � . 

 
Using the Euler’s formula (2.16) of : cos( ) sin( )ixe x i− = − x
 

{ }
1

0

( ) ( ) cos(2 / ) sin(2 /
N

k n
n

k )f g t n t kn N i kn N
N t

π π
−

=

≡ ≡ ≡ ∆ −
∆ ∑G �  

                     
1 1

0 0
( ) ( ) cos(2 / ) ( ) sin(2 / )

N N

k n n
n n

f g t kn N i g t kn Nπ π
− −

= =

= −∑ ∑G � � . 

 
Since the product of an even function  and an odd function( )ng t sin(2 / )kn Nπ  is odd, 
from its integral property: 
 

1

0

( )sin(2 / ) 0
N

n
n

g t kn Nπ
−

=

=∑ � . 

 
Thus: 
 

1

0
( ) ( ) cos(2 / )

N

k n
n

f g t kn Nπ
−

=

=∑G � , 

 
which is a real-valued even function since it is a product of two real-valued even 
functions  and co( )ng t� s(2 / )kn Nπ . 
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Next consider an odd case. If the time domain sequence { ( ) : 0,1,..., 1}ng t n N= −  is odd, 
i.e. , then its DFT {( ) ( )ng t g t= − −� � n ( ) : 0,1,... 1}kf k N= −G  defined by the equation (5.16) 
is a complex-valued odd function: 
 

                                               
1

0

2( ) ( ) sin
N

k n
n

knf i g t
N
π−

=

⎛= − ⎜
⎝ ⎠

∑G � ⎞
⎟ .                                    (5.23)    

 
PROOF 
 
Start from the DFT definition (5.16): 
 

{ }
1

0

( ) ( ) exp 2 /
N

k n
n

kf g t n t ikn N
N t

π
−

=

≡ ≡ ≡ ∆ −
∆ ∑G � . 

 
Using the Euler’s formula (2.16) of : cos( ) sin( )ixe x i− = − x
 

{ }
1

0

( ) ( ) cos(2 / ) sin(2 /
N

k n
n

k )f g t n t kn N i kn N
N t

π π
−

=

≡ ≡ ≡ ∆ −
∆ ∑G �  

                     
1 1

0 0
( ) ( ) cos(2 / ) ( ) sin(2 / )

N N

k n n
n n

f g t kn N i g t kn Nπ π
− −

= =

= −∑ ∑G � � . 

 
Since the product of an odd function  and an even function( )ng t cos(2 / )kn Nπ  is odd, 
from its integral property: 
 

1

0

( ) cos(2 / ) 0
N

n
n

g t kn Nπ
−

=

=∑ � . 

 
Thus: 
 

1

0
( ) ( ) sin(2 / )

N

k n
n

f i g t kn Nπ
−

=

= − ∑G � , 

 
which is a complex-valued odd function. 
 
[5.4.3] Symmetry of DFT  
 
If the time domain sequence { ( ) : 0,1,..., 1}ng t n N= −�  has DFT {  

defined by the equation (5.16), then the sequence 

( ) : 0,1,... 1}kf k N= −G
1 ( ) : 0,1,..., 1nt n N
N

⎧ ⎫= −⎨ ⎬
⎩ ⎭
G  has DFT 
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{ ( ) : 0,1,..., 1}kg f k N− = −� . In other words, if ( )( ), ( )n kg t fG  is a DFT pair, 
1 ( ), ( )n kt g f
N

⎛ −⎜
⎝ ⎠
G � ⎞

⎟  is another DFT pair.  

 
PROOF 
 
By the definition of an inverse DFT (5.17): 
 

( )
1

0

1( ) ( ) exp 2 /
N

n k
k

kg t n t f ikn N
N N t

π
−

=

≡ ∆ ≡ ≡
∆∑� G . 

 
Rewrite it by substituting  for : n− n
 

( )
1

0

1( ) ( ) exp 2 ( )
N

n k
k

kg t n t f ik n N
N N t

π
−

=

− ≡ − ∆ ≡ ≡ −
∆∑� G /  

                            ( )
1

0

1( ) ( ) exp 2 ( ) /
N

n k
k

g t f ik n N
N

π
−

=

− ≡ −∑� G . 

 
Exchange  with nt kf  and  with , vice versa: n k
 

( )
1

0

1( ) ( ) exp 2 /
N

k n
n

g f t ink N
N

π
−

=

− ≡ −∑� G . 

 

From the definition of DFT (5.16), 1 ( ), ( )n kt g f
N

⎛ ⎞−⎜ ⎟
⎝ ⎠
G �  is a DFT pair. 

 
[5.4.4] Time Shifting of DFT  
 
Suppose that the time domain sequence { ( ) : 0,1,..., 1}ng t n N= −  has DFT 

 defined by the equation (5.16). Then, DFT of the time domain 
sequence  (i.e. time domain sampling moment  is shifted 
by ) can be expressed in terms of {

{ ( ) : 0,1,... 1}kf k N=G −

0{ ( ) : 0,1,..., 1}ng t t t n N− ∆ = −� nt

0t t∆ ∈R ( ) : 0,1,... 1}kf k N= −G  as: 
 

                                 {0

1
2 /

0
0

( ) ( ) exp 2 /
N

ikt N
k n

n
}f e g t t t ikπ π

−
−

=

≡ − ∆ −∑G � n N .                       (5.24) 

 
PROOF 
 
By the definition of DFT (5.16): 
 

 78



{ }
1

0

( ) ( ) exp 2
N

k n k n
n

kf g t n t i f t
N t

π
−

=

≡ ≡ ≡ ∆ −
∆ ∑G �

})

}kπ

{ }
1

0

( ) exp 2 /
N

n
n

g t n t ikn Nπ
−

=

≡ ≡ ∆ −∑ � . 

 
By setting : 0 *nt t t t− ∆ =
 

          { } {
1 1

0 0
0 0

( ) exp 2 ( *)exp 2 ( *
N N

n k n k
n n

g t t t i f t g t i f t t tπ π
− −

= =

− ∆ − = − + ∆∑ ∑� �

                                                                                { } {
1

0
0

exp 2 ) ( *) exp 2 *
N

k
n

i f t t g t i f tπ
−

=

= − ∆ −∑ �

                                                         { }0exp 2 / ( )ki kt N fπ= − G . 
                                                 

 
[5.4.5] Frequency Shifting: Modulation 
 
Suppose that the time domain sequence { ( ) : 0,1,..., 1}ng t n N= −  has DFT 

 defined by the equation (5.16). If DFT frequency { ( ) : 0,1,... 1}kf k N=G − kf  is shifted 

by  Hz (i.e.0 /f N t∆ ∈R 0( k )ff
N t

−
∆

G ), then its inverse DFT  is multiplied by ( )ng t

{ }0exp 2 /inf Nπ : 
 

                                           02 / 1 0( ) ( )inf N
n k

fe g t f
N t

π − ⎡ ⎤= −⎢ ⎥∆⎣ ⎦
DFT �G ,                             (5.25) 

                                           ( )02 / 0( ) ( )inf N
n k

fe g t f
N t

π = −
∆

DFT G .                                (5.26) 

 
PROOF 
 
From the definition of an inverse DFT of (5.17): 
 

( )
1

0

1( ) ( ) exp 2 /
N

n k
k

kg t n t f ikn N
N N t

π
−

=

≡ ∆ ≡ ≡
∆∑� G , 

                                ( )
1

0

1( ) ( ) exp 2
N

n k
k

kg t n t f i f t
N N t

π
−

=

≡ ∆ ≡ ≡
∆∑� G k n . 

 

By setting 0 *k
ff f

N t
− =

∆
: 

 

    ( )
1 1

0 0

0 0

1 1( ) exp 2 ( *)exp 2 ( *
N N

k k n
k k

f f ) nf i f t f i f t
N N t N N t

π π
− −

= =

⎛ ⎞− = +⎜ ⎟∆ ∆⎝ ⎠
∑ ∑G G  
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                                                        ( )
1

0

0

1 ( *) exp 2 * exp 2
N

n n
k

ff i f t i t
N N

π π
−

=

⎛ ⎞= ⎜ ⎟∆⎝ ⎠
∑G t

 

                                                        ( )
1

0

0

1exp 2 ( *) exp 2 *
N

n
k

fi n t f i f
N t N

π π
−

=

⎛ ⎞= ∆⎜ ⎟∆⎝ ⎠
∑G t  

                                                        ( )0exp 2 / ( )ni nf N g tπ= . 
 

 
[5.4.6] Discrete Convolution: Time Convolution Theorem 
 
Suppose that the time domain sequence { ( ) : 0,1,..., 1}nf t n t n N≡ ∆ = −  and 

 have discrete Fourier transforms {  
and {  defined by the equation (5.16). FT and inverse FT defined by 
the equations (5.16) and (5.17) require both the time domain function  and 

the frequency domain function 

{ ( ) : 0,1,..., 1}ng t n t n N≡ ∆ = −� ( ) : 0,1,... 1}kf k N= −F
( ) : 0,1,... 1}kf k N=G −

( )ng t n t≡ ∆�

( k
kf

N t
≡ )

∆
G  to be periodic. This means for 

0, 1, 2,θ = ± ± …: 
 

( )( )ng t n t g N n tθ⎡ ⎤≡ ∆ = + ∆⎣ ⎦� , 

                                               
( )( )k

N kkf
N t N t

θ⎡ ⎤+
≡ = ⎢ ⎥∆ ∆⎣ ⎦

G G , 

 
where  is the period. N
 
Discrete convolution of time domain sequence { ( ) : 0,1,..., 1}nf t n t n N≡ ∆ = −  and 

 for a total of  discrete samples which is denoted as 
 is defined as: 

{ ( ) : 0,1,..., 1}ng t n t n N≡ ∆ = −� N
( ) (f n t g n t∆ ∗ ∆ )

]
 

                                      [
1

0
( ) ( ) ( ) ( )

N

j
f n t g n t f j t h n j t

−

=

∆ ∗ ∆ ≡ ∆ − ∆∑ .                             (5.27) 

 
DFT of the discrete convolution of { ( ) : 0,1,..., 1}nf t n t n N≡ ∆ = −  and 

 in the time domain is equal to the multiplication in the 
frequency domain: 
{ ( ) : 0,1,..., 1}ng t n t n N≡ ∆ = −�

 

          ( ) [ ]
1

0
( ) ( ) ( ) ( ) ( ) (

N

k k
j

)f n t g n t f j t h n j t f f
−

=

⎛ ⎞
∆ ∗ ∆ ≡ ∆ − ∆ =⎜ ⎟

⎝ ⎠
∑DFT DFT F G .       (5.28) 

 
PROOF 
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Following the definition of DFT of (5.16): 
 

[ ] [ ] { }
1 1 1

0 0 0
( ) ( ) ( ) ( ) exp 2 /

N N N

j n j
f j t h n j t f j t h n j t ikn Nπ

− − −

= = =

⎛ ⎞
∆ − ∆ = ∆ − ∆ −⎜ ⎟

⎝ ⎠
∑ ∑∑DFT . 

 
Use the time shifting property of DFT of the equation (5.24): 
 

[ ] [ ] { }
1 1 1

0 0 0
( ) ( ) ( ) ( ) exp 2 /

N N N

j j n
f j t h n j t f j t h n j t ikn Nπ

− − −
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⎛ ⎞
∆ − ∆ = ∆ − ∆ −⎜ ⎟

⎝ ⎠
∑ ∑ ∑DFT  

                                                   
1 1

2 / 2 /

0 0
( ) ( ) ( ) ( )

N N
ikj N ikj N

k k
j j

f j t f e f f j t eπ π
− −

− −

= =

= ∆ = ∆∑ ∑G G

                                                  ( ) ( )k kf f= F G  
 

 
[5.4.7] Discrete Frequency-Convolution Theorem 
 
Suppose that the time domain sequence { ( ) : 0,1,..., 1}nf t n t n N≡ ∆ = −  and 

 have discrete Fourier transforms {  
and {  defined by the equation (6.16). We assume
{ ( ) : 0,1,..., 1}ng t n t n N≡ ∆ = −� ( ) : 0,1,... 1}kf k N= −F

( ) : 0,1,... 1}kf k N=G − ( )nf t n t≡ ∆� , 
, ( )ng t n t≡ ∆� ( )kfF , and ( )kfG  are all periodic functions. Discrete convolution of DFTs 

(frequency convolution) { ( ) : 0,1,... 1}kf k N= −F  and { ( ) : 0,1,... 1}kf k N= −G  for a total 
of  discrete samples which is denoted as N ( ) ( )k kf f∗F G  is defined as: 
 

                                    
1

0
( ) ( ) ( ) ( )

N

k k
j

j k jf f
N t N t N t

−

=

∗ ≡ −
∆ ∆ ∆∑F G F G .                           (5.29) 

 
Inverse DFT of the frequency convolution ( ) ( )k kf f∗F G  scaled by 1/  is equal to the 
multiplication in the time domain: 

N

 

                                        1 1 ( ) ( ) ( ) ( )k k n nf f f t g t
N

− ⎡ ⎤∗ =⎢ ⎥⎣ ⎦
DFT F G .                             (5.30) 

 
In other words, DFT of a multiplication in the time domain ( ) ( )n nf t g t  is equal to a 
convolution ( ) ( )k kf f∗F G  scaled by 1/  in the frequency domain: N
 

                                          ( ) 1( ) ( ) ( ) ( )n n k kf t g t f f
N

= ∗DFT F G .                              (5.31) 

 
PROOF 
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There are several different ways to prove the frequency convolution theorem. But we 
prove this by showing that the inverse DFT of the frequency convolution ( ) ( )k kf f∗F G  
scaled by 1/  is equal to the multiplication in the time domainN ( ) ( )n nf t g t .  
 
Following the definition of an inverse DFT (5.17): 
 

                               ( )
1

0

1 1 ( ) ( ) exp 2 /
N

k k
k

f f ikn
N N

π
−

=

⎧ ⎫∗⎨ ⎬
⎩ ⎭

∑ F G N  

                                ( )
1 1

0 0

1 1 ( ) ( ) exp 2 /
N N

k j

j k j ikn N
N N N t N t

π
− −

= =

⎧ ⎫−
= ⎨ ⎬∆ ∆⎩ ⎭

∑ ∑F G  

                                ( )
1 1

0 0

1 1( ) ( ) exp 2 /
N N

j k

j k j ikn N
N N t N N t

π
− −

= =

−⎧ ⎫
= ⎨ ⎬∆ ∆⎩ ⎭

∑ ∑F G . 

 
Using the frequency shifting (modulation) property of DFT of the equation (5.25): 
 

( )
1 1

2 /

0 0

1 1 1( ) ( ) exp 2 / ( ) ( )
N N

inj N
k k

k j

j
nf f ikn N e

N N N N t
ππ

− −

= =

⎧ ⎫∗ =⎨ ⎬ ∆⎩ ⎭
∑ ∑F G F g t  

                                                                  
1

2 /

0

1( ) ( )
N

inj N
n

j

jg t e
N N t

π
−

=

⎡ ⎤
= ⎢ ⎥∆⎣ ⎦

∑F  

                                                                  ( ) ( )n nf t g t=  
 

 
[5.4.8] Parseval’s Relation 
 
Suppose that the time domain sequence { ( ) : 0,1,..., 1}nf t n t n N≡ ∆ = −  and 

 have discrete Fourier transforms {  
and {  defined by the equation (5.16). We assume
{ ( ) : 0,1,..., 1}ng t n t n N≡ ∆ = −� ( ) : 0,1,... 1}kf k N= −F

( ) : 0,1,... 1}kf k N=G − ( )nf t n t≡ ∆� , 
, ( )ng t n t≡ ∆� ( )kfF , and ( )kfG  are all periodic functions. 

 
Let ( ng t n t≡ ∆� )  be a complex conjugate of ( )nf t n t≡ ∆  and ( )kfG  be a complex 
conjugate of ( )kfF : 
 

2( ) ( ) (n n nf t n t f t n t g t n t≡ ∆ = ≡ ∆ ≡ ∆� � � ) , 

                                        2( ) ( ) ( )k k kf f f=F F G . 
 
Parseval’s relation states that the power of a signal function ( )nf t n t≡ ∆  is same whether 
it is computed in signal (time) space  or transform (frequency) space  after taken care 
of the weight1/ : 

t f
N
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1 1

2 2

0 0

1( ) (
N N

n k
n k

)f t n t f
N

− −

= =

≡ ∆ =∑ ∑ , � F

                                   
1 1

0 0

1( ) ( ) ( ) (
N N

n n k
n k

)kf t n t g t n t f f
N

− −

= =

≡ ∆ ≡ ∆ =∑ .                       (5.32) ∑� � F G

 
[5.4.9] Summary of DFT Properties 
 
Suppose that the time domain sequence { ( ) : 0,1,..., 1}nf t n t n N≡ ∆ = −  and 

 have discrete Fourier transforms {  
and {  defined by the equation (5.16). We assume
{ ( ) : 0,1,..., 1}ng t n t n N≡ ∆ = −� ( ) : 0,1,... 1}kf k N= −F

( ) : 0,1,... 1}kf k N=G − ( )nf t n t≡ ∆� , 
, ( )ng t n t≡ ∆� ( )kfF , and ( )kfG  are all periodic functions. 

 
Table 5.1: Summary of DFT Properties 

 
Property              {              DFT {  ( ) : 0,1,..., 1}ng t n t n N≡ ∆ = −� ( ) : 0,1,... 1}kf k N= −G
 
Linearity                                                          ( ) ( )naf t bg t+� �n ( ) ( )k ka f b f+F G  
 
Even Function                  is even                                    ( )ng t� ( ) ,kf even∈RG      
 
Odd Function                   is odd                                      ( )ng t� ( ) ,kf odd∈ IG  
 

Symmetry                           1 ( )ntN
G                                               ( )kg f−  

 
Time Shifting                                                            0( ng t t t− ∆� )

)

02 /( ) ikt N
kf e π−G

 
Convolution                                                       ( ) (f n t g n t∆ ∗ ∆ ( ) ( )k kf fF G   
 

Multiplication                   ( ) ( )n nf t g t                                         1 ( ) ( )k kf f
N

∗F G  

 

Modulation                                                               02 / ( )inf N
ne g tπ 0( )k

ff
N t

−
∆

G  

(Frequency Shifting) 
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[6] Lévy Processes 
 
In this sequel theorems and propositions are presented without proofs most of the time. 
This is obviously because we don’t need them for our purpose (it is finance) and always 
inquisitive readers can read Cont and Tankov (2004) and Sato (1999) for more rigorous 
treatment of the subjects dealt in this section. We recommend for those readers without 
training in the field of set theory and measure theory to first read Appendix 1 and 2 for 
the basic knowledge.  
 
[6.1] Definition of Lévy Process 
 
A right-continuous with left limits (cadlag) or an adapted (non-anticipating) stochastic 
process {  on a space ( ,;0 }tX t≤ < ∞ , )Ω PF  with values in  is said to be a Lévy 
process if it satisfies the following conditions: 

R

 
(1) Its increments are independent of the past: u tX X−  is independent of the filtration 

 with . i.e. tF 0 t u≤ < < ∞ ( ) ( )u t t u tX X X− = −P PF X . 

(2) Its increments are stationary: t h tX X+ −  has the same distribution as hX . In other 
words, the distribution of increments does not depend on  (i.e. temporal 
homogeneity).  

t

(3)  a.s. 0 0X =

(4) tX  is continuous in probability: 0ε∀ > , 
0

lim ( ) 0t h th
X X ε+→

− ≥ =P .  

 
Processes which satisfy conditions (1), (2), and (3) are said to be processes with 
stationary independent increments. Condition (4) is satisfied when conditions (1), (2), and 
(3) are satisfied. Condition (4) does not imply the continuous sample paths. Actually the 
very opposite is true meaning that most Lévy processes have discontinuous sample paths 
(i.e. except for one). Condition (4) means that if we are at time , the probability of a 
jump at time  is zero because there is no uncertainty about the present. Jumps occur at 
random times.  

t
t

 
From our knowledge, a right-continuous with left limits (cadlag in French) stochastic 
process, a non-anticipating stochastic process, and an adapted stochastic process define 
an identical process. A stochastic process { ;0 }tX t T≤ ≤  is said to be non-anticipating 
with respect to the filtration{ ;0 }t t T≤ ≤F  or -adapted if the value of tF tX  is revealed at 
time t  for each . In other words, {[0,  ]t∈ T ;0 }tX t T≤ ≤  is said to be non-anticipating if 
it satisfies for : [0, ]t T∈
  

(1) Left limit of the process 
,

( ) lim ( )
s t s t

X t X s
→ <

− ≡  exists. 

(2) Right limit of the process 
,

( ) lim ( )
s t s t

X t X s
→ >

+ =  exists. 

(3) ( ) ( )X t X t= + . 
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Any continuous function is non-anticipating but non-anticipating functions allow 
discontinuities. Suppose  is a discontinuity point, the jump of t X  at t  is:  
 

( ) ( ) ( )X t X t X t∆ = − − . 
 
A non-anticipating process { ;0 }tX t T≤ ≤  can have a finite number of large jumps and 
countable number (possibly infinite) of small jumps. 
 

 
Figure 6.1: Illustration of Non-Anticipating Stochastic Process 
 
Suppose that ( )X t  is a stock price right now, ( )X t−  a sock price 1 second ago, and 

( )X t+  a stock price 1 second from now. A stock price process X  should be modeled as 
a non-anticipating process because at time t −  we cannot predict ( )X t  (i.e. it is a future 
value), but at time t  we already know+ ( )X t  (i.e. it is a past value).  
 
We saw the definition of a Lévy process. Next let’s discuss infinite divisibility of a 
distribution. It turns out that we cannot separate Lévy processes from infinitely divisible 
distributions because Lévy processes are generated by infinitely divisible distributions. 
 
A random variable  is said to be divisible if it can be represented as the sum of two 
independent random variables with identical distributions: 

Y

 
1 2Y Y Y= + . 

 
A random variable  is said to be infinitely divisible if it can be represented as the sum 
of  independent random variables with identical distributions for any integer : 

Y
n 2n ≥

 
1 2 ... nY Y Y Y= + + + . 

 
Let ( )φ ω  be the characteristic function of the distribution of the infinitely divisible 
random variable Y  and ( )nφ ω  be the characteristic function of the common distribution 
of the  summands. Then, the relationship between n ( )φ ω  and ( )nφ ω  is: 
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                                      ( ) ( ( ))n

nφ ω φ ω=  and .                                   (6.1) 1/( ) ( ( )) n
nφ ω φ ω=

 
Examples of infinitely divisible distributions are: the normal distribution, the gamma 
distribution, α -stable distributions, and the Poisson distribution.  
 
If  is a normal random variable, i.e.Y 2( , )Y N µ σ∼ , its characteristic function is: 
 

2 2

( ) ( ) exp( )
2

i Ye Y dY iω σ ωφ ω µω
∞

−∞
≡ = −∫ P . 

 
Then, the characteristic function for the identically distributed  summands of Y  can be 
computed as using the above relation: 

n

 

{ }
1/2 2

1/( ) ( ) exp( )
2

n
n

n i σ ωφ ω φ ω µω
⎧ ⎫

= = −⎨ ⎬
⎩ ⎭

 

                                                
2 2( / )exp

2
ni

n
µ σ ωω

⎧ ⎫⎛ ⎞= −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

. 

 
Thus, the identically distributed  summands of n 2( , )Y N µ σ∼  are also normally 
distributed with the mean / nµ  and the variance  (because a characteristic function 
uniquely determines a probability distribution): 

2 / nσ

 
1

0

n
kk

Y Y−

=
=∑ , . 2. . . ( / , / )kY i i d N n nµ σ∼

 
Another example is a Poisson case. If Z  is a Poisson random variable (read Appendix 6 
for the definition), i.e. ( )Z Poisson λ∼ , its characteristic function is: 
 

0
( ) exp[ ( 1)]

!

z
i z i

z

e e e
z

λ
ω ωλφ ω λ

−
∞

=

⎛ ⎞
≡ =⎜ ⎟

⎝ ⎠
∑ − . 

 
Its identically distributed  summands follow Poisson law with the parameter n / nλ  since 
their characteristic functions take the form: 
 

{ } { } 1/1/( ) ( ) exp ( 1) exp ( 1)
nn i i

n e e
n

ω ωλφ ω φ ω λ ⎧ ⎫⎡ ⎤= = − = −⎨ ⎬⎣ ⎦ ⎩ ⎭
. 

 
A Lévy process {  possesses this infinite divisibility, i.e. for every t  increments 
of a Lévy process 

; 0}tX t ≥

t h tX X+ −  has an infinitely divisible law. Conversely, if  is an 
infinitely divisible distribution, then there exists a Lévy process {  where the 

P
; 0}tX t ≥
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distribution of increments t h tX X+ −  is governed by . This lemma is extremely 
important because it means that infinitely divisible distributions (normal, gamma, 

P
α -

stable, and Poisson distribution) can generate Lévy processes. 
 

Lévy process {         ; 0}tX t ≥ R ( )t h tX X+ − ∈P Infinitely divisible distributions 
 
[6.2] Standard Brownian Motion Process: The Only Continuous Lévy Process 
Generated by A Normal Distribution 
 
Some people misinterpret that Lévy processes are discontinuous (i.e. jump) processes. 
This is not true in a strict sense. It is true to state that most Lévy processes are 
discontinuous processes. But you can carefully go through the definition of Lévy 
processes again and you’ll notice that no conditions require Lévy processes to possess 
discontinuous sample paths. A Lévy process can have a continuous sample path. The 
only example of a continuous Lévy process is a standard Brownian motion process. 
 
A standard Brownian motion process {  is a Lévy process on  defined on a 
probability space ( ,  such that: 

; 0}tB t ≥ R
, )Ω PF

 
(1) . ( )0,tB Normal t∼
(2) There is  with , i.e. 0Ω ∈F 0( )Ω =P 1 ( )tX ω  is continuous in  for everyt 0ω∈Ω . 

 
[6.3] Poisson Process and Compound Poisson Process: Finite Activity Lévy 
Processes Generated by Poisson Distribution 
 
Appendix 5 gives the in-depth background treatment of the definition and characteristics 
of an exponential random variable, a Poisson process. 
 
Let  1( )i iτ ≥  be a sequence of independent exponential random variables with parameter λ  

and 
1

n

n
i

T iτ
=

=∑ . A Poisson process with intensity λ  is: 

 

1
1

nt t
n

N ≥
≥

= T∑ . 

 
The sample function  counts the number of random times  at which a specified 
event occurs during the time period between 0  and t  where 

tN ( )nT

1( n n nT T 1)− ≥−  is an  
sequence of exponential variables. Therefore, each possible  is represented as a non-
decreasing piecewise constant function.  

. . .i i d

tN
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Figure 6.2: Sample Path of a Poisson Process with λ = 1 and t = 10. In this sample, the 
process has 6 jumps. 
 
A Poisson process (  is a Lévy process because it possesses the following properties: )tN
 

(1) Its increments are independent of the past: uN Nt−  is independent of the filtration 

 with . i.e.tF 0 t u≤ < < ∞ ( ) ( )u t t u tN N N N− = −P PF . 

(2) Its increments are stationary: t h tN N+ −  has the same distribution as . In other 
words, the distribution of increments does not depend on  (i.e. temporal 
homogeneity). 

hN
t

(3)  a.s. 0 0N =

(4)  is continuous in probability:tN 0ε∀ > , 
0

lim ( ) 0t h th
N N ε+→

− ≥ =P .  

(5)  A sample path of a Poisson process (  is non-anticipating. )tN
(6)  a.s. for any . A Poisson process has finite number of jumps. tN < ∞ 0t >

 
Next, let’s take a look at more general version of Poisson process called a compound 
Poisson process. A compound Poisson process {  with intensity ; 0}tX t ≥ λ  is defined as: 
 
                                                            

1
tN

t i
X

=
= iY∑ ,                                                      (6.2) 

 
where  are  jump sizes with the probability density function . We assume  
and  are independent. 

iY . . .i i d f ( )tN

1( )i iY ≥

 
Since a compound Poisson process reduces to a Poisson process if 1iY =  (a Poisson 
process can be considered as a compound Poisson process with a constant jump size 

), a compound Poisson process is a Lévy process with properties: 1iY =
 

(1) Its sample paths are piece-wise constant and non-anticipating functions. 
(2) The jump sizes  are independent and identically distributed with the 

probability density function . 
1( )i iY ≥

f

 88



 

0 0.2 0.4 0.6 0.8 1
Time

0

1

2

3

4

5

6

7

 
Figure 6.3: Sample Path of a Compound Poisson Process with λ = 20 and t = 1. Jump 
sizes are drawn from standard normal distribution. In this sample, the process has 19 
jumps. 
 
Note that a stochastic process {  is a compound Poisson process, if and only if it 
is a Lévy process with piecewise constant functions. General Lévy process can be well 
approximated by a compound Poisson process because any cadlag functions can be 
approximated by a step function. 

; 0}tX t ≥

 
The characteristic function of a Poisson process can be obtained by a series expansion: 
 

                                  {0

( )( ) exp ( 1)
!

t z
i z i

z

e t e t e
z

λ
ω ωλφ ω λ

−
∞

=

⎧ ⎫
≡ =⎨ ⎬

⎩ ⎭
∑ }− .                         (6.3) 

 
To obtain the characteristic function of a compound Poisson process {  with 
intensity 

; 0}tX t ≥
λ  and the jump size distribution , we condition the expectation on a Poisson 

process  and let  be the characteristic function of (Cont and Tankov (2004)): 
f

tN *f f
 

            
0

( ) *( )[ ] [ [ ] ] [ *( ) ]
!

t t t

t n
i X i X N

t n

e t fE e E E e N E f
n

λ
ω ω

nλ ωω
−

∞

=
= = =∑  

                         , exp[ ( *( ) 1)] exp{ ( 1) ( )}i xt f t e f dxωλ ω λ
∞

−∞
= − = −∫ ω∀ ∈R .               (6.4) 

 
We can interpret the characteristic function of a compound Poisson process as a 
superposition of independent Poisson processes with random jump sizes from distribution 

.  f
 
Defining a new measure ( ) ( )dx f dxλ=A  which is called a Lévy measure of the Lévy 
process{ ;0 }tX t≤ , the above formula can be rewritten as (this is a special case of Lévy-
Khinchin representation which will be discussed later): 
 

 89



 

                                   , [ ] exp{ ( 1) ( )}ti X i xE e t e dxω ω∞

−∞
= −∫ A ω∀ ∈R .                              

(6.5) 
 
The Lévy measure  represents the arrival rate (i.e. total intensity) of jumps of sizes ( )dxA
[ , ]x x dx+ . In other words, we can interpret the Lévy measure  of a compound 
Poisson process as the measure of the average number of jumps per unit of time. There 
are a couple of extremely important points which should be mentioned about this Lévy 
measure . Lévy measure is a positive measure on , but it is not a probability 
measure since its total mass 

( )dxA

( )dxA R
λ  (in the compound Poisson case) does not have to equal1: 

 
( )dx λ += ∈∫ A R . 

 
Also, Lévy density  of a Lévy process {  is completely different from a 
probability density of Lévy process {  which will be denoted as

( )dxA ; 0}tX t ≥
; 0}tX t ≥ ( )txP or  

in the VG model, for example. We emphasize not to confuse these two densities although 
they are related (this relation is briefly discussed in Cont and Tankov (2004)).   

( )tvg x

 
A Poisson process and a compound Poisson process (i.e. a piecewise constant Lévy 
process) are called finite activity Lévy processes since their Lévy measures  are 
finite (i.e. the average number of jumps per unit time is finite): 

( )dxA

 

( )dx
∞

−∞
< ∞∫ A . 

 
[6.4] Lévy-Itô Decomposition and Infinite Activity Lévy Process 
 
There is a very useful theorem called Lévy-Itô decomposition which basically states that 
any Lévy process can be represented as the sum of a Brownian motion with drift process 
(which is a continuous process) and a discontinuous jump process (i.e. compensated 
(centered) sum of independent jumps). We assume that these two components are 
independent.  
 
Let {  be a Lévy process on  with Lévy measure A  which is the measure of 
expected number of jumps per unit of time whose sizes belong to any positive measurable 
set

; 0}tX t ≥ R

A . Lévy-Itô decomposition states: 
 

(1) Lévy measure  satisfies: A
 

( )1 1 ( )x dx
∞

−∞
≥ <∫ A ∞  and ( )2

{0}
1 1 ( )x x dx

−
< < ∞∫ A

R
. 

 
            The first condition means that Lévy processes X  have finite number of large 
            jumps (large jumps are defined as jumps with absolute values greater than 1). 
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            Second condition states Lévy measure must be square-integrable around the 
            origin. 

(2) There exists a drift b  and a Brownian motion process with a diffusion coefficient 
σ ,  0( )t tBσ ≥ , such that:  

 
i

0
lim

SL
tt t t S

X bt B X Xσ
↓

= + + + . 

 
Following Lévy-Itô decomposition, the distribution of every Lévy process tX  is uniquely 
determined by its characteristic triplet (Lévy triplet) ( , , )b σ A  of the process. Condition 
(2) means that any Lévy process tX  can be decomposed into a continuous (i.e. diffusion) 

part tbt Bσ+  and a discontinuous part i
0

lim
SL
tt S

X
↓

+ X . We arbitrarily define large jumps 
LX∆  as those with absolute size greater than 1 (i.e. this does not have to be 1): 

 
1LX X∆ ≡ ∆ ≥ , 

 
and small jumps as those with absolute size between  and 1: S
 

1SX S X∆ ≡ ≤ ∆ < . 
 

L
tX  is the sum of finite number of large jumps during the time interval of : 0 r t≤ ≤

 

0

L L
t r

r t
X X

≤ ≤

= ∆∑ . 

 
S
tX  is the sum of (possibly infinite in the limit ) number of small jumps during the 

time interval of : 
0S ↓

0 r t≤ ≤
 

0

S S
t r

r t
X X

≤ ≤

= ∆∑ . 

 
In the limit case of , the process can have infinitely many small jumps, therefore 0S ↓

S
tX  may not converge. In other words, Lévy measure A  can have a singularity at 0 (i.e. 

infinite arrival rate of small jumps at zero): 
 

( )dx
∞

−∞
= ∞∫ A . 

 
This type of Lévy process is called an infinite activity Lévy process. Convergence in the 
condition (2) can be obtained by replacing the jump integral by its compensated version 
i S

tX . For more rigorous treatment, we recommend Cont and Tankov (2004). 
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[6.5] Lévy-Khinchin Representation 
 
Lévy-Itô decomposition states that the characteristic function of a Lévy process can be 
expressed in terms of its characteristic triplet. Let {  be a finite variation Lévy 
process on R  and ( ,

; 0}tX t ≥
, )b σ A  be its triplet. Then for anyω∈R , a characteristic function 

( )φ ω  and a characteristic exponent ( )ψ ω  of a finite variation Lévy process{  
can be expressed as: 

; 0}tX t ≥

 
                                   ( ) [exp( )] exp( ( ))tE i X tφ ω ω ψ≡ = ω ,                                           (6.6) 

{ }
2 2

( ) exp( ) 1 ( )
2

ib i x dxσ ωψ ω ω ω
∞

−∞
= − + −∫ A . 

 
[6.6] Stable Processes 
 
Consider a real-valued random variable X . Let ( )φ ω  be its characteristic function. X  is 
said to have stable distribution if for any , there exist  and  such 
that: 

0a > ( ) 0b a > ( )c a ∈R

 
                                        ( ) ( ( )) exp( )a

X X b a icφ ω φ ω ω= , ω∀ ∈R .                               (6.7) 
 
X  is said to have strictly stable distribution if for any , there exist  and 

 such that: 
0a > ( ) 0b a >

( )c a ∈R
 
                                               , ( ) ( ( ))a

X X b aφ ω φ ω= ω∀ ∈R .                                       (6.8) 
 
At first look these definitions seem complicated, but what they mean is very simple. For 
example, if  is a normal random variable, i.e. Y 2( , )Y N µ σ∼ , its characteristic function 

is 
2 2

( ) exp( )
2

i σ ωφ ω µω= − . A normal random variable has stable distribution since it 

satisfies the equation (6.7) with  and 1/ 2( )b a a= ( )c a a µ= − + : 
 
                           2 2 2 2( ) {exp( / 2)} exp( / 2)a ai i aφ ω µω σ ω µω σ ω= − = − a
                          2 2( ) exp( / 2) exp( )a i a a i a i aφ ω µω σ ω µω µω= − −  

2 2( ) exp{ ( ) / 2}exp( )a i a a i a i aφ ω µω σ ω µω µω= − −  
                          ( ) ( )exp{ ( ) }a

X a i a aφ ω φ ω µω= − . 
 
A normal random variable with 0µ =  has strictly stable distribution since it satisfies the 
equation (6.8): 
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2 2 2 2
2 2 ( )( ) {exp( / 2)} exp( ) exp{ }

2 2
a a a aσ ω σ ωφ ω σ ω= − = − = −  

                    ( ) ( )a
X aφ ω φ ω= . 

 
Let {  be a stochastic process on R . A stochastic process is said to be self-
similar if for any , there exists  such that: 

; 0}tX t ≥
0a > 0b >

 
                                                   { ; 0}  { ; 0}at tX t d bX t≥ ≥ ,                                           (6.9) 
 
which we read as that two processes {  and {  are identical in law.  : 0}atX t ≥ : 0}tbX t ≥
 
It is said to be broad-sense self-similar if for any , there exists  and a function 

 such that: 
0a > 0b >

( )c t
 
                                               { ; 0}  { ( ); 0at tX t d bX c t t≥ + }≥ .                                    (6.10) 
 
A standard Brownian motion process {  (which is a Lévy process), ; 0}tB t ≥

(0, )tB Normal t∼ ,  possesses this self-similarity property since it satisfies the equation 
(6.9) for : 0a∀ >
 

{ ; 0} (0, )atB t Normal at≥ ∼  

{ ; 0}  { a , 0}at tB t d B t≥ ≥ . 
 
A Brownian motion with drift tB tγ+  is broad-sense self-similar since it satisfies the 
equation (6.10) for : 0a∀ >
 
                                         { ; 0} ( , )atB at t Normal at atγ γ+ ≥ ∼ , 

{ ; 0}  { a ; 0}at tB at t d B t atγ γ+ ≥ ≥ + . 
 
Self-similarity means that any change of time scale for the self-similar process has the 
same effect as some change of spatial scale (also called a scale-invariance property).  
 
Let {  be a Lévy process. A Lévy process is said to be self-similar if for any 

, there exists  such that: 
; 0}tX t ≥

0a > ( ) 0b a >
 

{ : 0}  { ( ) : 0}at tX t d b a X t≥ ≥ . 
 
Following the Lévy-Khinchin representation, the characteristic function of a Lévy 
process can be expressed as ( ) [exp( )] exp( ( ))tE i X tφ ω ω ψ ω ω∈R, . Thus, in terms of = =
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characteristic function a Lévy process is said to be self-similar if for any , there 
exists  such that: 

0a >
( ) 0b a >

 
( ) ( ( ))a

X X b aφ ω φ ω= , 
 
which is the definition of a strictly stable distribution of the equation (6.8). This means 
that if a Lévy process is self-similar, then it is strictly stable. Formally, a Lévy process 

 on  is self-similar (broad-sense self-similar), if and only if it is strictly 
stable (stable). 
{ ; 0}tX t ≥ R

 
For every stable distribution, there exists a constant 0 2α< ≤  such that 1/( )b a a α=  in the 
equation (6.7). Let ( )φ ω  be the characteristic function of a stable real-valued random 
variable X . Then if for any , there exists 0 20a > α< ≤  and ( )c a ∈R  such that: 
 

1/( ) ( ) exp( )a
X X a icαφ ω φ ω ω= , ω∀ ∈R . 

 
α  is called an index of stability and stable distributions with α are called α -stable 
distributions. Normal distributions are the only 2-stable distributions.  
 
A strictly α -stable Lévy process (a self-similar Lévy process which is strictly stable with 
index of stabilityα ) satisfies for any : 0a >
 
                                                 1/{ : 0}  { : 0}at tX t d a X tα≥ ≥ .                                     (6.11) 
 
Brownian motion process is an example of a strictly 2 -stable Lévy process. 
 
An α -stable Lévy process satisfies for any : 0a >
 

∃    c     such that ∈R 1/{ : 0}  { : 0at tX t d a X ct tα≥ + }≥ . 
 
A real-valued random variable is α -stable with 0 2α< <  if and only if it is infinitely 
divisible with characteristic triplet ( , 0, )b σ = A  and its Lévy measure is of the form1: 
 

                                                  0 11( ) 1 1x
A Bx

x x αα > ++= +A 0x< ,                                        (6.12) 

 
where A  and B  are some positive constants.  

                                                 
1 For more details, Samorodnitsky, G. and Taqqu, M., 1994, Stable Non-Gaussian Random Processes, 
Chapman & Hall: New York. 
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[7] Black-Scholes Model as an Exponential Lévy Model 
 
Even if you were very experienced readers, we recommend you take a look at section 7.6. 
Other sections may be skipped. 
 
[7.1] Standard Brownian Motion Process: A Lévy Process Generated by a Normal 
Distribution 
 
As we saw in section 6.2, a standard Brownian motion process {  is a stochastic 
process on R  defined on a probability space 

; 0}tB t ≥
( , , )Ω PF  such that: 

 
(1) t u tB B+ − 0u∀ > ( )0,Normal u∼ . 
(2) There is  with , i.e. 0Ω ∈F 0( )Ω =P 1 ( )tX ω  is continuous in  for everyt 0ω∈Ω . 
(3) t u tB B+ − 0u∀ >  are stationary and independent. 
(4) The process {  begins with 0, i.e. ; 0}tB t ≥ 0 0B = . 

 
Stationary increments of the condition (3) mean that the distributions of increments 

t u tB B+ −  do not depend on the time , but they depend on the time-distance u  of two 
observations (i.e. interval of time). For example, if you model a log stock price l  as a 
Brownian motion (with drift) process, the distribution of increment in year 2004 for the 
next one year  is the same as that in year 2050, : 

t
n tS

2004 1 2004ln lnS S+ − 2050 1 2050ln lnS S+ −
 

2004 1 2004 2050 1 2050ln ln ln lnS S d S+ + S− − . 
 
The conditional probability of the event A  given B  is assuming : ( ) 0B >P
 

                                                        ( )( )
( )

A BA B
B

=
∩PP

P
. 

 
If A  and B  are independent events: 
 

( ) ( )A B A=P P . 
 
Independent increments of Brownian motion process of the condition (3) mean that when 
modeling a log stock price l  as a Brownian motion (with drift) process, the 
probability distribution of a log stock price in year 2005 is not affected by whatever 
happens in year 2004 in the stock price (i.e. such as stock price crush): 

n tS

 
2005 1 2005 2004 1 2004 2005 1 2005(ln ln ln ln ) (ln ln )S S S S S S+ + +− − = −P P . 

 
These are the two main restrictions imposed by modeling a log stock price process using 
a Lévy process. 
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[7.2] Black-Scholes’ Distributional Assumptions on a Stock Price 
 
In traditional finance literature almost every financial asset price (stocks, currencies, 
interest rates) is assumed to follow some variations of Brownian motion with drift 
process. BS (Black-Scholes) models a stock price increment process in an infinitesimal 
time interval  as a log-normal random walk process: dt
 
                                                     t t tdS S dt S dBtµ σ= + .                                                (7.1) 
 
where the drift is tSµ  which is a constant expected return on a stock µ  proportional to a 
stock price  and the volatility is tS tSσ  which is a constant stock price volatility σ  
proportional to a stock price . The reason why the process (7.1) is called a log-normal 
random walk process will be explained very soon. Alternatively, we can state that BS 
models a percentage change in a stock price process in an infinitesimal time interval dt  
as a Brownian motion with drift process: 

tS

 

                                     t
t

t

dS dt dB
S

µ σ= + ,                                                                     (7.2) 

2

22

( / )1( ) exp[
22

t t

t

dS dS S dt
S ddt

µ
σπσ

−
= −P ]t

t
. 

 
Let  be a random variable whose dynamics is given by a Ito process: S
 

( , ) ( , )dS a S t dt b S t dB= + , 
 
and V  be a function dependent on a random variable  and time . The dynamics of 

 is given by an Ito formula: 
S t

( , )V S t
 

                                            
2

2
2

1
2

V V VdV dt dS b dt
t S S

∂ ∂ ∂
= + +
∂ ∂ ∂

,                                    (7.3) 

 
or in terms of a standard Brownian motion process B : 
 

( )
2

2
2

1
2

V V VdV dt adt bdB b dt
t S S

∂ ∂ ∂
= + + +
∂ ∂ ∂

, 

                                     
2

2
2

1
2

V V V VdV a b dt b dB
t S S S

⎛ ⎞∂ ∂ ∂ ∂
= + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

.                            (7.4) 

 
Dynamics of a log stock price process  can be obtained by applying (7.4) to (7.1) as: ln tS
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2
2 2

2

ln ln ln ln1ln
2

t t t
t t t t

t t

S S S Sd S S S dt S dB
t S S S

µ σ σ
⎛ ⎞∂ ∂ ∂ ∂

= + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
t

t
t

. 

 

Substituting ln 0tS
t

∂
=

∂
, ln 1t

t t

S
S S

∂
=

∂
, and 

2

2

ln 1t

t t

S
S S

∂
= −

∂ 2  yields: 

 

                                             21ln
2td S dt dBµ σ σ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
t ,                                          (7.5) 

 
or: 
 

                                    2
0 0

1ln ln ( 0) ( )
2t tS S t B Bµ σ σ⎛ ⎞− = − − + −⎜ ⎟

⎝ ⎠
               

                                    2
0

1ln ln
2tS S t tBµ σ σ⎛ ⎞= + − +⎜ ⎟

⎝ ⎠
.                                               (7.6) 

 
The equation (7.6) means that BS models a log stock price l  as a Brownian motion 
with drift process whose probability density is given by a normal density: 

n tS

 

                    

2
2

0

22

1ln ln ( )
21(ln ) exp[ ]

22

t

t

S S t
S

tt

µ σ

σπσ

⎧ ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝⎩ ⎭= −P ⎠ .                       (7.7) 

 
Alternatively, the equation (7.6) means that BS models a log return ( )0ln /tS S  as a 
Brownian motion with drift process whose probability density is given by a normal 
density: 
 

                       ( ) 2
0

1ln /
2t tS S t Bµ σ σ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
, 

                       ( )( )
( )

2
2

0

0 22

1ln /
21ln / exp[ ]

22

t

t

S S t
S S

tt

µ σ

σπσ

⎧ ⎫⎛ ⎞− −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭= −P .              (7.8) 

 
An example of BS normal log return ( )0ln /tS S  density of (7.8) is illustrated in Figure 
7.1. Of course, BS log return density is symmetric (i.e. zero skewness) and have zero 
excess kurtosis because it is a normal density. 
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Figure 7.1: An Example of BS normal log return ln(St/S0) Density. Parameters and 
variables fixed are µ  = 0.1, σ  = 0.2, and t  = 0.5. 
 
Let y  be a random variable. If the log of y  is normally distributed with mean  and 
variance  such that , then 

a
2b 2ln ( , )y N a b∼ y  is a log-normal random variable whose 

density is a two parameter family ( , : )a b
 

2
2 2

1
22( , ( 1

a b a b by Lognormal e e e
+ + ))−∼ , 

                                          ( ) { }2

22

ln1 exp[ ]
22

y a
y

by bπ

−
= −P . 

 
From the equation (7.6), we can state that BS models a stock price  as a log-normally 
distributed random variable whose density is given by: 

tS

 

                        ( )

2
2

0

22

1ln ln ( )
21 exp[ ]

22

t

t

t

S S t
S

tS t

µ σ

σπσ

⎧ ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝⎩ ⎭= −P ⎠ .                  (7.9) 

 
Its annualized moments are calculated as: 
 
                                  0[ ]tMean S S eµ= , 

                                  ( )22 2
0[ ] 1tVariance S S e eσ µ= − , 

                                  ( )2 2

[ ] 2 1tSkewness S e eσ σ= + − , 
2 22 3 [ ] 6 3 2tExcess Kurtosis S e e e

24σ σ σ= − + + + . 
 
An example of BS log-normal stock price density of (7.9) is illustrated in Figure 7.2. 
Notice that BS log-normal stock price density is positively skewed. 
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Figure 7.2: An Example of BS Log-Normal Density of a Stock Price. Parameters and 
variables fixed are  = 50, 0S µ  = 0.1, σ  = 0.2, and t  = 0.5. 
 

Table 7.1 
Annualized Moments of BS Log-Normal Density of A Stock Price in Figure 2.2 

 
 Mean                     Standard Deviation                    Skewness                    Excess Kurtosis 
 
55.2585                          11.1632                               0.614295                         0.678366 
 
From the equation (7.6), we can obtain an integral version equivalent of (7.1): 
 

2
0

1exp[ln ] exp[ln ]
2t tS S tµ σ σ⎛ ⎞= + − +⎜ ⎟

⎝ ⎠
B  

                                     2
0

1exp[ln ]exp
2t tS S t Bµ σ σ⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

                                     2
0

1exp
2t tt Bµ σ σS S ⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

.                                            (7.10) 

 
Equation (7.10) means that BS models a stock price process  as a geometric process 
with the growth rate given by a Brownian motion with drift process: 

tS

 
21

2 tt Bµ σ σ⎛ ⎞− +⎜ ⎟
⎝ ⎠

. 

 
[7.3] Traditional Black-Scholes Option Pricing: PDE Approach by Hedging 
 
Consider a portfolio  of the one long option position V S  on the underlying stock  
written at time  and a short position of the underlying stock in quantity  to derive 
option pricing function.  

P ( , )t

t

S
t ∆

 
                                                        ( , )t tP V S t S= −∆ .                                                (7.11) 
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Portfolio value changes in a very short period of time  by: dt
 
                                                     ( , )t tdP dV S t dSt= −∆ .                                             (7.12) 
 
Stock price dynamics is given by a log-normal random walk process of the equation 
(7.1): 
 
                                                     t t tdS S dt S dBtµ σ= + .                                              (7.13) 
                                                          
Option price dynamics is given by applying Ito formula of the equation (7.3): 
 

                                       
2

2 2
2

1
2t t

t t

V V VdV dt dS S dt
t S S

σ∂ ∂ ∂
= + +
∂ ∂ ∂

.                                (7.14) 

 
Now the change in the portfolio value can be expressed as by substituting (7.13) and 
(7.14) into (7.12): 
 

                                  
2

2 2
2

1
2t t t

t t

V V VdP dt dS S dt dS
t S S

σ∂ ∂ ∂
= + + −∆
∂ ∂ ∂ t .                          (7.15) 

 
Setting  (i.e. delta hedging) makes the portfolio completely risk-free (i.e. the 
randomness  has been eliminated) and the portfolio value dynamics of the equation 
(7.15) simplifies to: 

/ tV S∆ = ∂ ∂

tdS

 

                                                
2

2 2
2

1
2t t

t

VdP S dt
t S

σ
⎛ ⎞∂ ∂

= +⎜ ∂ ∂⎝ ⎠

V
⎟ .                                      (7.16) 

 
Since this portfolio is perfectly risk-free, assuming the absence of arbitrage opportunities 
the portfolio is expected to grow at the risk-free interest rate :  r
 
                                                            [ ]t tE dP rPdt= .                                                  (7.17) 
 
After substitution of (7.11) and (7.16) into (7.17) by setting / tV S∆ = ∂ ∂ , we obtain: 
 

2
2 2

2

1
2 t t

t t

V V VS dt r V S
t S S

σ
⎛ ⎞ ⎛∂ ∂ ∂

+ = −⎜ ⎟ ⎜∂ ∂ ∂⎝ ⎠ ⎝
dt
⎞
⎟
⎠

. 

 
After rearrangement, Black-Scholes PDE is obtained: 
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2

2 2
2

( , ) ( , ) ( , )1 ( , ) 0
2

t t t
t t

t t

V S t V S t V S tS rS rV S
t S S

σ∂ ∂ ∂
+ + −

∂ ∂ ∂ t t =

2
t

.                (7.18) 

 
BS PDE is categorized as a linear second-order parabolic PDE. The equation (7.18) is a 
linear PDE because coefficients of the partial derivatives of  (i.e.  and 

) are not functions of  itself. The equation (7.18) is a second-order PDE 
because it involves the second-order partial derivative

( , )tV S t 2 2 / 2tSσ

trS ( , )tV S t
2 ( , ) /tV S t S∂ ∂ . Generally 

speaking, a PDE of the form: 
 

2 2 2

2 2 0V V V V Va b c d e g
t S S t t S

∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂ ∂
, 

 
is said to be a parabolic type if: 
 
                                                               4g de 0− = .                                                   (7.19) 
 
The equation (7.18) is a parabolic PDE because it has 0g =  and 0e =  which satisfies the 
condition (7.19). 
 
BS solves PDE of (7.18) with boundary conditions: 
 

(max ,0TS K− )
)
 for a plain vanilla call, 

(max ,0TK S−  for a plain vanilla put, 
 
and obtains closed-form solutions of call and put pricing functions. Exact derivation of 
closed-form solutions by solving BS PDE is omitted here (i.e. the original BS approach). 
Instead we will provide the exact derivation by a martingale asset pricing approach (this 
is much simpler) in the next section. 
 
[7.4] Traditional Black-Scholes Option Pricing: Martingale Pricing Approach 
 
Let { ;0 }tB t T≤ ≤  be a standard Brownian motion process on a space ( , , )Ω PF . Under 
actual probability measure , the dynamics of BS stock price process is given by 
equation (7.9) in the integral form (i.e. which is a geometric Brownian motion process):  

P

 

                                     2
0

1exp
2tS S t Bµ σ σ t

⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 under .                              (7.20) P

 
BS model is an example of a complete model because there is only one equivalent 
martingale risk-neutral measure  under which the discounted asset price process 

 becomes a martingale. BS finds the equivalent martingale risk-neutral 
∼Q P

{ ;0rt
te S t T− ≤ ≤ }
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measure  by changing the drift of the Brownian motion process while keeping 
the volatility parameter 

BS ∼Q P
σ  unchanged: 

 

                                     2
0

1exp
2

BS
t tS S r t Bσ σ⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Q
BS underQ .                       (7.21) 

 
Note that BS

tBQ  is a standard Brownian motion process on ( , , )BSΩ QF  and the process 
 is a martingale under . Then, a plain vanilla call option price 

 which has a terminal payoff function 
{ ;0rt

te S t T− ≤ ≤ } BSQ
( , )tC t S ( )max ,0TS K−  is calculated as: 

 
              ( ) ( )( )( , ) max ,0 max ,0BS BSr T t r

t t T t TC t S e E S K e E S Kτ− − −⎡ ⎤ ⎡ ⎤= − =⎣ ⎦ ⎣ ⎦
Q Q − .         (7.22) 

 
Note that an expectation operator [ ]BS

tEQ  is under a probability measure  and 
conditional on time t . Let  (drop the subscript BS for simplicity) be a probability 
density function of  in a risk-neutral world. From the equation (7.9), a terminal stock 
price  is a log-normal random variable with its density of the form:  

BSQ
( )TSQ

TS

TS
 

                     ( )

2
2

22

1ln ln ( )
21 exp[ ]

22

T t

T

T

S S r
S

S

σ τ

σ τπσ τ

⎧ ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝⎩ ⎭= −Q ⎠

TdS

TdS

T

.                (7.23) 

 
Using (7.23), the expectation term in (7.22) can be rewritten as: 
 

( ) ( ) ( ) ( ) ( )
0

max ,0 0
K

t T T T T TK
E S K S K S dS S

∞
⎡ ⎤− = − +⎣ ⎦ ∫ ∫Q Q Q  

                    . ( ) ( ) ( )max ,0t T T TK
E S K S K S

∞
⎡ ⎤− = −⎣ ⎦ ∫Q Q

 
Using this, we can rewrite (7.22) as: 
 

                                          .                                 (7.24) ( ) ( )( , ) r
t T TK

C S e S K S dSττ
∞−= −∫ Q

 
Since  is a log-normal random variable with its density given by the equation (7.23): TS
 

                                  2 21ln ln ( ) ,
2T tS Normal m S r σ τ σ τ⎛ ⎞≡ + −⎜ ⎟

⎝ ⎠
∼ .                          (7.25) 

 
We use a change of variable technique from a log-normal random variable  to a 
standard normal random variable 

TS
Z  through: 
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                    (
21ln ln ( )

ln2 0,1
T t

T

S S r
S mZ N

σ τ

σ τ σ τ

⎧ ⎫− + −⎨ ⎬ −⎩ ⎭≡ ≡ ∼ )ormal ,                 (7.26) 

 
with: 
 

( )
21 exp[ ]

22
ZZ

π
= −Z . 

 
From (7.26): 
 
                                                      ( )expTS Zσ τ= m+ .                                           (7.27) 

 
We can rewrite (7.24) as: 
 

( )( ) ( )
(ln ) /

( , ) expr
t K m

C S e Z m K Z dZτ

σ τ
τ σ τ

∞−

−
= + −∫ Z , 

  
and we express this with more compact form as:  
                          
                                                          1( , )tC S C C2τ = − ,                                              (7.28) 
 
where ( ) ( )1 (ln ) /

expr

K m
C e Z m Z dZτ

σ τ
σ τ

∞−

−
= +∫ Z  and ( )2 (ln ) /

r

K m
C Ke Z dZτ

σ τ

∞−

−
= ∫ Z . 

 
Consider : 1C
 
               ( ) ( ) ( )1 (ln ) /

exp expr

K m
C e Z m Z dZτ

σ τ
σ τ

∞−

−
= ∫ Z  

( ) ( ) ( )2
1 (ln ) /

1exp exp ln ( ) exp
2t K m

C r S r Z Z
σ τ

τ σ τ σ τ
∞

−

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠ ∫ Z dZ  

               ( ) ( )2
1 (ln ) /

1exp ln exp
2t K m

C S Z Z
σ τ

σ τ σ τ
∞

−

⎛ ⎞= −⎜ ⎟
⎝ ⎠ ∫ Z dZ     

               ( )
2

2
1 (ln ) /

1 1exp ln exp exp[ ]
2 22t K m

ZC S Z
σ τ

σ τ σ τ
π

∞

−

⎛ ⎞= − −⎜ ⎟
⎝ ⎠ ∫ dZ     

               
2

2
1 (ln ) /

1 1 2exp ln exp[ ]
2 22t K m

Z ZC S
σ τ

σ τσ τ
π

∞

−

−⎛ ⎞= − −⎜ ⎟
⎝ ⎠ ∫ dZ     

               
( )2 2

2
1 (ln ) /

1 1exp ln exp[ ]
2 22t K m

Z
C S

σ τ

σ τ σ τ
σ τ

π
∞

−

− −⎛ ⎞= − −⎜ ⎟
⎝ ⎠ ∫ dZ     
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( )2

2 2
1 (ln ) /

1 1 1exp ln exp exp[ ]
2 2 22t K m

Z
C S

σ τ

σ τ
σ τ σ τ

π
∞

−

−⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ∫ dZ     

               ( )
( )2

1 (ln ) /

1exp ln exp[ ]
22t K m

Z
C S

σ τ

σ τ

π
∞

−

−
= −∫ dZ     

               
( )2

1 (ln ) /

1 exp[ ]
22t K m

Z
C S dZ

σ τ

σ τ

π
∞

−

−
= −∫ .                                             (7.29) 

 
Use the following relationship: 
 

( )2 21 1exp[ ] exp[ ]
2 22 2

b b c

a a c

Z c ZdZ dZ
π π

−

−

−
− = −∫ ∫ . 

 
Equation (7.29) can be rewritten as: 
 

                                       
2

1 (ln ) /

1 exp[ ]
22t K m

ZC S dZ
σ τ σ τ π

∞

− −
= ∫ − .                             (7.30) 

 
Let  be the standard normal cumulative density function. Using the symmetry of a 
normal density, (7.30) can be rewritten as: 

( )N

 
2(ln ) /

1
1 exp[ ]

22
K m

t
ZC S dZ

σ τ σ τ

π
− − +

−∞
= −∫  

                                      1
ln

t
K mC S N σ τ

σ τ
− +⎛

= ⎜
⎝ ⎠

⎞
+ ⎟ .                                               (7.31) 

 
From (7.25), substitute for . The equation (7.31) becomes: m
 

            
2

1

1ln ln ( )
2t

t

K S r
C S N

σ τ
σ τ

σ τ

⎛ ⎞− + + −⎜ ⎟
= +⎜ ⎟

⎜ ⎟
⎝ ⎠

 

            

2 2 2

1

1 1ln ( ) ln ( )
2 2

t t

t t

S Sr r
K KC S N S N

σ τ σ τ σ τ

σ τ σ τ

⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞+ − + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜= =

⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎟
⎠

          (7.32) 

 
Next, consider  in (7.28): 2C
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( ) ( )
(ln ) /

2 (ln ) /

K mr r

K m
C Ke Z dZ Ke Z dZ

σ ττ τ

σ τ

∞ − −− −

− −∞
= =∫ ∫Z Z  

                        2
lnr K mC Ke Nτ
σ τ

− − +⎛
= ⎜

⎝ ⎠

⎞
⎟ .                                                                 (7.33) 

 
From (7.25), substitute for . The equation (7.33) becomes: m
 

          
2 2

2

1 1ln ln ( ) ln ( )
2 2

t
t

r r

SK S r r
KC Ke N Ke Nτ τ

σ τ σ

σ τ σ τ
− −

⎛ ⎞⎛ ⎞− + + − + −⎜ ⎟⎜ ⎟
= = ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

τ
.     (7.34) 

 
Substitute (7.32) and (7.34) into (7.28) and we obtain BS plain vanilla call option pricing 
formula: 
 
                                            ( ) ( )1( , ) r

t tC S S N d Ke N dττ −= − 2 ,                                   (7.35) 
 

where 

2

1

1ln ( )
2

tS r
Kd

σ τ

σ τ

⎛ ⎞ + +⎜ ⎟
⎝ ⎠=  and 

2

2 1

1ln ( )
2

tS r
Kd d

σ τ
σ τ

σ τ

+ −
= = − . 

 
Following the similar method, BS plain vanilla put option pricing formula can be 
obtained as: 
 
                                            ( ) ( )2( , ) r

tP S Ke N d S N dττ −
1t= − − − .                               (7.36) 

 
We can conclude that both PDE approach and martingale approach give the same result. 
This is because in both approaches we move from a historical probability measure  to a 
risk-neutral probability measureQ . This is very obvious for martingale method. But in 
PDE approach because the source of randomness can be completely eliminated by 
forming a portfolio of options and underlying stocks, this portfolio grows at a rate equal 
to the risk-free interest rate. Thus, we switch to a measure . For more details, we 
recommend Neftci (2000) pages 280-282 and 358-365.  

P

Q

 
[7.5] Alternative Interpretation of Black-Scholes Formula: A Single Integration 
Problem 
 
Under an equivalent martingale measure  under which the discounted asset price 
process { ;  becomes a martingale, a plain vanilla call and put option price  
which has a terminal payoff function 

∼Q P
0rt

te S t T− ≤ ≤ }

( )max ,0TS K−  and ( )max ,0TK S−  are calculated 
as: 
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              ( ) ( )( )( , ) max ,0 max ,0r T t r
t t T t TC t S e E S K e E S Kτ− − −⎡ ⎤ ⎡= − =⎣ ⎦ ⎣

Q Q ⎤− ⎦ ,              (7.37) 

              ( ) ( )( )( , ) max ,0 max ,0r T t r
t t T t TP t S e E K S e E K Sτ− − −⎡ ⎤ ⎡= − =⎣ ⎦ ⎣

Q Q ⎤− ⎦ .              (7.38)   
 
Note that an expectation operator [ ]tEQ  is under a probability measure Q  and 
conditional on time t . Let  (drop the subscript BS for simplicity) be a probability 
density function of  under . Using , (7.37) and (7.38) can be rewritten as: 

( )TSQ

TS Q ( )TSQ
 

( ) ( ) ( ) ( ) ( )
0

max ,0 0
K

t T T T T TK
E S K S K S dS S

∞
⎡ ⎤− = − +⎣ ⎦ ∫ ∫Q Q Q TdS

T

T TdS

T

T

T T

 

                                                       ,                                       ( ) ( )T TK
S K S dS

∞
= −∫ Q

 

( ) ( ) ( ) ( ) ( )
0

max ,0 0
K

t T T T TK
E K S S dS K S S

∞
⎡ ⎤− = + −⎣ ⎦ ∫ ∫Q Q Q  

                                                       . ( ) ( )
0

K

T TK S S dS= −∫ Q
 
Using these, we can rewrite (7.37) and (7.38) as: 
 

                                          ,                                 (7.39) ( ) ( )( , ) r
t T TK

C S e S K S dSττ
∞−= −∫ Q

                                          .                                (7.40)               ( ) ( )
0

( , )
Kr

t TP S e K S S dSττ −= −∫ Q
 
BS assumes that a terminal stock price  is a log-normal random variable with its 
density of the form:  

TS

 

                     ( )

2
2

22

1ln ln ( )
21 exp[ ]

22

T t

T

T

S S r
S

S

σ τ

σ τπσ τ

⎧ ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝⎩ ⎭= −Q ⎠ .                (7.40) 

 
Therefore, BS option pricing formula comes down to a very simple single integration 
problem: 
 

( )

2
2

22

1ln ln ( )
21( , ) exp[ ]

22

T t
r

t T TK
T

S S r
C S e S K dS

S
τ

σ τ
τ

σ τπσ τ

∞−

⎧ ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝⎩ ⎭= − −∫ ⎠ ,     (7.41) 

( )

2
2

220

1ln ln ( )
21( , ) exp[ ]

22

T t
Kr

t T T

T

S S r
P S e K S dS

S
τ

σ τ
τ

σ τπσ τ
−

⎧ ⎫⎛ ⎞− + −⎨ ⎬⎜ ⎟
⎝⎩ ⎭= − −∫ ⎠ .     (7.42) 
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This implies that as far as a risk-neutral density of the terminal stock price  is 
known, plain vanilla option pricing reduces to a simple integration problem.  

( )TSQ

 
[7.6] Black-Scholes Model as an Exponential Lévy Model 
 
The equation (7.10) tells us that BS models a stock price process as a geometric 
Brownian motion process: 
 

2
0

1exp
2t tS S t Bµ σ σ⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

. 

 
BS model is an exponential Lévy model of the form: 
 

0 e tL
tS S= , 

 
where the stock price process { : 0 }tS t T≤ ≤  is modeled as an exponential of a Lévy 
process { . Black and Scholes’ choice of the Lévy process is a Brownian 
motion with drift (continuous diffusion process): 

;0 }tL t T≤ ≤

 

                                                    21
2t tL t Bµ σ σ⎛ ⎞≡ − +⎜ ⎟

⎝ ⎠
.                                          (7.43) 

 
The fact that an stock price  is modeled as an exponential of Lévy process  means 

that its log-return 

tS tL

0

ln( )tS
S

 is modeled as a Lévy process such that: 

 
2

0

1ln( )
2

t
t t

S L t
S

Bµ σ σ⎛ ⎞= = − +⎜ ⎟
⎝ ⎠

. 

 
BS model can be categorized as a continuous exponential Lévy model apparently because 
a Brownian motion process is continuous (i.e. no jumps). Later, we will deal with Merton 
jump-diffusion model (we call it Merton JD model) and variance gamma model by 
Madan, Carr, and Chang (1998) (we call it VG model). These are all exponential Lévy 
models of different types. Merton’s choice of Lévy process tX  is a Brownian motion 
with drift process plus a compound Poisson jump process which has a path of continuous 
path with occasional jumps. Merton JD model can be categorized as a finite activity 
exponential Lévy model because the expected number of jumps per unit of time (i.e. 
intensityλ ) is finite and small. In other words, the Lévy measure  of Merton JD 
model is finite: 

( )dxA

 
( )dx < ∞∫ A . 
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VG model can be can be categorized as an infinite activity exponential Lévy model 
because the expected number of small jumps per unit of time is infinite: 
 

( )dx = ∞∫ A , 
 
although the expected number of large jumps per unit of time is finite. VG model’s Lévy 
process tX  is a subordinated Brownian motion process by a tempered α -stable 
subordinator (i.e. a normal tempered α -stable process) which is a pure jump process.  
 
                                         Continuous Exponential Lévy models: No Jumps 
                                         Example: BS Model   
 
 
Exponential                      Finite Activity Exponential Lévy Models: Continuous with 
Lévy Models                    Occasional Discontinuous Paths 
                                         Example: Merton JD Model 
 
                                         Infinite Activity Exponential Lévy Models: Pure Jump Process 
                                         Example: VG Model   
 
Figure 7.3: Category of Exponential Lévy Models 
 
Recently, there are enormous publications regarding infinite activity exponential Lévy 
models which we intend to look into in near future.  
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[8] Option Pricing with Fourier Transform: Black-Scholes Example 
 
In this section we present Fourier transform option pricing approach by Carr and Madan 
(1999). To illustrate the idea clearly and simply, we present BS model with Fourier 
transform pricing methodology. 
 
[8.1] Motivation 
 
Let  be an equivalent martingale measure under which the discounted asset price 
process { ;  becomes a martingale and {

∼Q P
0rt

te S t T− ≤ ≤ } ;0 }t t T≤ ≤F  be an information 
flow of the asset price  (i.e. filtration). In an arbitrage-free market, prices of any assets 
can be calculated as expected terminal payoffs under  discounted by a risk-free interest 
rate r : 

S
Q

 
[ ]rt rT

t Te S E e S− −= Q Ft , 
( ) [ ]r T t

t TS e E S− −= Q Ft , 
 
which are martingale conditions.  
 
Let K  be a strike price and T  be an expiration of a contingent claim. Plain vanilla call 
and put option prices are computed as discounted risk-neutral conditional expectations of 
the terminal payoffs ( )( )+ max ,0T TS K S K− ≡ −  and ( )TK S +− ≡  : ( )max ,0TK S−
 
                                            ( )( , ) ( )r T t

t TC t S e E S K− − +
t⎡ ⎤= −⎣ ⎦

Q F ,                                  (8.1) 

                                            ( )( , ) ( )r T t
tP t S e E K S− − +

T t⎡ ⎤= −⎣ ⎦
Q F .                                  (8.2)   

 
Intrinsic value of a vanilla call (put) is defined as ( )tS K +−  ( ( t )K S +− ) which is the 
value of the call (put) exercised immediately. Obviously, the intrinsic value of out of the 
money option is zero. Current option price minus its intrinsic value ( , ) ( )t tC t S S K +− −  
( ) is called a time value of the option.  ( , ) ( )tP t S K S +− − t

 
Let ( T tSQ F )  be a probability density function of a terminal asset price  under  

conditional on . Using 
TS Q

tF ( T tSQ F ) , (8.1) and (8.2) can be rewritten as: 
 

( ) ( ) ( ) ( ){ }( )

0
( , ) 0

Kr T t
t T T t T TK

C t S e S K S dS S dS
∞− −= − +∫ ∫Q QF Ft T  

                                ( ) ( )( )r T t
T T tK

e S K S
∞− −= −∫ Q F TdS ,                                                (8.3) 

 

( ) ( ) ( ) ( ){ }( )

0
( , ) 0

Kr T t
t T t T T T t TK

P t S e S dS K S S dS
∞− −= + −∫ ∫Q QF F  
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                                ( ) ( )( )

0

Kr T t
T T te K S S− −= −∫ Q F TdS .                                                (8.4) 

 
Black-Scholes (BS) assumes that a terminal stock price  conditional on  is a log-
normal random variable with its density given by:  

TS tF

 

( )

2
2

22

1ln ln ( )( )
21 exp

2 ( )2 ( )

T t

T t

T

S S r T t
S

T tS T t

σ

σπσ

⎡ ⎤⎧ ⎫⎛ ⎞− + − −⎢ ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭⎢ ⎥= −⎢ ⎥−− ⎢ ⎥

⎢ ⎥⎣ ⎦

Q F . 

 
Therefore, BS option pricing formula comes down to single integration problem with 
respect to  since all parameters and variables are known: TS
 

( )

2
2

22

1ln ln ( )
21( , ) exp

22

T t
r

BS t T TK
T

S S r
C t S e S K dS

S
τ

σ τ

σ τπσ τ

∞−

⎡ ⎤⎧ ⎫⎛ ⎞− + −⎢ ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭⎢ ⎥= − −⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ,   (8.5) 

( )

2
2

220

1ln ln ( )
21( , ) exp

22

T t
Kr

BS t T T

T

S S r
P t S e K S dS

S
τ

σ τ

σ τπσ τ
−

⎡ ⎤⎧ ⎫⎛ ⎞− + −⎢ ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭⎢ ⎥= − −⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

∫ .   (8.6) 

 
This implies that as far as a conditional risk-neutral density of the terminal stock price 

( T tSQ F )  is given, plain vanilla option pricing reduces to single integration problem by 
the equation (8.3) and (8.4).  
 
But for general exponential Lévy models ( T tSQ F )  cannot be expressed using special 
functions of mathematics or is not known. Therefore, we cannot price plain vanilla 
options using (8.3) and (8.4). So how do we price options using general exponential Lévy 
models? The answer is to use a very interesting fact that characteristic functions of 
general exponential Lévy processes are always known in closed-forms or can be 
expressed in terms of special functions of mathematics although their probability 
densities are not. We saw in the section 4 that there is one-to-one relationship between a 
probability density and a characteristic functions (i.e. through Fourier transform) and 
both of which uniquely determine a probability distribution. If we can somehow rewrite 
(8.3) and (8.4) in terms of a characteristic function of T tS F  (i.e. log of T tS F  to be more 

precise) instead of its probability density ( T tSQ F ) , we will be able to price options in 
general exponential Lévy models. 
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[8.2] Derivation of Call Price with Fourier Transform: Carr and Madan (1999) 
 
For simplicity, assume  without loss of generality. From the equation (8.3), use a 
change of variable technique from  to : 

0t =
TS ln TS

 

( ) ( )ln ln
0ln

( , ) ln lnTSrT K
T TK

C T K e e e S d S
∞−= −∫ Q F . 

 
Let  be a log terminal stock price and  be a log strike price, i.e.  and 

. Thus, we have: 
Ts k lnT Ts ≡ S
Klnk ≡

 

                                        ( ) ( )0( , ) TsrT k
Tk

C T k e e e s ds
∞−= −∫ Q F T ,                                (8.7) 

 
where ( 0( )T Ts s≡Q Q F )

T Tds

 (for simplicity) is a risk-neutral density of a log terminal stock 

price  conditional on filtration . From the equation (4.1), a characteristic function of 
 is a Fourier transform of its density function :  

Ts 0F

Ts ( )TsQ
 

                                      .                              (8.8) [ ]( ) ( ) ( ) ( )Ti s
T Ts e sωφ ω ω

∞

−∞
≡ ≡ ∫Q QF

 
Consider a function . Sufficient (but not necessary) condition for the existence of 
Fourier transform and its inverse is the equation (3.47): 

( )g t

 

                                                           ( )g t dt
∞

−∞
< ∞∫ .                                                   (8.9)      

 
We saw in section 7 that BS models a log terminal stock price  as a normal random 
variable with its normal density given by under Q  (from (7.7)): 

Ts

 

                             

2
2

0

22

1( )
21( ) exp

22

T

T

s s r T
s

TT

σ

σπσ

⎡ ⎤⎧ ⎫⎛ ⎞− + −⎢ ⎥⎨ ⎬⎜ ⎟
⎝⎩ ⎭⎠⎢ ⎥= −⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

Q .                   (8.10) 

 
From the equations (8.8) and (8.10), a characteristic function of BS log terminal stock 
price  is easily obtained as: Ts
 

                  
( )2 2

2
0

1( ) ( ) exp ( )
2 2

Ti s
T T T

T
e s ds i s r Tω

σ ω
φ ω σ ω

∞

−∞

⎡ ⎤⎧ ⎫⎢ ⎥≡ = + − −⎨ ⎬
⎩ ⎭⎢ ⎥⎣ ⎦

∫ Q .       (8.11) 

 111



 
When a call price is expressed in terms of a log strike price lnk K≡  in the equation 
(8.7), k  approaches  as a strike price −∞ K  approaches 0 in the limit. Thus, from (7.8): 
 

( ) ( ) ( )0 0( , ) T Ts srT rT
T T T TC T k e e e s ds e e s ds

∞ ∞− −∞ −

−∞ −∞
= − =∫ ∫Q QF F  

                   0( , ) TsrTC T k e E e− ⎡= ⎣
Q F ⎤⎦ .                                                                        (8.12) 

     
We know under equivalent martingale measure : Q
 

0 0
Ts rT

TE S e S e⎡ ⎤≡ =⎣ ⎦
Q F . 

 
Equation (8.12) becomes: 
 
                                                              0( , )C T k S= .                                              
 
Therefore, a call price  is not integrable (i.e.  does not satisfy (8.9)). 
Therefore,  cannot be Fourier transformed. To solve this problem, CM defines a 
modified call price as: 

( , )C T k ( , )C T k
( , )C T k

 
                                                    ,                                           (8.13) mod ( , ) ( , )kC T k e C T kα≡
 
where  is expected to satisfy the integrability condition (8.9) by carefully 
choosing 

mod ( , )C T k
0α > : 

 

mod ( , )C T k dk
∞

−∞
< ∞∫ . 

 
Consider a FT of a modified call price by the FT definition (3.4): 
 

                                                 mod( ) ( , )i k
T e C T k dkωψ ω

∞

−∞
≡ ∫ .                                      (8.14) 

  
From (8.14), call price  can be obtained by an inverse FT (i.e. the definition (3.5)) 
of 

( , )C T k
( )Tψ ω :  

 

                                            mod
1( , ) ( )

2
i k

TC T k e dω ψ ω ω
π

∞ −

−∞
= ∫  

1( , ) ( )
2

k i k
Te C T k e dα ω ψ ω ω

π
∞ −

−∞
= ∫  

                                            ( , ) ( )
2

k
i k

T
eC T k e d

α
ω ψ ω ω

π

− ∞ −

−∞
= ∫ .                                     (8.15)                  
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Now CM derives an analytical expression of ( )Tψ ω  in terms of a characteristic function 
( )Tφ ω . Substitute (8.13) into (8.14): 

 

( ) ( , )i k k
T e e C T k dkω αψ ω

∞

−∞
= ∫ . 

 
Substitute (8.7) and interchanging integrals yields: 
 

( ) ( )( ) Tsi k k rT k
T Tk

e e e e e s ds dkω α
Tψ ω

∞ ∞−

−∞
= −∫ ∫ Q  

                                             ( ) ( )(1 )T
s s krT i k k

T Te s e e e dkdαω α∞ +− +

−∞ −∞
s∫ ∫Q= −  

                                             ( )
( 1 ) ( 1 )

1

T Ti s i s
rT

T T
e ee s d

i i

α ω α ω

α ω α ω

+ + + +∞ −

−∞

⎛ ⎞
= −⎜ ⎟+ + +⎝ ⎠
∫ Q s  

                                             
( )

( )2 2

( 1)
2 1

rT
Te i

i
φ ω α

α α ω α ω

− − +
= .                                           (8.16) 

+ − + +
 
Thus, a call pricing function is obtained by substituting (8.16) into (8.15): 
 

                             
( )

( )2 2

( 1)
( , )

2 2

rTk
Ti k e ie

1
k e d

i

α
ω φ ω α

C T ω
π α α ω α ω

−− ∞ −

−∞

− +
=

+ − + +∫ ,                     (8.17)   

 
where (.)Tφ  is a characteristic function of a log terminal stock price  conditional on 
filtration F . We can interpret the equation (8.17) which is single numerical integration 
problem as a characteristic function 

Ts

0

(.)Tφ  equivalent of the equation (8.3). Table 8.1 
illustrates this point.  
 

Table 8.1: Comparison between Traditional and FT Option Pricing Formula 
 
Option Pricing Method   Equation                                   Formula 
 

Traditional                          (8.3)                  ( ) ( )( )r T t
T T tK TS K S dS

∞− −= −∫ Q FC e  

 

Fourier Transform             (8.17)      
( )

( )2 2

( 1)
( , )

2 2

rTk
Ti k e ie

1
k e d

i

α
ω φ ω α

C T ω
π α α ω α ω

−− ∞ −

−∞

− +
=

+ − + +∫  

                                                           ( )ln( )
0(.) ln( ) ln( )Ti S

T T TSe S dωφ
∞

−∞
≡ ∫ Q F lnk K≡,  

 
[8.3] How to Choose Decay Rate Parameter α: Carr and Madan (1999) 
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We mentioned earlier that when a call price is expressed in terms of a log strike price 
 in the equation (8.7), k  approaches lnk ≡ K −∞  as a strike price K  approaches 0 in the 

limit which is illustrated in Figure 8.1. 

0 2 4 6 8 10
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Figure 8.1: Relationship between a Strike Price K  and a Log-Strike Price . lnk K≡
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Figure 8.2: Plot of an Exponential Function  with Respect to Log-Strike Price  

. 
0.5ke

lnk K≡
 
Thus, a call price function  becomes  as  discussed before. In order to 
make a call price integrable, CM multiplies an exponential function 

( , )C T k 0S k →−∞
keα  with α +∈R  to 

 and obtains a modified call price . As shown by Figure 8.2, the role of ( , )C T k mod ( , )C T k
keα  with  is to dampen the size of α +∈R 0( , )C T k S=  in the limit k . But this in 

turn worsens the integrability condition for 
→−∞

k +∈R  (i.e. positive log strike) axis. In order 
for a modified call price  to be integrable for both positive and 
negative  axis (i.e. square integrable), CM provides a sufficient condition: 

mod ( , ) ( , )kC T k e C T kα≡
k

 
(0)Tψ < ∞ . 

                                         
From (8.16): 
 

( )
2

( 1)
(0)

rT
T

T

e iφ α
ψ

α α

− − +
=

+
. 
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Therefore, the sufficient condition of the square-integrability of  is: mod ( , )C T k
 
                                                          ( )( 1)T iφ α− + < ∞

i

.                                              (8.18) 
 
From the definition of a characteristic function (8.8): 
 
                              ln ln( ) [ ] [ ] [( ) ] [ ]T T Ti s i S S i

T TE e E e E e E Sω ω ω ωφ ω = = = = .                     (8.19) 
 
From (8.18) and (8.19): 
 

( ( 1) )T iφ α− + < ∞  
                                                          { ( 1) }[ ]i i

TE S α− + < ∞  
                                                          1[ ]TE S α+ < ∞ .                                                      (8.20) 
 
CM suggests the use of (8.20) and the analytical expression of the characteristic function 
to determine an upper bound onα .                                
 
[8.4] Black-Scholes Model with Fourier Transform Pricing Method  
 
By substituting a characteristic function of BS log terminal stock price  (i.e. the 
equation (8.11)) into the general FT pricing formula of the equation (8.17), we obtain BS-
FT call pricing formula: 

Ts

 

                           
( )

( )2 2

( 1)
( , )

2 2

rTk
Ti k

BS FT

e ie
1

k e d
i

α
ω φ ω α

C T ω
π α α ω α ω

−− ∞ −
− −∞

− +
=

+ − + +∫ ,               (8.21) 

 

with 
( )2 2

2
0

1( ) exp ( )
2 2T

T
i s r T

σ ω
φ ω σ ω

⎡ ⎤⎧ ⎫⎢ ⎥= + − −⎨ ⎬
⎩ ⎭⎢ ⎥⎣ ⎦

.  

 
Table 8.2: Comparison between Original BS and BS-FT Option Pricing Formula 

 
Option Pricing Method                                    
 
Original Black-Scholes 
 

            ( ) ( )( )r T t
T T tK

C e S K S dS
∞− −= −∫ Q F T                              
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Black-Scholes with Fourier Transform Approach 
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We implement the BS-FT formula (8.21) with decay rate parameter 1α =  and compare 
the result to the original BS call price. As illustrated by Figure 8.3, as a principle BS-FT 
call price and the original BS call price are identical. This is no surprise because the 
original BS formula and BS-FT formula in Table 8.2 are the same person with a different 
look. BS-FT formula is just frequency representation of the original BS formula.     
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Figure 8.3: Original BS Call Price Vs. BS-FT with α = 1 Call Price. Common 
parameters and variables fixed are 0 50S = , 0.2σ = , 0.05r = , 0.02q = , and T .  1=
 
Several points should be investigated further now. Firstly, CPU time should be discussed. 
Consider an ATM call option with 0 50S = , 50K = , 0.2σ = , 0.05r = , , and 

. Our BS-FT 
0.02q =

1T = 1α =  code needs 0.01 second CPU time while our original BS code 
needs zero seconds. Although you can state that BS-FT formula is slower than the 
original BS, speed is not an issue for most of the purposes.    
 
Secondly, let’s consider the choice of decay rate parameterα . We saw the selection 
procedure for α  by Carr and Madan (1999) in section 8.3. But we found out that choice 
of α  is not much important as long asα +∈R . Consider an ATM vanilla call price with   

, , 0 50S = 50K = 0.2σ = , , 0.05r = 0.02q = , and T 0.25= . Its BS price is 2.16794. 
Figure 8.4 and Table 8.3 indicates that for 0.05α ≥  BS-FT price converges to the 
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original BS price. But it is possible that option prices using FT approach can be sensitive 
to the choice of α  for models other than the BS, so at this point it is safer for us to state 
that for at least BS model the choice of α  is of no importance (i.e. 1α =  is fine).  
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Figure 8.4: Vanilla BS-FT ATM Call Price as a Function of Decay Rate Parameter 
α. Common parameters and variables fixed are 0 50S = , 50K = , 0.2σ = , , 

, and .  
0.05r =

0.02q = 0.25T =
 
Table 8.3: BS-FT ATM Call Price for Different Values of Decay Rate Parameter α 

      α             0.01          0.05            0.1             0.5              1                2                5         
 
Call Price   2.16972     2.16794     2.16794     2.16794     2.16794     2.16794     2.16794 
 
Thirdly, we discuss the FT option pricing with (8.21) for near maturity deep OTM and 
ITM calls. As CM (1999) points out, for near maturity deep OTM and ITM calls (puts), 
call (put) prices approach their intrinsic values ( )tS K +−  as t T  (→ ( t )K S +− ). Since 
this makes the inverse Fourier transform integrand highly oscillatory, the numerical 
integration problem in (8.21) becomes slow and difficult. For example, using our code, in 
the case of an ATM call with , 0 50S = 50K = , 0.2σ = , 0.05r = , and , BS-FT 0.02q =

1α =  call price does not face the difficulty in numerical integration at all even for one 
day to maturity . But in the case of a deep OTM call with , , 1/ 252T = 0 50S = 80K =

0.2σ = , , and , BS-FT 0.05r = 0.02q = 1α =  call price begins to experience difficulty 
in numerical integration around 37 trading days to maturity (i.e. 38 / 252T < ). For a deep 
ITM call with , , 0 50S = 20K = 0.2σ = , 0.05r = , and 0.02q = , BS-FT 1α =  call price 
begins to experience difficulty around 5 days to maturity (i.e. 5 / 252T < ). Of course, this 
depends on the value of α , your hardware, and your software, etc.  
 
More important question is to investigate the amount of error caused by this numerical 
integration difficulty for the near maturity deep OTM and ITM options. Consider a call 
option with , 0 50S = 0.2σ = , , and 0.05r = 0.02q = . Figure 8.5 plots a series of the 
difference between the original BS price and BS-FT 1α =  price for the range of less than 
10 trading days to maturity 1/ 252 10 / 252T≤ ≤ . We find that despite the difficulty in the 
numerical integration of BS-FT price of (8.21) for the near maturity deep OTM (in Panel 
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A) and deep ITM (in Panel B) call, our BS-FT code causes no significant errors in terms 
of pricing. For a near maturity ATM call (in Panel C) which faces no difficulty in 
numerical integration, BS-FT pricing error is negligible.  
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A) OTM call with  and 0 50S = 80K = . 
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B) ITM call with  and0 50S = 20K = . 
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C) ATM Call with  and0 50S = 50K = . 
 
Figure 8.5: Plot of BS Price minus BS-FT 1α =  Price for Near-Maturity Vanilla 
Call with Less Than 10 Trading Days to Maturity 1/ 252 10 / 252T≤ ≤ . Common 
parameters and variables fixed are 0.2σ = , 0.05r = , and 0.02q = .  
 

 118



We conclude this section by stating the following remarks. In the case of BS model, the 
FT call price of the equation (8.17) needs equivalent CPU time as the original BS formula 
and produces negligible pricing errors regardless of the maturity and the moneyness of 
the call.  
 
[8.5] Derivation of Near-Maturity OTM Vanilla Option Pricing Function with 
Fourier Transform: Carr and Madan (1999) 
 
Although the numerical integration difficulty of BS-FT call price of (8.21) for the near 
maturity deep OTM and deep ITM calls causes no significant pricing errors, CM (1999) 
provides the vanilla option pricing formula specifically designed for them which makes 
the inverse Fourier transform integrand less oscillatory and facilitates the numerical 
integration problem.  
 
Let  be the time value of an OTM vanilla options with maturityT  at the current 
time  without loss of generality. This implies that when the strike price is less than 
the spot stock price  (i.e. 

( )Tz k
0t =

0K S< 0k s<  in log-scale),  takes on the OTM put price. 
When the strike price is greater than the spot stock price  (i.e.  in log-scale), 

 takes on the OTM call price: 

( )Tz k

0K S> 0k > s

0

0

( )Tz k
 

0 0 0

0 0 0

(0, ) ( ) (0, ) if   K
( )

(0, ) ( ) (0, )   if    T

P S K S P S S
z k

C S S K C S K S

+

+

⎧ − − = <⎪≡ ⎨
− − = >⎪⎩

. 

 
                                ( )Tz k
 
 
 
 
 
 
                                         OTM Put Price            OTM Call Price 
 
                                                                                                             k   
                                   0                                   0s
Figure 8.6: Illustration of an OTM Vanilla Option Price . ( )Tz k
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Assume the current stock price 0 1S =  for the simplicity (i.e. taken care in the end) which 
in turn means .   0 0s =
                                ( )Tz k
 
 
 
 
 
 
                                         OTM Put Price            OTM Call Price 
 
                                                                                                             k   
                                   0                               0 0s =  
Figure 8.7: Illustration of an OTM Vanilla Option Price  Assuming . ( )Tz k 0 1S =
 
Under a risk-neutral measure ,  can be computed as: Q ( )Tz k
 

                   ( ) ( ) ( ), 0 , 0 0( ) 1 1T T

T T

s srT k k
T s k k s k k T Tz k e e e e e s ds

∞−
< < > >−∞

⎡ ⎤= − + −⎣ ⎦∫ Q F ,        (8.22) 

 
where ( 0( )T Ts s≡ )FQ Q  is a risk-neutral density of a log terminal stock price  

conditional on filtration F .  takes on a put payoff 
Ts

0 ( )Tz k ( )Tske e−  if this option is 

currently OTM put  and if at maturity  this put finishes ITM .  takes 

on a call payoff  if this option is currently OTM call  and if at maturity T  

this call finishes ITM s k .  

0k < T Ts k< ( )Tz k

( Ts ke e− )
>

0k >

T

 
Consider a FT of OTM vanilla option price  by the FT definition (3.4): ( )Tz k
 

                                                    .                                           (8.23) ( ) ( )i k
T Te z k dkωζ ω

∞

−∞
= ∫

  
From (8.23), OTM vanilla option price  can be obtained by an inverse FT (i.e. the 
definition (3.5)) of 

( )Tz k
( )Tζ ω :  

 

                                                 1( ) ( )
2

i k
Tz k e dω

Tζ ω ω
π

∞ −

−∞
= ∫ .                                     (8.24) 

 
By substituting (8.22) into (8.23), CM shows that an analytical expression of ( )Tζ ω  in 
terms of a characteristic function  ( )Tφ ω  of a log terminal stock price  conditional on 
filtrationF  can be obtained as: 

Ts

0
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To facilitate numerical integration, CM again considers a FT of OTM vanilla option price 

 modified with dampening function sinh(( )Tz k )kα  (compare with (8.23)): 
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∞
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                                                        ( )
2

k k
i k

T
e ee z
α α

ω
−∞

−∞

− k dk∫=  

                                                        ( ) (
2

T Ti )iζ ω α ζ ω α− − +
= .                                  (8.26) 

 
From (8.26), OTM vanilla option price  can be obtained by an inverse FT of( )Tz k ( )Tγ ω :  
 

                                          1 1( ) ( )
sinh( ) 2

i k
Tz k e d

k
ω

Tγ ω ω
α π

∞ −

−∞
= ∫ .                             (8.27) 

 
From now on, we call the OTM near maturity option price of the equation (8.27) as 
FT/TV (i.e. TV indicates the time value approach). Table 8.4 compares the general FT 
pricing formula using the modified call price (i.e. the equation (8.17)) and FT/TV 
formula using the time value of OTM options which is specifically designed for near 
maturity options. 
 

Table 8.4: FT Formula Vs. FT/TV Formula 
 
Approach                                                              Formula 
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Next the performance of FT-TV formula of the equation (8.27) with decay rate parameter 

10α =  (we will discuss the choice of α  soon) is tested and compared to the original BS 
price and BS-FT 1α =  price for a range of different moneyness in Figure 8.8. Panel A 
plots  which reaches its maximum at ATM and takes the price of OTM put for 

 and takes the price of OTM call for . Panel B and C indicates that as a 
principle, all three formulae produce identical prices. Again, this is no surprise because 
all these are same thing with different looks.     
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A) Plot of . ( )Tz k
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B) For the range 50 . 80K≤ ≤
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C) For the range 20 . 50K≤ ≤
 
Figure 8.8: BS Vs. BS-FT α = 1 Vs. BS-FT/TV α = 10. Common parameters and 
variables fixed are , 0 50S = 0.2σ = , 0.05r = , 0.02q = , and 0.25T = .  
 
Next, CPU time and the accuracy of BS-FT/TV formula are discussed. Consider vanilla 
options with common parameters and variables 0 50S = , 0.2σ = , 0.05r = , and 

. Table 8.5 to 8.7 show CPU time and the accuracy of BS-FT/TV0.02q = =10α  formula 
compared to other two formulae with three different maturities and with varying 
moneyness. In terms of CPU time, we notice that BS-FT/TV formula is by far the slowest 
although most of purposes this will not be an issue. BS-FT/TV =10α  formula has 
marginally larger error than BS-FT 1α =  formula, but the size of the errors are trivial. 
 

Table 8.5: CPU Time for an OTM Call with 80K =  
Price is in the bracket.  
                                                                  Time to Maturity 
Method                                                   0.1T = 0.5T =                     1T =  
                              
BS                                   0 seconds                   0 seconds               0 seconds 
                                   ( 143.77524 10−× )         ( 0.00152306 )         (0.0594469) 
 
BS-FT 1α =                   0.08 seconds              0.02 seconds           0.01 seconds 
                                   ( 143.97419 10−× )         ( 0.00152306 )          (0.0594469) 
 
BS/FT/OTM 10α =     0.31 seconds               0.07 seconds            0.03 seconds 
                                   ( 144.00513 10−× )         ( 0.00152306 )           (0.0594469) 
 

Table 8.6: CPU Time for an ATM Call with 50K =  
Price is in the bracket.  
                                                                  Time to Maturity 
Method                                                   0.1T = 0.5T =                     1T =  
                              
BS                                   0 seconds                   0 seconds               0 seconds 

 123



                                         (1.3331)                    (3.15382)                (4.6135) 
 
BS-FT 1α =                   0.01 seconds              0.01 seconds           0.01 seconds 
                                         (1.3331)                    (3.15382)                 (4.6135) 
 
BS/FT/OTM 10α =      0.04 seconds              0.04 seconds            0.07 seconds 
                                         (1.3331)                    (3.15382)                 (4.6135) 
 

Table 8.7: CPU Time for an OTM Put with 20K =  
Price is in the bracket.  
                                                                  Time to Maturity 
Method                                                   0.1T = 0.5T =                     1T =  
                              
BS                                   0 seconds                   0 seconds                0 seconds 
                                              (0)                    ( 111.4492 10−× )       ( ) 61.32586 10−×
 
BS-FT 1α =                   0.04 seconds              0.02 seconds           0.02 seconds 
                                   ( 157.10543 10−− × )       ( 111.4481 10−× )       ( ) 61.32586 10−×
 
BS/FT/OTM 10α =       0.3 seconds               0.14 seconds            0.13 seconds 
                                   ( 133.76588 10−− × )       ( 111.86517 10−× )     ( ) 61.32587 10−×
 
Next, the level of decay rate parameter α  for BS-FT/TV formula is dealt. Figure 8.9 
illustrates the pricing error of BS-FT/TV formula of a one day to maturity  
option as a function of varying

1/ 252T =
α . Panel A (for an OTM call) and C (for an ATM call) 

tells us that for 2α ≥ , BS-FT/TV formula has effectively zero error relative to BS price. 
But for an OTM put (Panel B), the error does not monotonically decrease asα  rises. It 
seems that the value of 2 2.25α< <  yields the negligible size of the error. Therefore, 
from now on, we always use 2.1α =  when implementing BS-FT/TV formula. 
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A) For an OTM Call with .  80K =
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B) For an OTM Put with . 20K =

2.5 5 7.5 10 12.5 15 17.5 20
Decay Rate α

-0.0175

-0.015

-0.0125

-0.01

-0.0075

-0.005

-0.0025

0

rorrE

2 2.2 2.4 2.6 2.8 3
Decay Rate α

-8× 10-6

-6× 10-6

-4× 10-6

-2× 10-6

0

rorrE

 
C) For an ATM Call with . 50K =
 
Figure 8.9: BS Price Minus BS-FT/TV Price for One Day to Maturity Option as a 
Function of Decay Rate Parameter α. Common parameters and variables fixed 
are , 0 50S = 0.2σ = , , 0.05r = 0.02q = , and 1/ 252T = .  
 
Next, we compare the performance between BS-FT 1α =  formula and BS-FT/TV 

2.1α =  formula and let’s see if BS-FT/TV 2.1α =  formula improves the pricing 
accuracy for near maturity options. According to Figure 8.10, BS-FT/TV 2.1α =  
formula generally has larger error regardless of the moneyness except for one-day to 
maturity OTM put (in Panel B). 
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A) OTM call with . 80K =
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B) OTM put with . 20K =
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C) ATM Call with . 50K =
 
Figure 8.10: Plot of Error of BS-FT/TV 2.1α =  Price Vs. Error of BS-FT 1α =  
Price with Less Than 10 Trading Days to Maturity 1/ 252 10 / 252T≤ ≤ . Common 
parameters and variables fixed are 0.2σ = , 0.05r = , and 0.02q = .  
 
We conclude this section by stating the following remarks. Carr and Madan (1999) 
provides the FT/TV formula of the equation (8.27) in order to improve the pricing 
accuracy specifically for near maturity options compared to the FT formula of the 
equation (8.17). Firstly, FT/TV formula is slower than the original BS and FT formula, 
but this won’t be an issue for pricing several options. Secondly, we recommend the use of 
2 2.25α< <  for the decay rate in FT/TV formula. Thirdly, contrary to the design by CM, 
FT/TV formula generally has larger error than FT 1α =  formula. At this point, we are 
skeptical about the usefulness of FT/TV formula.  
 
[8.6] Derivation of Call Pricing Function with Discrete Fourier Transform (DFT): 
Carr and Madan (1999) 
 
There still remains one problem to be solved. Although the numerical integration 
difficulty of FT call price of (8.17) for the near maturity options causes no significant 
pricing errors, it makes the evaluation of FT price slow. This speed becomes an issue 
when calibrating hundreds or thousands of prices (i.e. also in Monte Carlo simulation). 
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To improve computational time, Carr and Madan (1999) apply discrete Fourier transform 
to approximate the equation (8.17). Note that our version of DFT call price formula is 
different from their original formula. 
 
FT call price is (i.e. the equations (8.15) and (8.16)): 
 

                                              ( ) ( )
2

k
i k

T
eC k e d

α
ω

Tψ ω ω
π

− ∞ −

−∞
= ∫ ,                                     (8.28)                  

 

where 
( )

( )2 2

( 1)
( )

2 1

rT
T

T

e i
i

φ ω α
ψ ω

α α ω α ω

− − +
=

+ − + +
. The integral is an inverse FT of an angular 

frequency domain function ( )Tψ ω  into signal space  function. As we saw in section 5, 
it can be approximated by DFT. Firstly, the infinite integral of (8.28) needs to be 
truncated as:                          

k

                                              

                                             
/ 2

/ 2
( ) ( )

2

k
i k

T
eC k e d

α
ω

Tψ ω ω
π

− Ω −

−Ω
≈ ∫ .                                    (8.29)            

 
Secondly, (8.29) can be discretized as: 
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Let us discuss the interpretation of (8.30). The purpose of a DFT (an inverse DFT) is to 
approximate the transform space function, i.e. in our case FT of a modified call price 

( )Tψ ω  (the signal space function, i.e. in our case a call price ) as close as possible 
by sampling a finite number of points  of a signal space function  with signal 
space sampling interval  and by sampling a finite number of points  of a transform 
space function 

( )TC k
N ( )TC k

k∆ N
( )Tψ ω  with transform space sampling interval ω∆ . In other words, both 

the original continuous signal space function  and the original continuous FT ( )TC k
( )Tψ ω  are approximated by a sample of  points.   N

 
Let  be the number of discrete samples taken to approximate  and N ( )TC k ( )Tψ ω . Let 

 be the signal space sampling interval which is the signal increment between signal 
space samples. Its inverse 

k∆
1/sf k≡ ∆  (samples/1 unit of ) is called a signal space 

sampling rate. Let Κ  be the total sampling range in the signal space: 
k

 
                                                                N kΚ ≡ ∆ .                                                     (8.31) 
 
If  is 1, the total sampling range in the signal space and the number of samples taken 
are same (i.e. for example,  dollars and 

k∆
10Κ = 10N =  samples). If 0.01k∆ = , 1 sample 
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is taken in every 0.01 unit of  in signal space which in turn means that 100 samples are 
taken per 1 unit of  (i.e. signal space sampling rate 

k
k 1/ 100sf k≡ ∆ =  Hz).  

 
Consider a sampling in the signal space. Take  discrete samples of a signal space 

function  at -th sampling instant 

N

( )TC k n
2n

N kk n k∆
≡ − + ∆ 0,1,..., 1n N with = − . When 

 and  samples (i.e. signal space sampling interval 10Κ = 10N = 1k∆ = ),  
which means that  is sampled at 

5nk n≡ − +
( )TC k 5, 4, 3, 2, 1,0,1, 2,3,k = − − − − − and 4. Let  be 

the sampled values of .  
( )T nC k

( )TC k
 
Next, consider a sampling in the transform space (i.e. angular frequency ω  domain). Let 
ω∆  Hz (radians/1 unit of ) be the angular frequency domain sampling interval: k

 

                                                          2 2
N k
π πω∆ ≡ ≡
∆ Κ

.                                               (8.32) 

 
The total sampling range in the angular frequency domain Ω  is: 
 
                                                                N ωΩ ≡ ∆ .                                                    (8.33) 
 
Take  samples of a continuous FT N ( )ωG  at -th angular frequency sampling instant:  j
 

              2 2
2 2 2j

N N Nj j j
N k k N k

jω π πω ω ω∆ ⎛ ⎞ ⎛ ⎞≡ − + ∆ ≡ ∆ − + ≡ − + ≡ − +⎜ ⎟ ⎜ ⎟
π

∆ ∆ ∆⎝ ⎠ ⎝ ⎠
,    (8.34) 

 
with . For example, when 0,1,..., 1j N= − 10Κ =  and 10N =  samples (i.e. ), 1k∆ =

( )ωG  is sampled at , 4 / 5, 3 / 5, 2 / 5, / 5,0, / 5, 2 / 5,3 / 5, 4 / 5ω π π π π π π π π π= − − − − −  
(i.e. / 5j jω π π= − + ). Let ( )jωG  be the sampled values of ( )ωG : 
 

                                                  ( ) ( )
2j

N jωω ω∆
≡ − + ∆G G .                                        (8.35) 

 
( )jωG  is called a spectrum of  at angular frequency ( )ng k� jω  and it is a complex 

number. 
 
DFT and inverse DFT defines the relationship between the sampled signal space function 

 and its spectrum at angular frequency( )ng k� jω , ( )jωG , as the following: 
 

                { }
1

0
( ) ( ) exp

N

j n
n

g k i kω ω
−

=

≡∑G � j n
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2( ) ( )exp
2

N

j n
n
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N

π πω π π
−
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⎧ ⎫⎛ ⎞≡ − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑G �
n

+

)

 

               ,    (8.36) ( ) ( ) ( ){ } (
1

0
( ) exp exp / 2 ( )exp exp 2 /

N

j n
n

i j i N g k i n i jn Nω π π π π
−

=

≡ − −∑G �

 
and: 
 

              (
1

0

1( ) ( ) exp
N

n j
j

g k i k
N

ω ω
−

=

≡ ∑� G )j n−                         

              
1

0

1 2( ) ( )exp
2

N

n j
j

N jg k i j n
N N

π πω π π
−

=

n⎧ ⎫⎛ ⎞≡ − − − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑� G  

              ( ) ( ) ( ) (
1

0

1( ) exp / 2 exp ( )exp 2 / exp
N

n j
j

g k i N i n i jn N i j
N

)π π ω π
−

=

≡ − −∑� G π ,    (8.37) 

 
where the following relationships are used: 
 

               
2n

N kk n∆
≡ − + ∆k  

2 2
2 2 2j

N N Nj j j
N k k N k

jω π πω ω ω∆ ⎛ ⎞ ⎛ ⎞≡ − + ∆ ≡ ∆ − + ≡ − + ≡ − +⎜ ⎟ ⎜ ⎟
π

∆ ∆ ∆⎝ ⎠ ⎝ ⎠
 

               2
2n j
N jk j n

N
nπ πω π π≡ − − + .                  

 
Therefore, from the equation (8.30): 
 

           { }
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exp( )( ) exp( ) ( )
2

N
n

T n j j n T j
j

kC k w i kα ω ψ ω ω
π
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1
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exp( ) 2 2( ) exp ( )
2 2

N
n

T n j T j
j

k N jnC k w i j n
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α
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π π ππ π ψ ω
π

−

=
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           ( ) ( )exp( )exp exp / 2
( ) n

T n

k i n i N
C k

k
α π π− −

≈
∆

         

                                  ( ){ } (
1

0

1 exp ( ) exp 2 /
N

j T j
j

w i j i jn
N

π ψ ω π
−

=

× ∑ )N− ,                        (8.38) 

 
where  are weights for sampled points. For example, when trapezoidal rule is 
chosen: 

[0, 1]j Nw ∈ −

 
1/ 2   for   0   and   -1
1       for othersj

j N
w

=⎧
= ⎨
⎩

. 
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For near-maturity OTM options, DFT/TV formula which is a DFT approximation of the 

formula (8.27) is given by simply replacing exp( )nkα−  by 1
sinh( )nkα

 and ( )T jψ ω  by 

( )T jγ ω  in the DFT call price (8.38) as the following: 
 

                            exp( ) exp( / 2)( )
sinh( )T n

n

i n i Nz k
k k

π π
α

−
≈

∆
 

                                        ( ){ } (
1

0

1 exp ( ) exp 2 /
N

j T j
j

w i j i jn
N

π γ ω π
−

=

× −∑ )N ,                  (8.39) 

 
where ( )T jγ ω  is given by (8.26). 
 
 
[8.7] Implementation and Performance of DFT Pricing Method with Black-Scholes 
Model 
 
In this section, performance of DFT call price of the equation (8.38) is tested in the BS 
case. We will call this as BS-DFT. We implement the formula (8.38) with decay rate 
parameter 1α =  and compare the result to the original BS call price and BS-FT 1α =  
call price under various settings. We will start from its implementation.  
 
The first step to implement (8.38) is to choose the number of samples taken  and the 
signal space sampling interval  which we will call as log-strike space sampling 
interval, hereafter. Note that selecting 

N
k∆

k∆  corresponds to selecting the frequency domain 
sampling interval ω∆ , because these are related by: 
 

                                                             2k
N
πω∆ ∆ ≡ .                                                    (8.40) 

 
We set  as suggested by CM. Note that because our code uses DFT not FFT, 
our choice of  does not need to be a power of  2. We use 

4096N =
N 0.005k∆ =  which is a half 

the percentage point in the log-strike space. This corresponds to ω∆ =  0.306796 radians. 
The total sampling range in the log-strike space is 20.48N kΚ = ∆ = , its sampling rate is 
200 samples per unit of , and the total sampling range in the angular frequency domain 
is 

k
1256.64N ωΩ = ∆ = . 

 
Second step is to construct the 4096N =  point-sampling grid in the frequency domain 

using
2j

N jωω ω∆
≡ − + ∆ . Table 8.8 illustrates this. Using this grid, obtain  

point-samples of DFT integrand in (8.32), i.e. 

4096N =

( ){ }exp ( )j Tw i j jπ ψ ω . With common 

parameters and variables , 0 50S = 0.2σ = , 0.05r = , 0.02q = , and 0.25T = , sampled 

values of ( ){ }exp ( )j Tw i j jπ ψ ω  are shown in Table 8.9.  
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Table 8.8: Angular Frequency Domain Sampling Grid 
Index                                          -th angular frequency point j j jω    (Hz) 
 
0                                                                             -628.319 
1                                                                             -628.012 
2                                                                             -627.705 
~                                                                                   ~ 
4095                                                                         627.705  
4096                                                                         628.012 
 
Table 8.9: Angular Frequency Domain Sampled Values 
Index                             -th frequency domain samplej j ( ){ }exp ( )j Tw i j jπ ψ ω  
 
0                                                       8.61                 859 85937 10 2.5868 10 i− −× + ×

−

−

−

)

1                                                              859 8578.5146 10 1.2340 10 i− −− × − ×
2                                                                                 857 8577.7265 10 3.5391 10 i−− × + ×
~                                                                                   ~ 
4095                                                                                857 8577.7265 10 3.5391 10 i−− × − ×
4096                                                                     859 8584.2573 10 6.1702 10 i−− × + ×
 
Third step is to perform inverse DFT of Table 8.9 and multiply the result by 

( ) (exp( )exp exp / 2nk i n i N
k

α π π− −
∆

 in the equation (8.38). This amounts to the N = 4096 

point-samples of call price  in log-strike space. Table 8.10 shows this result and it 
is plotted in Figure 8.7.  

( )T nC k

 
Table 8.10: N = 4096 Point-Samples of BS Call Price C k  in Log-Strike Space ( )T n

Index                                       n -th sample of call price C k  n ( )T n

 
0                                                                    49.7525                
1                                                                    49.752 
~                                                                         ~ 
2500                                                              40.3338 
~                                                                         ~ 
2600                                                              34.2249 
~                                                                         ~ 
2700                                                              24.153 
~                                                                         ~ 
2800                                                                7.6428 
~                                                                         ~ 
2900                                                                0.0006067 
~                                                                         ~ 
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4095                                                           178.0931 10−×                                                           
4096                                                           178.0929 10−×  
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Figure 8.11: N = 4096 Point-Samples of Call Price  in Log-Strike Space ( )T nC k
 
Fourth step is to match the log-strike price  grid with the strike price grid k K  as shown 
in Table 8.11. 
 
Table 8.11: N = 4096 Point Log-Strike Price (k) Grid and Strike Price (K) Grid 
Index            n -th log-strike price point n n k∆        n -th strike price point             [exp n k∆ ]
 
0                                -10.24                                                     0.00003571                
~                                    
1500                            -2.745                                                   0.0642 
~                                      
2500                             2.255                                                   9.5353 
~                                                                          
2600                             2.755                                                   15.721 
~                                                                          
2700                             3.255                                                   25.9196 
~                                                                          
2800                             3.755                                                   42.7342 
~                                                                          
2900                             4.255                                                   70.4568 
~                                                                          
4096                           10.235                                                   27861.5 
 
Fifth and final step is to match the strike price K  grid with the computed call price as 
shown in the table 8.12 which is plotted in Figure 8.12. Panel A of Figure 8.12 is for the 
entire range of the strike price sampled, and Panel B is only for the range of our interest. 
Remember that we use the spot stock price 0 50S = and the maturity 0.25T = .  
 
Table 8.12: N = 4096 Point Sampled BS-DFT Call Price with respect to Strike Price 
Kn
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Index           n -th strike price Kn n                      BS-DFT Call Price 
 
0                            0.00003571                                    49.7525 
~                                    
1500                          0.0642                                        49.6872 
~                                      
2500                          9.5353                                        40.3338 
~                                                                          
2600                          15.721                                        34.2249 
~                                                                          
2700                          25.9196                                      24.153 
~                                                                          
2800                          42.7342                                      7.6428 
~                                                                          
2900                          70.4568                                     0.0006067 
~                                                                          
4096                          27861.5                                    178.0929 10−×  
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A) For the entire strike price range. 
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B) Our interest. 
 
Figure 8.12: N = 4096 Point Sampled BS-DFT Call Price with respect to Strike Price 
Kn.  
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This completes the step-by-step procedure of DFT option price computation. Next, we 
investigate the several important properties of BS-DFT 1α =  call price.  
 
Firstly, let’s consider the call price computed by the original BS, BS-FT 1α = , BS-DFT 

1α =  with  and  using common parameters and variables , 4096N = 0.005k∆ = 0 50S =
0.2σ = , , , and 0.05r = 0.02q = 0.25T =  with respect to a strike price K . The result is 

plotted in Figure 8.13 which indicates that as a principle these three approaches produce 
the identical price. Again, this is no surprise because all these are same thing with 
different looks and different precisions. 
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Figure 8.13: BS Vs. BS-FT α = 1 Vs. BS-DFT α = 1. Common parameters and variables 
fixed are , 0 50S = 0.2σ = , , 0.05r = 0.02q = , and 0.25T = .  
 
Secondly, let’s investigate the difference in CPU time. Consider calculating 100-point 
call prices for a range of strike price 1 1K 00≤ ≤  with interval 1 with common 
parameters and variables , 0 50S = 0.2σ = , 0.05r = , 0.02q = , and 20 / 252T = . Table 
8.13 compares CPU time using the original BS, BS-FT 1α = , and BS-DFT 1α =  with 

 and  and Figure 8.14 reports the prices. We notice that there is a 
significant improvement in the computational time by the use of DFT.  

4096N = 0.005k∆ =
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Figure 8.14: BS Vs. BS-FT α = 1 Vs. BS-DFT α = 1. Common parameters and variables 
fixed are , 0 50S = 0.2σ = , , 0.05r = 0.02q = , and 20 / 252T = .  
 
 
Table 8.13 CPU Time for Calculating 100-point call prices for a range of strike price 

 with interval 1 Common parameters and variables fixed are , 1 1K≤ ≤ 00 0 50S =
0.2σ = , r , q , and T0.05= = 0.02 20 / 252= .  

 
Method                                                              CPU Time                       
                                                               
BS                                                                    0.03 seconds 
 
BS-FT 1α =                                                     5.448 seconds 
 
BS-DFT 1α =                                                  0.491 seconds 

4096N = , ∆ =       0.005k
 
Thirdly, we pay extra attention to the pricing errors of very near-maturity call prices  
because these are of Carr and Madan’s interest. Consider a call option with common 
parameters and variables , 0 50S = 0.2σ = , 0.05r = , and 0.02q = . Figures 8.15 to 8.17 
plot three series of price differences for vanilla calls computed by the original BS, BS-FT 

1α = , and BS-DFT 1α =  with 4096N =  and 0.005k∆ =  as a function of time to 
maturity of less than a month 1/ 252 20 / 252T≤ ≤ . Figure 8.15 tells us that for deep 
OTM calls, BS-DFT yields the pricing error around 86 10−×  which we interpret 
negligible. Figure 8.17 tells us that for deep ITM calls, BS-DFT price and BS price are 
virtually identical except for one day to maturity. Figure 8.16 is the most interesting case 
among the three. It tells us that as the maturity nears, the error of ATM BS-DFT price 
monotonically increases and the size of error is large but negligible. In contrast, ATM 
BS-FT price produces virtually no error. This finding is more clearly illustrated in Figure 
8.17 where the T  ATM pricing error (relative to BS) of BS-DFT1/ 252= 1α =  with 

 and  is plotted across different moneyness. We again realize that 
BS-DFT price is virtually identical to BS price for the deep ITM and OTM calls, but its 
approximation error becomes an issue for ATM call. We have done several experiments 
trying to reduce the size of this around ATM error by increasing the decay rate 
parameter

4096N = 0.005k∆ =

α  to 10 or by sampling more points 8192N = . But these attempts were futile.    
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Figure 8.15: Plot of Price Error for Deep-OTM Call as a Function of Time to 
Maturity 1 . Common parameters and variables fixed 
are , , 

/ 252 20 / 252T≤ ≤
0 50S = 80K = 0.2σ = , , and 0.05r = 0.02q = .  
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Figure 8.16: Plot of Price Error for ATM Call as a Function of Time to Maturity 

. Common parameters and variables fixed are1/ 252 20 / 252T≤ ≤ 0 50S = , , 50K =
0.2σ = , , and .  0.05r = 0.02q =
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Figure 8.17: Plot of Price Error for Deep-ITM Call as a Function of Time to 
Maturity 1 . Common parameters and variables fixed 
are , , 

/ 252 20 / 252T≤ ≤
0 50S = 20K = 0.2σ = , , and 0.05r = 0.02q = .  
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Figure 8.18: Plot of Price Error of BS-DFT Formula for 1-Day-to-Maturity 

 ATM Call as a Function of Strike Price 1/ 252T = 0 100K≤ ≤ . Common parameters 
and variables fixed are ,0 50S = 50K = , 0.2σ = , 0.05r = , and 0.02q = .  
 
We conclude this section by stating the following remarks. Our version of CM (1999) 
DFT call price formula, the equation (8.38), yields the price virtually identical to the 
original BS price for OTM and ITM calls even for extreme near-maturity case (i.e. 

) although the size of error is larger than BS-FT formula. But the error of BS-
DFT price becomes large around (i.e.

1/ 252T =
3± ) ATM. In our example used, the maximum error 

is 0.0001345 which occurs at exactly ATM at 0 50S K= = . Increasing the decay rate 
parameterα  or sampling more points (i.e. larger ) cannot reduce the size of this error. 
But we can accept this size of error when considering the dramatic improvement in the 
CPU time to compute hundreds of prices.   

N

  
[8.8] Summary of Formulae of Option Price with Fourier Transform 
 

Table 8.14: Summary of Formulae of Option Price with Fourier Transform 
 
Method                                                                   Formula 
 

Traditional                                        ( ) ( )( )r T t
T T tK TS K S dS

∞− −= −∫ Q FC e  

 

FT                                          
( )

( )2 2

( 1)
( , )

2 2

rTk
Ti k e ie

1
k e d

i

α
ω φ ω α

C T ω
π α α ω α ω

−− ∞ −

−∞

− +
=

+ − + +∫                        

                                                 ( )ln( )
0(.) ln( ) ln( )Ti S

T T TSe S dωφ
∞

−∞
≡ ∫ Q F lnk K≡,  
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FT/TV                                         1 1( ) ( )
sinh( ) 2

i k
T Tz k e d

k
ω γ ω ω

α π
∞ −

−∞
= ∫  

                                                             ( ) (( )
2

T T
T

i i )ζ ω α ζ ω αγ ω − − +
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                                                          2
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T
iee
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φ ωζ ω

ω ω ω ω
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T T TSe S dωφ
∞

−∞
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≈
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[9] Merton (1976) Jump-Diffusion Model 
 
[9.1] Model Type 
 
In this section the basic structure of Merton JD model is described without the derivation 
of the model which will be done in the next section. 
 
Merton JD model is an exponential Lévy model of the form: 
 

0 e tX
tS S= , 

 
where the asset price process { ;0 }tS t T≤ ≤  is modeled as an exponential of a Lévy 
process { ;0 }tX t T≤ ≤ . Merton’s choice of the Lévy process is a Brownian motion with 
drift (continuous diffusion process) plus a compound Poisson process (discontinuous 
jump process) such that: 
 

2

1
( )

2

tN

t t
i

X k t Bσα λ σ
=

= − − + + iY∑ , 

 
where { ;0 }tB t T≤ ≤  is a standard Brownian motion process. The term 

2

( )
2 tk t Bσα λ σ− − +  is a Brownian motion with drift process and the term  is a 

compound Poisson jump process. The only difference between the Black-Scholes and the 
Merton jump-diffusion is the addition of the term

1
tN

ii
Y

=∑

1
tN

ii
Y

=∑ . A compound Poisson jump 

process  contains two sources of randomness. The first is the Poisson process  
with intensity (i.e. average number of jumps per unit of time) 

1
tN

ii
Y

=∑ tdN
λ  which causes the asset 

price to jump randomly (i.e. random timing). Once the asset price jumps, how much it 
jumps is also modeled random (i.e. random jump size). Merton assumes that log stock 
price jump size follows normal distribution, ( ) 2. . . ( , )idx i i d Normal µ δ∼ : 
 

2

22

( )1( ) exp{ }
22
i

i
dxf dx µ

δπδ

−
= − . 

 
It is assumed that these two sources of randomness are independent of each other. By 
introducing three extra parametersλ , µ , and δ  to the original BS model, Merton JD 
model tries to capture the (negative) skewness and excess kurtosis of the log return 
density  which deviates from the BS normal log return density.     (( 0ln /tS SP ))
 
Lévy measure  of a compound Poisson process is given by the multiplication of the 
intensity and the jump size density : 

( )dxA
( )f dx
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( ) ( )dx f dxλ=A . 
 
A compound Poisson process (i.e. a piecewise constant Lévy process) is called finite 
activity Lévy process since its Lévy measure  is finite (i.e. the average number of 
jumps per unit time is finite): 

( )dxA

 

( )dx λ
∞

−∞
= < ∞∫ A . 

 
The fact that an asset price  is modeled as an exponential of Lévy process tS tX  means 

that its log-return 
0

ln( )tS
S

 is modeled as a Lévy process such that: 

 
2

10

ln( ) ( )
2

tN
t

t t
i

S
iX k t B Y

S
σα λ σ

=

= = − − + +∑ . 

 
Let’s derive the model. 
 
[9.2] Model Derivation 
 
In the jump-diffusion model, changes in the asset price consist of normal (continuous 
diffusion) component that is modeled by a Brownian motion with drift process and 
abnormal (discontinuous, i.e. jump) component that is modeled by a compound Poisson 
process. Asset price jumps are assumed to occur independently and identically. The 
probability that an asset price jumps during a small time interval  can be written using 
a Poisson process  as: 

dt
tdN

 
                Pr {an asset price jumps once in } = Pr{dt 1tdN = }  ≅  dtλ , 
 

Pr {an asset price jumps more than once in } = Pr{ }  , dt 2tdN ≥ ≅ 0
 
                Pr {an asset price does not jump in } = Pr{dt 0tdN = } ≅  1 dtλ− , 
 
where the parameter  is the intensity of the jump process (the mean number of 
jumps per unit of time) which is independent of time .   

λ +∈R
t

 
Suppose in the small time interval  the asset price jumps from  to  (we call  
as absolute price jump size). So the relative price jump size (i.e. percentage change in the 
asset price caused by the jump) is: 

dt tS t ty S ty

 

1t t t t
t

t t

dS y S S y
S S

−
= = − , 
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where Merton assumes that the absolute price jump size  is a nonnegative random 
variables drawn from lognormal distribution, i.e. 

ty
2ln( ) . . . ( , )ty i i d N µ δ∼ . This in turn 

implies that 
21

2[ ]tE y e
µ δ+

=  and 
2 22 2[( [ ]) ] ( 1)t tE y E y e eµ δ δ+− = − . This is because if 

ln ( , )x N a b∼ , then 
2

2 2
1

22( , ( 1
a b a b bx Lognormal e e e
+ + ))−∼ . 

 
Merton’s jump-diffusion dynamics of asset price which incorporates the above properties 
takes the SDE of the form:   
 

                                         ( ) ( 1)t
t t

t

dS k dt dB y dN
S

α λ σ= − + + − t ,                                  (9.1) 

 
where α  is the instantaneous expected return on the asset, σ  is the instantaneous 
volatility of the asset return conditional on that jump does not occur, tB  is a standard 
Brownian motion process, and  is an Poisson process with intensity tN λ . Standard 
assumption is that ( )tB , , and (  are independent. The relative price jump size 

of , , is lognormally distributed with the mean 

( )tN )ty

tS 1ty −
21

2[ 1] 1tE y e k
µ δ+

− = − ≡  and the 

variance .
2 22 2[( 1 [ 1]) ] ( 1)t tE y E y e eµ δ δ+− − − = − 1 This may be confusing to some readers, 

so we will repeat it again. Merton assumes that the absolute price jump size  is a 
lognormal randon variable such that: 

ty

 

                                     
2

2 2
1

22( ) . . . ( , ( 1))ty i i d Lognormal e e e
µ δ µ δ δ+ + −∼ .                          (9.2) 

 
This is equivalent to saying that Merton assumes that the relative price jump size 1ty −  is 
a lognormal random variable such that: 
 

                             
2

2 2
1

22( 1) . . . ( 1, ( 1)ty i i d Lognormal k e e e
µ δ µ δ δ+ +− ≡ −∼ )−

t

.                   (9.3) 
 
This is equivalent to saying that Merton assumes that the log price jump size  is 
a normal random variable such that: 

ln ty Y≡

 
                                                   2ln( ) . . . ( , )ty i i d Normal µ δ∼ .                                       (9.4) 
 

This is equivalent to saying that Merton assumes that the log-return jump size ln( )t t

t

y S
S

 is 

a normal random variable such that: 

                                                 
1For random variable x , [ 1] [Variance x Variance x]− = . 
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                                       2ln( ) ln( ) . . . ( , )t t
t t

t

y S y Y i i d Normal
S

µ δ= ≡ ∼ .                           (9.5) 

 
It is extremely important to note: 
 

21
2[ 1] 1       [ln( )]t tE y e k E y

µ δ
µ

+
− = − ≡ ≠ = , 

 
because l . n [ 1] [ln( 1)] [ln( )]t tE y E y E y− ≠ − = t

 
The expected relative price change  from the jump part  in the time 
interval  is 

[ / ]t tE dS S tdN
dt kdtλ  since [( 1) ] [ 1] [ ]t t t tE y dN E y E dN k dtλ− = − = . This is the predictable 

part of the jump. This is why the instantaneous expected return on the asset dtα  is 
adjusted by kdtλ−  in the drift term of the jump-diffusion process to make the jump part 
an unpredictable innovation:  
 

[ ] [( ) ] [ ] [( 1)t
t t

t

dS ]tE E k dt E dB E y d
S

α λ σ= − + + − N  

                                [ ] ( ) 0t

t

dSE k dt kdt dt
S

α λ λ= − + + =α . 

 
Some researchers include this adjustment term for predictable part of the jump kdtλ−  in 
the drift term of the Brownian motion process leading to the following simpler (?) 
specification: 
 

                                       ( 1)t
t t

t

dS dt dB y dN
S

α σ= + + − t  

                                        ( ,t
kt )B Normal tλ
σ

−∼  

[ ] ( )t

t

dS kdtE dt kdt dt
S

λα σ λ
σ

= + − + =α . 

 
But we choose to explicitely subtract kdtλ  from the instantsneous expected return dtα  
because we prefer to keep tB  as a standard (zero-drift) Brownian motion process. Realize 
that there are two sources of randomness in the jump-diffusion process. The first source 
is the Poisson Process  which causes the asset price to jump randomly. Once the asset 
price jumps, how much it jumps (the jump size) is also random. It is assumed that these 
two sources of randomness are independent of each other. 

tdN

 
If the asset price does not jump in small time interval  (i.e.dt 0tdN = ), then the jump-
diffusion process is simply a Brownian motion motion with drift process: 
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( )t
t

t

dS k dt dB
S

α λ σ= − + . 

 
If the asset price jumps in  (dt 1tdN = ): 
 

( ) (t
t t

t

dS k dt dB y
S

α λ σ= − + + −1) , 

 
the relative price jump size is 1ty − . Suppose that the lognormal random drawing  is 

, the asset price falls by 20%. 
ty

0.8
 
Let’s solve SDE of (9.1). From (9.1), Merton jump-diffusion dynamics of an asset price 
is: 
 
                                     ( ) ( 1)t t t t tdS k S dt S dB y S dNt tα λ σ= − + + − .                  
 
Appendix 10 gives the Itô formula for the jump-diffusion process as: 
 

2 2

2

( , ) ( , ) ( , )( , )
2

t t t
t t

tf X t f X t f X tdf X t dt b dt dt
t x x

σ∂ ∂ ∂
= + +

∂ ∂ ∂
 

                                        ( , ) [ ( ) ( )]t
t t t t

f X t dB f X X f Xtx
σ − −

∂
+ + + ∆ −

∂
, 

 
where  corresponds to the drift term and tb tσ  corresponds to the volatility term of a 

jump-diffusion process 0 0 0
1

tNt t

t s s s
i

iX X b ds dB Xσ
=

= + + + ∆∑∫ ∫ . By applying this: 

 

          
2 2 2

2

ln ln lnln ( )
2

t t t
t t

t t

S S Sd S dt k S dt dt
t S

σα λ∂ ∂
= + − +

∂ ∂
tS

S
∂
∂

 

                                                                          ln [ln ln ]t
t t t t

t

SS dB y S
S

σ tS∂
+ +

∂
−  

2 2

2

1 1 1ln ( ) [ln ln ln ]
2

t
t t t t t t

t t t

Sd S k S dt dt S dB y S S
S S S

σα λ σ
⎛ ⎞

= − + − + + + −⎜ ⎟
⎝ ⎠

t  

         
2

ln ( ) ln
2t td S k dt dt dB yσα λ σ= − − + +t t  

         
2

0 0 1
ln ln ( )( 0) ( ) ln

2
tN

t t t i
S S k t B Bσα λ σ

=
− = − − − + − +∑ iy  

         
2

0 1
ln ln ( ) ln

2
tN

t t i
S S k t Bσα λ σ

=
= + − − + +∑t iy  
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         ( )
2

0 1
exp ln exp ln ( ) ln

2
tN

t t i
S S k t Bσα λ σ

=

⎧ ⎫
= + − − + +⎨ ⎬

⎩ ⎭
∑t iy  

         ( )
2

0 1
exp exp ln

2
tN

t t t i
S S k t B yσα λ σ

=

⎧ ⎫⎛ ⎞⎪ ⎪= − − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑ i  

         
2

0
1

exp[( ) ]
2

tN

t t
i

S S k t B yσα λ σ
=

= − − + iΠ , 

 
or alternatively as: 
 

         
2

0
1

exp[( ) ln ]
2

tN

t t
i

S S k t B yσα λ σ
=

= − − + +∑ i . 

 
Using the previous definition of the log price (return) jump size l : n( )t ty Y≡
 

                                     
2

0
1

exp[( ) ]
2

tN

t
i

S S k t B Yσα λ σ
=

= − − + +t i∑ .                                (9.6) 

 
This means that the asset price process { ;0 }tS t T≤ ≤  is modeled as an exponential Lévy 
model of the form: 
 

0 e tX
tS S= , 

 
where tX  is a Lévy process which is categorized as a Brownian motion with drift 
(continuous part) plus a compound Poisson process (jump part) such that: 
 

2

1
( )

2

tN

t t
i

iX k t B Yσα λ σ
=

= − − + +∑ . 

 

In other words, log-return 
0

ln( )tS
S

 is modeled as a Lévy process such that: 

 
2

10

ln( ) ( )
2

tN
t

t t
i

S
iX k t B Y

S
σα λ σ

=

= = − − + +∑ . 

 

Note that the compound Poisson jump process 
1

1
tN

i
i

y
=

=Π  (in absolute price scale) or 

 (in log price scale) if 
1 1

ln 0
t tN N

i i
i i

y Y
= =

= =∑ ∑ 0tN =  (i.e. no jumps between time 0 and t ) or 

positive and negative jumps cancel each other out.   
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In the Black-Scholes case, log return  is normally distributed: 0ln( / )tS S
 

                                             
2

0 exp[( ) ]
2t tS S t Bσα σ= − +  

2
2

0

ln( ) [( ) , ]
2

tS Normal t t
S

σα σ−∼ . 

 

But in jump-diffusion case, the existence of compound Poisson jump process  

makes log return non-normal. In Merton’s case the simple distributional assumption 
about the log return jump size 

1

tN

i
i

Y
=
∑

2( ) ( , )iY N µ δ∼  enables the probability density of log 
return 0ln( / )t tx S S=  to be obtained as a quickly converging series of the following form: 
 

                            
0

( ) ( ) (t t t
i

)tx A N i x A N
∞

=

∈ = = ∈ =∑P P P i  

                            
2

2

0

( )( ) ( ;( ) , )
! 2

t i

t t
i

e t 2x N x k t i t i
i

λ λ σα λ µ σ δ
−∞

=

= − − +∑P +                    (9.7) 

 

where 
2

2 2( ; ( ) , )
2tN x k t i t iσα λ µ σ δ− − + +  

                                     

2
2

2 22 2

21 exp[ ]
2( )2 ( )

tx k t

t it i

σα λ µ

σ δπ σ δ

i
⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪− − − +⎢ ⎥⎨ ⎬⎜ ⎟

⎪ ⎪⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦= −
++

. 

 

The term ( )( )
!

t i

t
e tN i

i

λ λ−

= =P  is the probability that the asset price jumps  times during 

the time interval of length . And 

i

t
2

2( ) ( ; ( ) ,
2t t t

2 )x A N i N x k t i t iσα λ µ σ δ∈ = = − − + +P                      

is the Black-Scholes normal density of log-return assuming that the asset price jumps i  
times in the time interval of . Therefore, the log-return density in the Merton jump-
diffusion model can be interpreted as the weighted average of the Black-Scholes normal 
density by the probability that the asset price jumps i  times. 

t

 
By Fourier transforming the Merton log-return density function with FT parameters 

, its characteristic function is calculated as: ( , , ) (1,1)a b =
    

      ( )( ) exp ( )t ti x x dxφ ω ω
∞

−∞
= ∫ P t
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              ( ) ( ) ( ){ }2 21 1exp exp 2 1 2
2 2

t i t i k t i iλ ω µ δ ω λ ω ω α σ ω⎡ ⎤⎧ ⎫= − − + − − +⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦
+ . 

 
After simplification: 
 
     [ ]( ) exp ( )tφ ω ψ= ω  
 
with the characteristic exponent (cumulant generating function): 
 

     
2 2 2 2 2

( ) exp 1
2 2

i i k
2

δ ω σ σ ωψ ω λ ωµ ω α λ
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − − + − − −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

,                            (9.8) 

 

where 
21

2 1k e
µ δ+

≡ − . The characteristic exponent (9.8) can be alternatively obtained by 
substituting the Lévy measure of the Meron jump-diffusion model: 
 

( )2

22
( ) exp ( )

22

dx
dx f dx

µλ λ
δπδ

⎧ ⎫−⎪ ⎪= − =⎨ ⎬
⎪ ⎪⎩ ⎭

A  

                                     ( )2( ) ,f dx N µ δ∼  
 
into the Lévy-Khinchin representation of the equation (6.6): 
                    

                                { }
2 2

( ) exp( ) 1 ( )
2

ib i x dxσ ωψ ω ω ω
∞

−∞
= − + −∫ A  

                                { }
2 2

( ) exp( ) 1 ( )
2

ib i x f dxσ ωψ ω ω ω λ
∞

−∞
= − + −∫  

                                { }
2 2

( ) exp( ) 1 ( )
2

ib i x f dxσ ωψ ω ω λ ω
∞

−∞
= − + −∫  

{ }2 2

( ) ( ) ( )
2

i xib e f dx f dxωσ ωψ ω ω λ
∞ ∞

−∞ −∞
= − + −∫ ∫  

 

Note that  is the characteristic function of : ( )i xe f dxω∞

−∞∫ ( )f dx

 
2 2

( ) exp
2

i xe f dx iω δ ωµω
∞

−∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫ . 

 
Therefore: 
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2 2 2 2

( ) exp 1
2 2

ib iσ ω δ ωψ ω ω λ µω
⎧ ⎫⎛ ⎞⎪ ⎪= − + − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

, 

 

where 
2

2
b σ kα λ= − − . This corresponds to (9.8). Characteristic exponent (9.8) generates 

cumulants as follows: 
 

                                            
2

1 2
cumulant kσα λ λ= − − + µ , 

                                            2 2 2
2cumulant σ λδ λµ= + + , 

                                            2 3
3 (3 )cumulant λ δ µ µ= + , 

4 2 2
4 (3 6 )cumulant 4λ δ µ δ µ= + + . 

 
Annualized (per unit of time) mean, variance, skewness, and excess kurtosis of the log-
return density ( )txP  are computed from above cumulants as follows: 
 

                      [ ]
212

2
1 1

2tE x cumulant e
µ δσα λ λ
+⎛ ⎞

= = − − −⎜ ⎟
⎝ ⎠

µ+  

                      [ ] 2 2 2
2tVariance x cumulant σ λδ λµ= = + +  

                      [ ]
( ) ( )

2 3
3
3/ 2 3/ 22 2 2

2

(3 )
t

cumulantSkewness x
cumulant

λ δ µ µ

σ λδ λµ

+
= =

+ +
 

                      [ ]
( ) ( )

4 2 2 4
4
4/ 2 22 2 2

2

(3 6 ) t
cumulantExcess Kurtosis x

cumulant
λ δ µ δ µ

σ λδ λµ

+ +
= =

+ +
.            (9.9) 

 
We can observe several interesting properties of Merton’s log-return density ( )txP . 
Firstly, the sign of µ  which is the expected log-return jump size, [ ]tE Y µ= , determines 
the sign of skewness. The log-return density ( )txP  is negatively skewed if 0µ <  and it is 
symmetric if 0µ =  as illustrated in Figure 9.1.  
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Figure 9.1: Merton’s Log-Return Density for Different Values of µ . 0.5µ = −  in 
blue, 0µ =  in red, and 0.5µ =  in green. Parameters fixed are 0.25τ = , 0.03α = , 

0.2σ = , 1λ = , and 0.1δ = .  
 

Table 9.1 
Annualized Moments of Merton’s Log-Return Density in Figure 9.1 

 
Model                 Mean           Standard Deviation          Skewness          Excess Kurtosis 
 

0.5µ = −           -0.0996                   0.548                         -0.852                    0.864 
0µ =                 0.005                     0.3742                         0                           0.12 
0.5µ =             -0.147                     0.5477                         0.852                    0.864 

 
Secondly, larger value of intensity λ  (which means that jumps are expected to occur 
more frequently) makes the density fatter-tailed as illustrated in Figure 9.2. Note that the 
excess kurtosis in the case 100λ =  is much smaller than in the case 1λ =  or 10λ = . 
This is because excess kurtosis is a standardized measure (by standard deviation).   
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Figure 9.2: Merton’s Log-Return Density for Different Values of Intensityλ . 1λ =  
in blue, 10λ =  in red, and 100λ =  in green. Parameters fixed are 0.25τ = , 0.03α = , 

0.2σ = , 0µ = , and 0.1δ = .  
Table 9.2 

Annualized Moments of Merton’s Log-Return Density in Figure 9.2 
 
Model                 Mean           Standard Deviation          Skewness          Excess Kurtosis 
 

1λ =                 0.00499                   0.2236                           0                        0.12 
10λ =              -0.04012                  0.3742                           0                        0.1531 
100λ =            -0.49125                  1.0198                           0                        0.0277 

 
Also note that Merton’s log-return density has higher peak and fatter tails (more 
leptokurtic) when matched to the Black-Scholes normal counterpart as illustrated in 
Figure 9.3. 
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Figure 9.3: Merton Log-Return Density vs. Black-Scholes Log-Return Density 
(Normal). Parameters fixed for the Merton (in blue) are 0.25τ = , 0.03α = , 0.2σ = , 

1λ = , 0.5µ = − , and 0.1δ = . Black-Scholes normal log-return density is plotted (in red) 
by matching the mean and variance to the Merton.  
 

Table 9.3 
Annualized Moments of Merton vs. Black-Scholes Log-Return Density in Figure 9.3 
 
Model                 Mean           Standard Deviation          Skewness          Excess Kurtosis 
 
Merton with 

0.5µ = −           -0.0996                   0.548                         -0.852                    0.864 
 
Black-Scholes  -0.0996                   0.548                              0                           0 
 
[9.3] Log Stock Price Process for Merton Jump-Diffusion Model 
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Log stock price dynamics can be obtained from the equation (9.6) as: 
 

                                      
2

0
1

ln ln
2

tN

t
i

S S k t Bσα λ σ
=

⎛ ⎞
= + − − + +⎜ ⎟

⎝ ⎠
t iY∑ .                          (9.10)              

 
Probability density of log stock price  is obtained as a quickly converging series of 
the following form (i.e. conditionally normal): 

ln tS

 

                
0

(ln ) ( ) (ln )t t t
i

S A N i S A N i
∞

=

∈ = = ∈ =∑P P P t  

                
2

2 2
0

0

( )(ln ) ln ; ln ,
! 2

t i

t t
i

e tS N S S k t i t
i

λ λ σ iα λ µ σ δ
−∞

=

⎛ ⎞⎛ ⎞
= + − − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑P + ,     (9.11) 

 
where: 
 

                      
2

2 2
0ln ; ln ,

2tN S S k t i t iσα λ µ σ δ
⎛ ⎞⎛ ⎞

+ − − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

                       
( ) ( )

2
2

0

2 22 2

ln ln
21 exp

22

tS S k t i

t it i

σα λ µ

σ δπ σ δ

⎡ ⎤⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎢ ⎥− + − − +⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎝⎩ ⎭= − ⎠
⎢ ⎥

++ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.                                        

 
By Fourier transforming (9.11) with FT parameters ( , , ) (1,1)a b = , its characteristic 
function is calculated as: 
 

          ( )( ) exp ln (ln ) lnt ti S S dφ ω ω
∞

−∞
= ∫ P tS

                 
2 2 2 2 2

0exp exp( ) 1 ln ( )
2 2

t i i S k tδ ω σ σ ωλ µω ω α λ
⎡ ⎤⎛ ⎞ ⎛ ⎞

= − − + + − − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦2

t , (9.12) 

  

where 
2

2 1k e
δµ+

= − . 
                                                                                               
[9.4] Lévy Measure for Merton Jump-Diffusion Model 
 
We saw in section 6.3 that Lévy measure  of a compound Poisson process is given 
by the multiplication of the intensity and the jump size density : 

( )dxA
( )f dx

 
( ) ( )dx f dxλ=A . 
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The Lévy measure  represents the arrival rate (i.e. total intensity) of jumps of sizes ( )dxA
[ , ]x x dx+ . In other words, we can interpret the Lévy measure  of a compound 
Poisson process as the measure of the average number of jumps per unit of time. Lévy 
measure is a positive measure on , but it is not a probability measure since its total mass 

( )dxA

R
λ  (in the compound Poisson case) does not have to equal1: 
 

( )dx λ += ∈∫ A R . 
 
A Poisson process and a compound Poisson process (i.e. a piecewise constant Lévy 
process) are called finite activity Lévy processes since their Lévy measures  are 
finite (i.e. the average number of jumps per unit time is finite): 

( )dxA

 

( )dx
∞

−∞
< ∞∫ A . 

 
In Merton jump-diffusion case, the log-return jump size is ( ) 2. . . ( , )idx i i d Normal µ δ∼ : 
 

2

22

( )1( ) exp{ }
22
i

i
dxf dx µ

δπδ

−
= − . 

 
Therefore, the Lévy measure  for Merton case can be expressed as: ( )dxA
 

                                      
2

22

( )( ) ( ) exp{ }
22

dxdx f dx λλ
δπδ

−
= = −A µ .                          (9.13) 

 
An example of Lévy measure  for the log-return ( )dxA 0ln( / )t tx S S=  in the Merton 
jump-diffusion model is plotted in Figure 9.5. Each Lévy measure is symmetric (i.e. 

0µ =  is used) with total mass 1, 2, and 4 respectively. 
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Figure 9.5: Lévy Measures  for the Log-Return ( )dxA 0ln( / )t tx S S=  in the Merton 
Jump-Diffusion Model for Different Values of Intensityλ . Parameters used are 0µ =  
and 0.1δ = .  
 
[9.5] Option (Contingent Claim) Pricing: PDE Approach by Hedging 
 
Consider a portfolio  of the one long option position  on the underlying asset  
written at time  and a short position of the underlying asset in quantity  to derive 
option pricing functions in the presence of jumps: 

P ( , )V S t S
t ∆

 
                                                        ( , )t tP V S t St= −∆ .                                                (9.14) 
 
Portfolio value changes by in a very short period of time: 
 
                                                     ( , )t tdP dV S t dSt= −∆ .                                             (9.15) 
 
Merton jump-diffusion dynamics of an asset price is given by equation (9.1) in the 
differential form as: 
 

                                     ( ) ( 1)t
t t

t

dS k dt dB y dN
S

α λ σ= − + + − t

t t

, 

                                     ( ) ( 1)t t t t tdS k S dt S dB y S dNα λ σ= − + + − .                           (9.16) 
 
Appendix 8 gives the Itô formula for the jump-diffusion process as: 
 

2 2

2

( , ) ( , ) ( , )( , )
2

t t t
t t

tf X t f X t f X tdf X t dt b dt dt
t x x

σ∂ ∂ ∂
= + +

∂ ∂ ∂
 

                                        ( , ) [ ( ) ( )]t
t t t t

f X t dB f X X f Xtx
σ − −

∂
+ + + ∆ −

∂
, 

 
where  corresponds to the drift term and tb tσ  corresponds to the volatility term of a 

jump-diffusion process 0 0 0
1

tNt t

t s s s
i

X X b ds dB Xσ
=

= + + + ∆ i∑∫ ∫ . Apply this to our case of 

option price function : ( , )V S t
 

2 2 2

2( , ) ( )
2

t
t t

t t

SV V VdV S t dt k S dt dt S dB
t S S

σα λ σ∂ ∂ ∂
= + − + +
∂ ∂ ∂ t t

t

V
S
∂
∂

 

                                  .                                                          (9.17) [ ( , ) ( , )]t t t tV y S t V S t dN+ −
 
The term [  describes the difference in the option value when a 
jump occurs. Now the change in the portfolio value can be expressed as by substituting 
(9.16) and (9.17) into (9.15): 

( , ) ( , )]t t t tV y S t V S t dN−
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    ( , )t tdP dV S t dS= −∆ t

2 2 2

2( ) [ ( , ) ( , )]
2

t
t t t t t t

t t t

SV V V VdP dt k S dt dt S dB V y S t V S t dN
t S S S

σα λ σ∂ ∂ ∂ ∂
= + − + + + −
∂ ∂ ∂ ∂ t t

t

 

         {( ) ( 1) }t t t t tk S dt S dB y S dNα λ σ−∆ − + + −  

   
2 2 2

2( ) ( )
2

t
t t t t

t t t

SV V V VdP k S k S dt S S dB
t S S S

σα λ α λ σ σ
⎧ ⎫∂ ∂ ∂ ∂

= + − + −∆ − + −∆⎨ ⎬ ⎜ ⎟∂ ∂ ∂ ∂⎩ ⎭
t t

⎛ ⎞

⎝ ⎠
 

         { }( , ) ( , ) ( 1)t t t t t tV y S t V S t y S dN+ − −∆ − .                                                            (9.18) 
 
If there is no jump between time 0 and t  (i.e. 0tdN = ), the problem reduces to Black-
Scholes case in which setting  makes the portfolio risk-free leading to the 
following (i.e. the randomness  has been eliminated): 

/ tV S∆ = ∂ ∂

tdB
 

2 2 2

2( ) ( )
2

t
t t t t

t t t t t

SV V V V V VdP k S k S dt S S dB
t S S S S S

σα λ α λ σ σ
⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂

= + − + − − + −⎨ ⎬ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭
t t

⎛ ⎞

⎝ ⎠
 

  
2 2 2

22
t

t
t

SV VdP dt
t S

σ⎧ ⎫∂ ∂
= +⎨ ⎬∂ ∂⎩ ⎭

. 

 
This in turn means that if there is a jump between time 0 and t  (i.e. ), setting 

 does not eliminate the risk. Suppose we decided to hedge the randomness 
caused by diffusion part  in the underlying asset price (which are always present) and 
not to hedge the randomness caused by jumps  (which occur infrequently) by setting 

. Then, the change in the value of the portfolio is given by from equation 
(9.18):  

0tdN ≠
/ tV S∆ = ∂ ∂

tdB

tdN
/ tV S∆ = ∂ ∂

 
2 2 2

2( ) ( )
2

t
t t t t

t t t t t

SV V V V V VdP k S k S dt S S dB
t S S S S S

σα λ α λ σ σ
⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂

= + − + − − + −⎨ ⎬ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭
t t

⎛ ⎞

⎝ ⎠
 

        ( , ) ( , ) ( 1)t t t t t t
t

VV y S t V S t y S dN
S

⎧ ⎫∂
+ − − −⎨ ⎬∂⎩ ⎭

, 

  
2 2 2

2 ( , ) ( , ) ( 1)
2

t
t t t t

t t

SV V VdP dt V y S t V S t y S dN
t S S

σ⎧ ⎫ ⎧∂ ∂ ∂
= + + − − −⎨ ⎬ ⎨∂ ∂ ∂⎩ ⎭ ⎩

t t t

⎫
⎬
⎭

.                   (9.19) 

 
Merton argues that the jump component ( ) of the asset price process  is 
uncorrelated with the market as a whole. Then, the risk of jump is diversifiable (non-
systematic) and it should earn no risk premium. Therefore, the portfolio is expected to 
grow at the risk-free interest rate :  

tdN tS

r
 

 153



 

                                                            [ ]t tE dP rPdt= .                                                  (9.20) 
 
After substitution of (9.14) and (9.19) into (9.20) by setting / tV S∆ = ∂ ∂ : 
 

2 2 2

2[ ( , ) ( , ) ( 1) ] { ( , ) }
2

t
t t t t t t t t

t t

SV V VE dt V y S t V S t y S dN r V S t S dt
t S S

σ⎧ ⎫ ⎧ ⎫∂ ∂ ∂
+ + − − − = −⎨ ⎬ ⎨ ⎬∂ ∂ ∂⎩ ⎭ ⎩ ⎭

∆  

2 2 2

2( ) [ ( , ) ( , ) ( 1) ] [ ] { ( , ) }
2

t
t t t t t t t t

t t

SV V V Vdt E V y S t V S t y S E dN r V S t S dt
t S S S

σ∂ ∂ ∂ ∂
+ + − − − = −

∂ ∂ ∂ ∂ t
2 2 2

2( ) [ ( , ) ( , ) ( 1) ] { ( , ) }
2

t
t t t t t t t

t t

SV V V Vdt E V y S t V S t y S dt r V S t S dt
t S S S

σ λ∂ ∂ ∂ ∂
+ + − − − = −

∂ ∂ ∂ ∂ t

 

2 2 2

2 [ ( , ) ( , ) ( 1) ] { ( , ) }
2

t
t t t t t t t

t t

SV V V VE V y S t V S t y S r V S t S
t S S S

σ λ∂ ∂ ∂ ∂
+ + − − − = −

∂ ∂ ∂ ∂ t

 

 
Thus, the Merton jump-diffusion counterpart of Black-Scholes PDE is: 
 

    
2 2 2

2 [ ( , ) ( , )] [ 1] 0
2

t
t t t t t

t t t

SV V V VrS rV E V y S t V S t S E y
t S S S

σ λ λ∂ ∂ ∂ ∂
+ + − + − − −

∂ ∂ ∂ ∂ t = .  (9.21) 

 
where the term  involves the expectation operator and [ ( , ) ( , )]t t tE V y S t V S t−

21
2[ 1] 1tE y e k

µ δ+
− = − ≡  (which is the mean of relative asset price jump size). Obviously, 

if jump is not expected to occur (i.e. 0λ = ), this reduces to Black-Scholes PDE:2  
 

2 2 2

2 0
2

t
t

t t

SV V VrS rV
t S S

σ∂ ∂ ∂
+ + −

∂ ∂ ∂
= . 

 
Merton’s simple assumption that the absolute price jump size is lognormally distributed 
(i.e. the log-return jump size is normally distributed, 2ln( ) ( , )t tY y N µ δ≡ ∼ ) makes it 
possible to solve the jump-diffusion PDE to obtain the following price function of 
European vanilla options as a quickly converging series of the form: 
 

                                            
0

( ) ( , , , )
!

i

BS t i i
i

e V S T t r
i

λτ λτ τ σ
−∞

=

= −∑ ,                                 (9.22) 

 

where 
21

2(1 )k e
µ δ

λ λ λ
+

= + = , 

           
2

2 2
i

iδσ σ
τ

= + , 

                                                 
2 This equation not only contains local derivatives but also links together option values at discontinuous 
values in S. This is called non-local nature. 
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2

2
1
2

1( )ln(1 ) 2( 1)i

ii kr r k r e
µ δ

µ δ
λ λ

τ τ
+

++
= − + = − − + , 

and  is the Black-Scholes price without jumps.  BSV
 
Thus, Merton’s jump-diffusion option price can be interpreted as the weighted average of 
the Black-Scholes price conditional on that the underlying asset price jumps i  times to 
the expiry with weights being the probability that the underlying jumps  times to the 
expiry. 

i

 
[9.6] Option (Contingent Claim) Pricing: Martingale Approach 
 
Let { ;0 }tB t T≤ ≤  be a standard Brownian motion process on a space . Under 
actual probability measure , the dynamics of Merton jump-diffusion asset price process 
is given by equation (9.6) in the integral form:  

( , , )Ω PF
P

 
2

0
1

exp[( ) ]
2

tN

t t
k

S S k t B Yσα λ σ
=

= − − + + k∑    under . P

 

We changed the index from  to 
1

tN

i
i

Y
=
∑

1

tN

k
k

Y
=
∑ . This is trivial but readers will find the reason 

soon. Merton jump-diffusion model is an example of an incomplete model because there 
are many equivalent martingale risk-neutral measures  under which the discounted 
asset price process { ;  becomes a martingale. Merton finds his equivalent 
martingale risk-neutral measure  by changing the drift of the Brownian motion 
process while keeping the other parts (most important is the jump measure, i.e. the 
distribution of jump times and jump sizes) unchanged: 

∼Q P
0rt

te S t T− ≤ ≤ }
PM ∼Q

 

                            
2

0
1

exp[( ) ]
2

t
M

N

t t
k

r k t B Yσ λ σ
=

= − − + + kS S ∑Q
MQ   under .                (9.23) 

 
Note that M

tBQ  is a standard Brownian motion process on ( , , )MΩ QF  and the process 
 is a martingale under{ ;0rt

te S t T− ≤ ≤ } MQ . Then, a European option price  
with payoff function  is calculated as: 

( , )Merton
tV t S

( )TH S
 
                                            ( )( , ) [ ( ) ]MMerton r T t

tV t S e E H S− −= Q FT t

t

.                              (9.24) 
 
Standard assumption is , thus: t S=F
 

2
( )

1
( , ) [ ( exp[( )( ) ]) ]

2

T t
M M

N
Merton r T t

t t T t
k

V t S e E H S r k T t B Y Sσ λ σ
−

− −
−

=

= − − − + +∑Q Q
k t  
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2

( )

1
( , ) [ ( exp[( )( ) ])]

2

T t
M M

N
Merton r T t

t t T t
k

V t S e E H S r k T t B Yσ λ σ
−

− −
−

=

= − − − + ∑Q Q
k+ .    (9.25) 

 
Poisson counter is (we would like to use index i  for the number of jumps): 
 

0,1, 2,...T tN i− = ≡ . 
 
And the compound Poisson process is distributed as: 
 

2

1
( , )

T tN

k
k

Y Normal i iµ δ
−

=
∑ ∼ . 

 
Thus,  can be expressed as from equation (9.25) (i.e. by conditioning on i ): ( , )Merton

tV t S
 
          ( , )Merton

tV t S
2
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0 1
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2
M M

i
r T t

M T t t T t k
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e N i E H S r k T t Bσ λ σ− −
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= = − − − +∑ ∑Q QQ Y+ . 

 
Use T tτ = − : 
 
  ( , )Merton

tV t S

 
2

2
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( ) exp[{ ( 1)} ]
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i i
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τ µ δ

τ
λτ σ λ τ σ

−
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⎡ ⎤⎛ ⎞
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∑ ∑Q Q Y+ .     (9.26) 

 
Inside the exponential function is normally distributed: 
 

                    
2

2
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1
{ ( 1)}

2
M

i

k
k

r e Bµ δ
τ

σ λ τ σ+
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− − − + + Y∑Q   

                                         
2

2
/ 2 2 2{ ( 1)} ,

2
Normal r e i iµ δσ λ τ µ σ τ δ+⎛ ⎞

− − − + +⎜ ⎟
⎝ ⎠

∼ . 

 
Rewrite it so that its distribution remains the same: 
 

                    
2

2 2
/ 2{ ( 1)}

2

2
M

ir e iµ δ
τ

σ σλ τ µ
τ

+ +
− − − + + QBτ δ  

                                         
2

2
/ 2 2 2{ ( 1)} ,

2
Normal r e i iµ δσ λ τ µ σ τ δ+⎛ ⎞

− − − + +⎜ ⎟
⎝ ⎠

∼ . 

 
Now we can rewrite equation (9.24) as (we can do this operation because a normal 
density is uniquely determined by only two parameters: its mean and variance): 
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We can always add 
2 2
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2 2
i iδ δ
τ τ
− = 0  inside the exponential function: 
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Set 
2

2 2
i

iδσ σ
τ

= +  and rearrange: 
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Black-Scholes price can be expressed as: 
 

21( , ; ) [ { exp( ) }]
2

BS BSBS r
t tV T t S e E H S r Bτ

ττ σ σ τ σ−= − = − +Q Q . 

 
Finally, Merton jump-diffusion pricing formula can be obtained as a weighted average of 
Black-Scholes price conditioned on the number of jumps : i
 
      ( , )Merton
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Alternatively: 
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where
21

2(1 )k e
µ δ

λ λ λ
+

= + = . As you might notice, this is the same result as the option 
pricing formula derived from solving a PDE by forming a risk-free portfolio in equation 
(9.22). PDE approach and Martingale approach are different approaches but they are 
related and give the same result.  
 
[9.7] Option Pricing Example of Merton Jump-Diffusion Model 
 
In this section the equation (9.22) is used to price hypothetical plain vanilla options: 
current stock price = 50, risk-free interest rate = 0.05, continuously compounded 
dividend yield q = 0.02, time to maturity 

tS r
τ = 0.25 years.  

 
We need to be careful about volatilityσ . In the Black-Scholes case, the t -period standard 
deviation of log-return tx  is: 
 
                                         BSStandard Deviation ( )t BSx tσ= .                                    (9.29) 
 
Equation (9.10) tells that the t -period standard deviation of log-return tx  in the Merton 
model is given as: 
 
                           2 2 2

MertonStandard Deviation ( ) ( )t Mertonx tσ λδ λµ= + + .                  (9.30) 
 
This means that if we set BS Mertonσ σ= , Merton jump-diffusion prices are always greater 
(or equal to) than Black-Scholes prices because of the extra source of volatility λ  
(intensity), µ  (mean log-return jump size), δ  (standard deviation of log-return jump) 
(i.e. larger volatility is translated to larger option price): 
 

BS MertonStandard Deviation ( ) Standard Deviation ( )t tx x≤  

                                                         2 2 2( )BS Mertont tσ σ λδ λµ≤ + + . 
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This very obvious point is illustrated in Figure 9.6 where diffusion volatility is 
set 0.2BS Mertonσ σ= = . Note the followings: (1) In all four panels Merton jump-diffusion 
price is always greater (or equal to) than Black-Scholes price. (2) When Merton 
parameters (λ , µ , and δ )  
are small in Panel A, the difference between these two prices is small. (3) As intensity λ  
increases (i.e. increased expected number of jumps per unit of time), the t -period Merton 
standard deviation of log-return tx  increases (equation (9.30)) leading to the larger 
difference between Merton price and Black-Schoels price as illustrated in Panel B. (4) As 
Merton mean log-return jump sizeµ  increases, the t -period Merton standard deviation of 
log-return tx  increases (equation (9.30)) leading to the larger difference between Merton 
price and Black-Schoels price as illustrated in Panel C. (5) As Merton standard deviation 
of log-return jump sizeδ  increases, the t -period Merton standard deviation of log-return 

tx  increases (equation (9.30)) leading to the larger difference between Merton price and 
Black-Schoels price as illustrated in Panel D. 
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A) Merton parameters: λ = 1, µ = -0.1, and δ = 0.1. 
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B) Merton parameters: λ = 5, µ = -0.1, and δ = 0.1. 
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C) Merton parameters: λ = 1, µ = -0.5, and δ = 0.1. 
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D) Merton parameters: λ = 1, µ = -0.1, and δ = 0.5. 
 
Figure 9.6: Merton Jump-Diffusion Call Price vs. Black-Scholes Call Price When 
Diffusion Volatility σ  is same. Parameters and variables used are = 50, = 0.05, q = 
0.02, 

tS r
τ = 0.25, and 0.2BS Mertonσ σ= = . 

 
Next we consider a more delicate case where we restrict diffusion volatilities BSσ  and 

Mertonσ  such that standard deviations of Merton jump-diffusion and Black-Scholes log-
return densities are the same: 
 

BS MertonStandard Deviation ( ) Standard Deviation ( )t tx x= , 
2 2 2( )BS Mertont tσ σ λδ λµ= + + . 

 
Using the Merton parameters λ = 1, µ = -0.1, and δ = 0.1 and Black-Scholes volatility 

0.2BSσ = , Merton diffusion volatility is calculated as Mertonσ = 0.141421. In this same 
standard deviation case, call price function is plotted in Figure 9.7 and put price function 
is plotted in Figure 9.8. It seems that Merton jump diffusion model overestimates in-the-
money call and underestimates out-of-money call when compared to Black-Scholes 
model. And Merton jump diffusion model overestimates out-of-money put and 
underestimates in-the-money put when compared to Black-Scholes model.  
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A) Range 30 to 70. 
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B) Range 42 to 52. 
 
Figure 9.7: Merton Jump-Diffusion Call Price vs. Black-Scholes Call Price When 
Restricting Merton Diffusion Volatility Mertonσ . We set 0.2BSσ =  and Mertonσ = 
0.141421. Parameters and variables used are = 50, r = 0.05, = 0.02, tS q τ = 0.25. 

30 40 50 60 70
Strike K

0

5

10

15

llaC
ecirP

BS

Merton

 

 

A) Range 30 to 70. 
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B) Range 42 to 52. 
 
Figure 9.8: Merton Jump-Diffusion Put Price vs. Black-Scholes Put Price When 
Restricting Merton Diffusion Volatility Mertonσ . We set 0.2BSσ =  and Mertonσ = 
0.141421. Parameters and variables used are = 50, r = 0.05, = 0.02, tS q τ = 0.25. 
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[10] Merton (1976) Jump-Diffusion Model with Fourier Transform Pricing 
 
We saw in section 9 that the most important character of Merton JD model is its 
conditional Black-Scholes property. Because Merton JD model is a simple addition of 
compound Poisson jump process to the original BS model (i.e. geometric Brownian 
motion with drift), everything in the Merton JD model such as log return density 

 or even call price can be expressed as the weighted average of the BS (log 
return density or price) conditional on that the underlying asset price jumps i  times to the 
expiry with weights being the probability that the underlying jumps i  times to the expiry. 

0ln( / )tS S

Traditional pricing approach with Merton JD model is discussed in the section 9.5 (PDE 
approach by hedging) and 9.6 (martingale approach). 
 
In this section we present Fourier transform option pricing approach with Merton JD 
model. You will see FT method is much more general and simpler.  
 
[10.1] Merton JD Model with Fourier Transform Pricing Method  
 
The first step to FT option pricing is to obtain the characteristic function of the log stock 
price l . Similar arguments can be seen in section 9.3. Risk-neutral log stock price 
dynamics can be obtained from the equation (9.6) as: 
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where
21

2 1k e
µ δ+

≡ − . Probability density of log stock price l  is obtained as a quickly 
converging series of the following form (i.e. conditionally normal): 
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where: 
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Let  as before. By Fourier transforming (10.2) with FT parameters ( , , 
its characteristic function is calculated as: 

lnts ≡ tS , ) (1,1)a b =

 

         ( ) e ( )ti s
t ts dsωφ ω

∞

−∞
= ∫ P

                 
2 2 2 2 2

0exp exp( ) 1 ( )
2 2

t i i s r k tδ ω σ σ ωλ µω ω λ
⎡ ⎤⎛ ⎞ ⎛ ⎞

= − − + + − − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦2

t .      (10.3)                               

 
By substituting a characteristic function of Merton log terminal stock price , the 
equation (10.3), into the general FT pricing formula of the equation (8.17), we obtain 
Merton-FT call pricing formula: 

Ts

 

                         
( )

( )2 2

( 1)
( , )

2 2

rTk
Ti k

Merton FT

e ieC T k e
i

α
ω φ ω α

1
dω

π α α ω α ω

−− ∞ −
− −∞

− +
=

+ − + +∫ ,             (10.4) 

 
where: 
 

2 2 2 2 2

0( ) exp exp( ) 1 ( )
2 2T T i i s r k Tδ ω σ σ ωφ ω λ µω ω λ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − − + + − − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦2
T . 

                                                                
We implement the Merton-FT formula (10.4) with decay rate parameter 1α =  and 
compare the result to the original Merton call price of the equation (9.22) using common 
parameters and variables fixed 0 50S = , 0.2σ = , 0.05r = , 0.02q = , , 20 / 252T =

1λ = , 0.1µ = − , and 0.1δ = . As illustrated by Figure 10.1, as a principle Merton-FT call 
price and the original Merton call price are identical. This is no surprise because the 
original Merton formula (9.22) and Merton-FT formula (10.4) are the same person with a 
different look. Merton-FT formula is just frequency representation of the original Merton 
formula.     
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Figure 10.1: Original Merton Call Price Vs. Merton-FT with α = 1 Call Price. 
Common parameters and variables fixed are 0 50S = , 0.2σ = , 0.05r = , , 

, 
0.02q =

20 / 252T = 1λ = , 0.1µ = − , and 0.1δ = .  
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Next, CPU time should be discussed. Consider call options with 0 50S = , 0.2σ = , 

, , and  as a function of varying strike price 0.05r = 0.02q = 20 / 252T = K . We use 
Merton JD parameters 1λ = , 0.1µ = − , and 0.1δ = . Table 10.1 reveals that although 
Merton-FT formula is slower than the original Merton, speed is not an issue for most of 
the purposes.    

Table 10.1: CPU Time for Calls with Different Moneyness 
Price is in the bracket.  
                                                                           Strike 
Method                                                 20K = 50K =                       80K =  
                              
Merton                        0.01 seconds              0.01 seconds             0.01 seconds 
                                       (29.9999)                  (1.32941)              ( ) 71.19634 10−×
 
Merton-FT 1α =          0.06 seconds              0.02 seconds             0.12 seconds 
                                       (29.9999)                  (1.32941)              ( ) 71.19634 10−×
 
Secondly, we investigate the level of decay rate parameter α  for Merton-FT formula. 
Figure 10.2 illustrates the pricing error (i.e. relative to the original Merton) of Merton-FT 
formula of a one day to maturity 1/ 252T =  call as a function of varyingα . Panel A (for 
an OTM call) and C (for an ATM call) tells us that for 0.05 20α≤ ≤ , Merton-FT formula 
has effectively zero error relative to the original Merton price. But it seems for an ITM 
call (Panel B), the error monotonically increases asα  rises. Therefore, from now on, we 
always use 1α =  when implementing Merton-FT formula. 
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A) For an OTM Call with .  80K =
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B) For an ITM Call with . 20K =
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C) For an ATM Call with . 50K =
 
Figure 10.2: Original Merton Price Minus Merton-FT Price for One Day to 
Maturity Call as a Function of Decay Rate Parameter α. Common parameters and 
variables fixed are , 0 50S = 0.2σ = , 0.05r = , 0.02q = , 1/ 252T = , 1λ = , 0.1µ = − , 
and 0.1δ = .  
 
Thirdly, we investigate the amount of error caused by the difficulty in numerical 
integration in (10.4) for the near maturity calls. Consider a call option with , 0 50S =

0.2σ = , , and . Figure 10.3 plots a series of the difference between the 
original Merton price and Merton-FT 

0.05r = 0.02q =
1α =  price for the range of less than 10 trading 

days to maturity 1 . We find that despite the difficulty in the numerical 
integration of Merton-FT price of (10.4) for the near maturity deep OTM (in Panel A) 
and deep ITM (in Panel B) call, our Merton-FT code yields effectively zero error in terms 
of pricing.  

/ 252 10 / 252T≤ ≤
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A) OTM call with . 80K =
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B) ITM call with  and0 50S = 20K = . 
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C) ATM Call with  and0 50S = 50K = . 
 
Figure 10.3: Plot of Merton Price minus Merton-FT 1α =  Price for Near-Maturity 
Vanilla Call with Less Than 10 Trading Days to Maturity 1/ 252 10 / 252T≤ ≤ . 
Common parameters and variables fixed are 0 50S = , 0.2σ = , 0.05r = , , 0.02q = 1λ = , 

0.1µ = − , and 0.1δ = .  
 
We summarize this section. Although Merton-FT call price of the equation (10.4) is 
slower than the original Merton price formula, it produces negligible pricing errors 
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regardless of the maturity and the moneyness of the call. We recommend the use of 1α =  
for its decay rate.  
 
[10.2] Discrete Fourier Transform (DFT) Call Pricing Formula with Merton Jump-
Diffusion Model 
 
Although the numerical integration difficulty of Merton-FT call price of (10.4) for the 
near maturity options yields virtually zero pricing error, it makes the evaluation slow. 
This speed becomes an issue when calibrating hundreds or thousands of prices (i.e. also 
in Monte Carlo simulation). To improve computational time, we apply our version of 
DFT call price formula in Merton case. 
 
From the equation (8.38), Merton-DFT call price is given as: 
 

           ( ) ( )exp( )exp exp / 2
( ) n

T n

k i n i N
C k

k
α π π− −
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                                  ( ){ } (
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w i j i jn
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−

=
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where  are trapezoidal rule weights: [0, 1]j Nw ∈ −

 
1/ 2   for   0   and   -1
1       for othersj

j N
w

=⎧
= ⎨
⎩

, 

 
and: 
 

( )
( )2 2

( 1)
( )

2 1

rT
T

T

e i
i

φ ω α
ψ ω

α α ω α ω

− − +
=

+ − + +
, 

 
with ( )Tφ  given by (10.3). 
 
[10.3] Implementation and Performance of DFT Pricing Method with Merton 
Jump-Diffusion Model 
 
In this section, performance of Merton-DFT 1α =  call price of the equation (10.5) is 
tested by comparing results to the original Merton call price and Merton-FT 1α =  call 
price of the equation (10.4) under various settings. Merton-DFT 1α =  call price is 
implemented using  samples and log strike space sampling interval 

.  This corresponds to angular frequency domain sampling interval of 
4096N =

0.005k∆ = ω∆ =  
0.306796 radians, the total sampling range in the log strike space is 20.48N kΚ = ∆ = , its 
sampling rate is 200 samples per unit of , and the total sampling range in the angular 
frequency domain is 

k
1256.64N ωΩ = ∆ = . 
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Firstly, let’s investigate the difference in price and CPU time. Consider calculating 100-
point call prices for a range of strike price 1 100K≤ ≤  with interval 1 with common 
parameters and variables , 0 50S = 0.2σ = , 0.05r = , 0.02q = , T 20 / 252= , 1λ = , 

0.1µ = − , and 0.1δ = . Figure 10.4 reports the price and Table 10.2 compares CPU time. 
We notice that call prices are virtually identical (i.e. they are supposed to be identical) 
and the use of DFT significantly improves the computational time although it is slower 
than the original Merton price.  
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Figure 10.4: Merton Vs. Merton-FT α = 1 Vs. Merton-DFT α = 1. Common 
parameters and variables fixed are 0 50S = , 0.2σ = , 0.05r = , 0.02q = , T , 20 / 252=

1λ = , 0.1µ = − , and 0.1δ = .  
 
Table 10.2 CPU Time for Calculating 100-point call prices for a range of strike price 

 with interval 1 Common parameters and variables fixed are , 1 1K≤ ≤ 00 0 50S =
0.2σ = , r , q , T , 0.05= = =0.02 20 / 252 1λ = , 0.1µ = − , and 0.1δ = .  

 
Method                                                             CPU Time                       
                                                               
Merton                                                                    0.14 seconds 
 
Merton-FT 1α =                                                      7.22 seconds 
 
Merton-DFT 1α =                                                   1.31 seconds 

4096N = , ∆ =       0.005k
 
Secondly, we pay extra attention to the pricing errors of very near-maturity calls. 
Consider a call option with common parameters and variables 0 50S = , 0.2σ = , 

, and . Merton jump-diffusion parameters are set as0.05r = 0.02q = 1λ = , 0.1µ = − , and 
0.1δ = . Figures 10.5 to10.7 plot three series of price differences for vanilla calls 

computed by the original Merton, Merton-FT 1α = , and Merton-DFT 1α =  with 
 and  as a function of time to maturity of less than a month 

. Figure 10.5 tells us that for deep OTM calls, Merton-DFT yields 
4096N = 0.005k∆ =

1/ 252 20 / 252T≤ ≤
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the pricing error around  which we interpret negligible. Figure 10.7 tells us that 
for deep ITM calls, Merton-DFT price is virtually identical to the original Merton except 
for one day to maturity. Very similar to the BS case, Figure 10.6 tells us that as the 
maturity nears, the error of ATM Merton-DFT price monotonically increases and the size 
of error is large (compared to ITM and OTM errors) but still negligible. In contrast, ATM 
Merton-FT price produces virtually no error. This finding is more clearly illustrated in 
Figure 10.7 where the  ATM pricing error of Merton-DFT

86 10−×

1/ 252T = 1α =  with 
 and  is plotted across different moneyness. We again realize that 

Merton-DFT price is virtually identical to BS price for the deep ITM and OTM calls, but 
its approximation error becomes an issue for ATM call. We have done several 
experiments trying to reduce the size of this around ATM error by increasing the decay 
rate parameter

4096N = 0.005k∆ =

α  to 10 or by sampling more points 8192N = . But these attempts were 
futile.    
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Figure 10.5: Plot of Price Error for Deep-OTM Call as a Function of Time to 
Maturity 1 . Common parameters and variables fixed 
are , , 

/ 252 20 / 252T≤ ≤
0 50S = 80K = 0.2σ = , , and 0.05r = 0.02q = .  
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Figure 10.6: Plot of Price Error for ATM Call as a Function of Time to Maturity 

. Common parameters and variables fixed are1/ 252 20 / 252T≤ ≤ 0 50S = , , 50K =
0.2σ = , , and .  0.05r = 0.02q =
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Figure 10.7: Plot of Price Error for Deep-ITM Call as a Function of Time to 
Maturity 1 . Common parameters and variables fixed 
are , , 

/ 252 20 / 252T≤ ≤
0 50S = 20K = 0.2σ = , , and 0.05r = 0.02q = .  
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Figure 10.8: Plot of Price Error of Merton-DFT Formula for 1-Day-to-Maturity 

 ATM Call as a Function of Strike Price 1/ 252T = 0 100K≤ ≤ . Common parameters 
and variables fixed are ,0 50S = 50K = , 0.2σ = , 0.05r = , and 0.02q = .  
 
We conclude this section by stating the following remarks. Our Merton-DFT 1α =  call 
price formula, the equation (10.5), yields the price virtually identical to the original 
Merton price for OTM and ITM calls even for extreme near-maturity case (i.e. 

) although the size of error is larger than Merton-FT formula. But the error of 
Merton-DFT price becomes large around (i.e.

1/ 252T =
3± ) ATM. In our example used, the 

maximum error is 0.0001343 which occurs at exactly ATM at 0 50S K= = . Increasing the 
decay rate parameterα  or sampling more points (i.e. larger ) cannot reduce the size of 
this error. But we can accept this size of error when considering the dramatic 
improvement in the CPU time to compute hundreds of prices.   

N

  
[10.4] Summary of Formulae of Option Price with Fourier Transform in Merton 
Jump-Diffusion Model 
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Table 10.10: Summary of Formulae for Merton Jump-Diffusion Model 
 
Method                                                                   Formula 
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[11] Variance Gamma (VG) Model by Madan, Carr, and Chang (1998) 
 
[11.1] Model Type 
 
In this section the basic structure of VG model is described without the derivation of the 
model which will be done in the next section. 
 
VG model is an exponential Lévy model of the form: 
 

0 e tL
tS S= , 

 
where the asset price process { ;0 }tS t T≤ ≤  is modeled as an exponential of a Lévy 
process { . Choice of the Lévy process by Madan, Carr, and Chang (1998) ;0 }tL t T≤ ≤

is a VG process, ( ; , ,tVG x )θ σ κP P P , plus a drift: 
 

( )
21 ln 1 ; , ,
2t tL m t VG xσ κθ κ θ

κ
⎧ ⎫⎛ ⎞⎪ ⎪≡ + − − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

P P
P P P P P

P

σ κ

)

. 

 
A VG process ( ; , ,tVG x θ σ κP P P  is defined as a stochastic process { ;0 }tX t T≤ ≤  created 
by random time changing (i.e. subordinating) a Brownian motion with drift process 

tt Bθ σ+  by a tempered 0-stable subordinator (i.e. a gamma subordinator)  
with unit mean rate: 

{ ;0 }tS t T≤ ≤

 
( )

tt t SX S Bθ σ≡ + . 
 
The CF of a VG process can be easily obtained by the use of the subordination theorem 
described in the section 11.2.1 and its probability density function is obtained in closed 
form.  
 
A VG process ( ; , ,tVG x )θ σ κP P P  is characterized as a pure jump Lévy process with 
infinite arrival rate of jumps. In other words, the Lévy measure of a VG process has an 
infinite integral: 
 

( )x dx
∞

−∞
= ∞∫ A . 

 
This means that a VG process has infinitely many small jumps but a finite number of 
large jumps.  
 
Introduction of two extra parameters by the VG model captures the (negative) skewness 
and excess kurtosis of the log return density ( )( )0ln /tS SP  which deviates from the BS 
normal log return density. One is variance rate parameter κ  which controls the degree of 
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the randomness of the subordination. Larger κ  implies the fatter tails of the log return 
density . The other is the drift parameter of the subordinated Brownian 
motion process 

(( 0ln /tS SP ))
θ  which captures the skewness of the log return density.  

 
Let’s derive the model. 
 
[11.2] Model Derivation 
 
[11.2.1] Subordination Theorem of Lévy Processes 
 
A transformation of a stochastic process to a new stochastic process through random time 
change by an increasing Lévy process (subordinator) independent of the original process 
is called subordination. Time is an increasing sequence of numbers: 0  or 

. So is subordinator because subordinator is an increasing (i.e. non-
decreasing) Lévy process. This non-decreasing property of a subordinator makes it a 
possible candidate for a time indicator.  

,1, 2,3,...
1,10, 23,30,50,...

 
Let {  be a subordinator with its characteristic triplet (;0 }tS t T≤ ≤ , 0, )S S Sb σ = A . Any 
increasing function is of finite variation in one dimension and following the Lévy-
Khinchin representation in section 6.5, the MGF (moment generating function) of  is: tS
 

{ }( ) [exp( )] exp ( )S tM E S t Sω ω ω≡ = L , 
 
where the Laplace exponent is given by: 
 

                                             .                                    (11.1) 
0

( ) ( 1) ( )x
S S Sb eωω ω

∞
= + −∫ AL dx

 
We used a relationship between the MGF XM  and the CF (characteristic function) given 
by ( ) ( )X XM t itφ= −  which holds when XM  is well-defined. Laplace transform is used 
instead of Fourier transform because Lévy measure of an increasing Lévy process is 
concentrated on the positive real-axis (i.e. by definition). ( )S ωL  satisfies the following: 
 

10
1 ( )dx dxρ

∞

≥ < ∞∫  (i.e. a finite variation condition), 

                                 (i.e. a positive drift), 0Sb ≥
 
which are the conditions of being an increasing Lévy process.  
 
Let { ;0 }tX t T≤ ≤  be a Lévy process on R  with its characteristic triplet ( , , )b σ A  and its 
CF given by the Lévy-Khinchin representation: 
 

[ ] { }( ) exp( ) exp ( )X tE i X t Xφ ω ω ψ≡ = ω , 
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where the CE (characteristic exponent) is given by: 
 

                                   { }
2 2

( ) exp( ) 1 ( )
2X ib i x dxσ ωψ ω ω ω

∞

−∞
= − + −∫ A .                        (11.2) 

 
We assume { ;0 }tX t T≤ ≤  and { ;0 }tS t T≤ ≤  are independent. 
 
Define a new stochastic process { ;0 }tZ t T≤ ≤  by random time changing (i.e. 
subordinating) the original Lévy process{ ;0 }tX t T≤ ≤ : 
 
                                                                 

tt SZ X≡ .                                                      (11.3) 
 
Then, the process { ;0 }tZ t T≤ ≤  is a Lévy process on  with its CF given by: R
 
                                    { } ( ){ }( ) exp( ) exp ( )Z t SE i Z tφ ω ω ψ ω≡ = L X .                           (11.4) 
 
This is an extremely powerful and useful theorem since we can obtain the CF of a 
random time-changed Lévy process tZ  by simply substituting the CE of an original Lévy 
process ( )Xψ ω  into the Laplace exponent of the subordinator ( )S ωL . The characteristic 
triplet of a random time-changed Lévy process tZ , ( , , )Z Z Zb σ A , is given by: 
 

10
( ) 1 ( )Z S S Xxb b b ds x dx

∞

≤= + ∫ ∫A P , 

                                            2 2
Z Sb 2σ σ= ,                                                                     (11.5) 

                                            , 
0

( ) ( ) ( ) ( )Z S X Sdx b dx dx ds
∞

= + ∫A A AP
                               
where  is the probability density function of ()XP tX . Transformation of a Lévy process 
{ ;0 }tX t T≤ ≤  into another Lévy process{ ;0 }tZ t T≤ ≤  is called subordination by the 
subordinator{ .  ;0 }tS t T≤ ≤
 
[11.2.2] Tempered α-Stable Subordinator: General Case 
 
For the reason of pure mathematical tractability of the process, we restrict our attention to   
the tempered α - stable subordinator. Let { ;0 }tS t T≤ ≤  be a tempered α -stable 
subordinator which is Esscher transformed stable subordinator (i.e. whose tails of both 
probability density and Lévy density are damped symmetrically) and ( , 0, )S S Sb σ = A  be 
its characteristic triplet, then: 
 

(1) { ;  is a 0 }tS t T≤ ≤ α -stable process with the index of stability0 1α< < . 

 174



 

(2) : {  has no negative jump. In other words, Lévy 

measure concentrated on the positive real-axis. 

0
( ) 0S dx

−∞
=∫ A ;0 }tS t T≤ ≤

(3) : Positive drift. 0Sb ≥
(4) Lévy measure is three-parameter family and is simply a tempered version of the 

Lévy measure of a stable subordinator of the equation (6.12): 
  

                                                     01

exp( )( ) 1S
c xx xxα

λ
>+

−
=A ,                                          (11.6) 

 
where  and 0c > 0λ > . The intensity of jumps of all sizes is controlled by the parameter 

 and the decay rate of large jumps is controlled byc λ . And the relative importance of  
small jumps in the trajectory is determined by α .  
 
Let {  be a tempered ;0 }tS t T≤ ≤ α -stable subordinator with zero drift for simplicity (i.e. 

) in the general case 00Sb = 1α< < . Following the Lévy-Khinchin representation in 
section 6.5, the MGF of  is given by (11.1) as: tS
 

{ }( ) [exp( )] exp ( )S tM E S t Sω ω ω≡ = L , 
 
where the Laplace exponent is given by: 
 

0
( ) ( 1) ( )x

S S Sb eωω ω
∞

= + −∫ AL dx  

                                                         010
( 1) 1

x
x

x
cee d
x

λ
ω

α

−∞

>+= −∫ x  

                                                         {( ) } ( )c α αλ ω λ α= − − Γ − .                                   (11.7) 
 
Using the MGF, the mean, variance, skewness, kurtosis of the tempered α -stable 
subordinator with zero drift  in the general case are obtained as: 0Sb =
 
       1

1[ ] [ ]tE S m ct ααλ −= = − Γ −α ,                                                                                (11.8) 
       2 2

2 1[ ] ( 1) [ ]tVar S m m ct αα αλ α−= − = − Γ − , 

       
3

1 1 2 3
2 3/ 2 2

2 1

2 3 2[ ]
( ) ( 1) [

t
m m m mSkewness S

m m ct α

α
]λ α αλ α−

− + −
= =

− − Γ −
, 

4 2 2 2
1 1 2 2 1 3 4

2 2
2 1

6 12 3 4 (6 5 ) [ ]
( ) ( 1) [t

m m m m m m mExcess Kurtosis S
m m ct

α

]
λ α α

α α α

−− + − − + − +
= =

− − Γ −
. 

 
Note that the probability density of the tempered α -stable subordinator with zero drift 

 in the general case 00Sb = 1α< <  is not known.  
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[11.2.3] Gamma Subordinator (Process): Special Case of Tempered α-Stable 
Subordinator When α = 0 
 
Consider a special case when the stability index takes zero, i.e. 0α = . A tempered 0-
stable subordinator with zero drift 0Sb =  is called a gamma subordinator. Lévy density 
of the gamma subordinator  is obtained by setting tS 0α =  in the equation (11.6) as:  
 

                                                         0( ) 1
x

S
cex

x

λ−

>=A x .                                               (11.9) 

 
Following the Lévy-Khinchin representation of the equation (11.1), the MGF of the 
gamma subordinator  is: tS
 

{ }( ) [exp( )] exp ( )S tM E S t Sω ω ω≡ = L , 
 
where the Laplace exponent is given by substituting (11.9): 
 

0
( ) ( 1) ( )x

S S Sb eωω ω
∞

= + −∫ AL dx  

                                                         
0

( 1)
x

x cee d
x

λ
ω

−∞
= −∫ x  

                                                         lnc λ
λ ω

⎛= ⎜ −⎝ ⎠
⎞
⎟ .               

 
Therefore, the MGF of the gamma subordinator  is explicitly calculated as the 
following: 

tS

 

{ }( ) exp ( ) exp lnSM t tc λω ω
λ ω

⎧ ⎫⎛ ⎞≡ = ⎨ ⎬⎜ ⎟−⎝ ⎠⎩ ⎭
L  

                                                 exp ln
tc tcλ λ

λ ω λ ω

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞= =⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
 

                                                 1

1
1 (1

tc

ctωλ ωλ−
⎛ ⎞= =⎜ ⎟− −⎝ ⎠ 1

1
)− .                                    (11.10) 

 
Note that the equation (11.10) cannot be obtained by setting 0α =  in (11.7). 
 
The probability density of the gamma subordinator  follows a gamma distribution: tS
 

                                             1
0( ) 1

( )

ct
ct g

tGamma g g e
ct

λλ − −
>=

Γ g .                                 (11.11) 
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Using moment generating function (11.10) the mean, variance, skewness, and excess 
kurtosis of the gamma subordinator are calculated as: 
 

                                                   [ ]t
ctE S
λ

= ,                                                              (11.12) 

                                                   2[ ]t
ctVar S
λ

= , 

                                                   2[ ]tSkewness S
ct

= , 

6 [ ]tExcess Kurtosis S
ct

= . 

 
Note that MCC (1998) uses the different parameterization such that: 
 

                        µ =  mean rate c
λ

=    and   κ =  variance rate 2

c
λ

= ,                         (11.13) 

                                                (
2

c µ
κ

=    and   µλ
κ

= ). 

 
Don’t be confused by this different parameterization. We and MCC (1998) are the same. 
Alternatively, (11.12) can be obtained by setting 0α =  in the equation (11.8). 
 
A gamma process is an infinite activity Lévy process because a gamma distribution 
possesses the infinite divisibility and its Lévy measure (11.9) has an infinite integral. This 
means that a gamma process has infinitely many small jumps (i.e. infinite arrival rate of 
small jumps) and a finite number of large jumps (i.e.  is concentrated at the origin). 
A gamma process is a pure jump process since it has no continuous (Brownian motion) 
component.  

( )S dxA

 
[11.2.4] Re-Parameterizing Tempered α-Stable Subordinator Using Its Scale-
Invariance (Self-Similarity) Property  
 
A tempered α -stable subordinator ( , , )tS cα λ  possesses a very important property called 
the scale-invariance since the process  at scale S w tα  has the same law as the process  
at scale  after appropriate rescaling. In other words, if {

S
t ( , , );0 }tS c t Tα λ ≤ ≤  is a 

tempered α -stable subordinator with zero drift 0Sb =  and with parametersα , λ , and c , 
then for every positive constant : w
 

( , , )  ( , / , )t w t
wS c d S w cαα λ α λ , 

 
which is equivalent to stating that the process  is self-similar (read section 6.6 for the 
definition). Remember that if a Lévy process (i.e. includes subordinator) is self-similar, 

S
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then it is strictly stable. This indicates by definition that a tempered α -stable 
subordinator possesses this scale-invariance property. We saw in section 6.6 that a 
standard Brownian motion process tB  is a strictly -stable Lévy process: 2
 

2 Bt w t
wB d . 

 
Because of this scale invariance property of a tempered α -stable subordinator 
{ ( , , ); 0}tS c tα λ ≥  and a standard Brownian motion process tB , we consider only 
tempered α -stable subordinators with [ ]tE S t=  in subordinated models. In other words, 
we re-parameterize a tempered α -stable subordinator so that it has the mean  (i.e. called 
unit mean rate). Remember that in the general case 0

t
1α< <  the mean of a tempered α -

stable subordinator is given by the equation (11.8). The re-parameterization is done by 
setting:  
 

                                        11 1( )
(1 )

c αα
α κ

−−
=
Γ −

   and   1 αλ
κ
−

= ,                            (11.14) 

 
such that:  
 

1 11 1 1[ ] ( ) ( ) [ ]
(1 )tE S t tα αα αα α

α κ κ
− −− −

= − Γ − =
Γ −

, 

 

where use ( ) 1
(1 )

c
c c

Γ −
= −

Γ −
. And the Lévy measure is re-parameterized from three-

parameter measure (11.6) to two-parameter measure: 
 

                                  
( ){ }1

1

exp 1 /1 1( )
(1 )S

x
x

x

α

α

α κα
α κ

−

+

− −−⎛ ⎞= ⎜ ⎟Γ − ⎝ ⎠
A ,                      (11.15) 

 
where α  is the stability index and 0κ >  is a variance rate which is equal to the variance 
of these subordinators at time1, i.e. 1[ ]Var S κ= . Thus, κ  determines the degree of the 
randomness of the time change (i.e. subordination). When 0κ = , the process is 
deterministic. 
 
Following the Lévy-Khinchin representation of the equation (11.1), the MGF of the re-
parameterized tempered α -stable subordinator  is: tS
 

{ }( ) [exp( )] exp ( )S tM E S t Sω ω ω≡ = L , 
 
where the Laplace exponent is given by substituting (11.15): 
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0

( ) ( 1) ( )x
S S Sb eωω ω

∞
= + −∫ AL dx

 1
10

1 1 exp{ (1 ) / }( 1) ( )
(1 )

x xe d
x

ω α
α xα α κ

α κ
∞ −

+

− − −
= −

Γ −∫  

                              1 1 1
1

αα κω
κα α

⎧ ⎫− ⎪ ⎛= − −⎨ ⎜ −⎝ ⎠⎪ ⎪⎩ ⎭

⎪⎞
⎬⎟  .                                                           (11.16) 

 
From the MGF, the variance, skewness, and excess kurtosis of the tempered α -stable 
subordinator with unit mean rate are calculated as: 
 
                                          [ ]tVar S tκ= ,                                        

                                          2[ ]
1tSkewness S

t
α κ
α
−

=
−

, 

                                          
2

2

5 [ ]
(1 )tExcess Kurtosis S

t
κ α α

α
6− +

=
−

.                              (11.17) 

 
Note that the probability density of the tempered α -stable subordinator with unit mean 
rate and zero drift  in the general case0Sb = 0 1α< <  is not known.  
 
[11.2.5] Gamma Subordinator (Process): Special Case of Tempered α-Stable 
Subordinator with Unit Mean Rate When α = 0 
 
Again, consider a special case when 0α = , the tempered α -stable subordinator with unit 
mean rate becomes a gamma subordinator with unit mean rate [ ]tE S t= . Its Lévy density 
can be expressed by setting 0α =  in the equation (11.15) as:  
 

                                                   0
1 exp( / )( ) 1S

xx xx
κ

κ >
−

=A .                                      (11.18) 

 
Because the Laplace exponent of the gamma subordinator with unit mean rate cannot be 
obtained by simply substituting 0α =  in (11.16), we need to derive it step-by-step. The 
MGF of the gamma subordinator  with unit mean rate can be expressed as using Lévy-
Khinchin representation: 

tS

 
[ ]( ) exp( ) exp{ ( )}S tM E S t Sω ω ω≡ = L , 

 
where the Laplace exponent is given as using (11.18): 
 

( ) ( ) ( )
0 0

exp /1( ) 1 ( ) 1x x
S S

x
e x dx e dx

x
ω ω κ

ω
κ

∞ ∞ −
= − = −∫ ∫AL  
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1log logκ ω
κ

κ

⎛ ⎞− − −⎜ ⎟
⎝= ⎠ .                                                         (11.19) 

   
The mean, variance, skewness, and excess kurtosis of the gamma subordinator with unit 
mean rate are calculated as using MGF or by setting 0α =  in (11.17): 
 
                                                  [ ]tE S t= , 
                                                  [ ]tVar S tκ= , 

                                                  [ ] 2tSkewness S
t
κ

= , 

                                                  6 [ ]tExcess Kurtosis S
t
κ

= .                                       (11.20) 

 
Consider obtaining the probability density of the gamma subordinator  with unit mean 
rate. The equation (11.11) is the probability density of the gamma subordinator  with 
the mean rate 

tS

tS
/c λ  (check the equation (11.12)): 

 
1

0( ) 1
( )

ct
ct g

t gGamma g g e
ct

λλ − −
>=

Γ
. 

 
Re-parameterization terms for the purpose of having unit mean rate for the gamma 
subordinator case are obtained by setting 0α =  in the equation (11.14): 
 

1c
κ

=  and 1λ
κ

= . 

 
Obviously, the mean rate after this re-parameterization is: 
 

1/ 1
1/

c κ
λ κ
= = . 

 
Thus, the probability density of a gamma subordinator  with unit mean rate tS [ ]tE S t=  
has a gamma density of the following form: 
 

( )
(1/ )

(1/ ) 1 (1/ )
0

(1/ )( ) 1
(1/ )

t
t g

t gGamma g g e
t

κ
κ κκ

κ
− −
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1
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t

t
g

gg e
t

κ

κκκ
κ

− −
>

⎛ ⎞
⎜ ⎟
⎝ ⎠=
Γ

.                                   (11.21) 
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[11.2.6] Subordinated Brownian Motion Process with Tempered α-Stable 
Subordinator with Unit Mean Rate: Normal Tempered α-Stable Process 
 
Firstly, we deal with a general case. Let { ;0 }tB t T≤ ≤  be a standard Brownian motion 
process and 2( , )tt B N t tθ σ θ σ+ ∼  be a Brownian motion with drift process. Define a new 
stochastic process { ;0 }tX t T≤ ≤  by random time changing (i.e. subordinating) a 
Brownian motion with drift process tt Bθ σ+  by a tempered α -stable subordinator with 
unit mean rate{ : ;0 }tS t T≤ ≤
 

( )
tt t SX S Bθ σ≡ + . 

 
Then, the stochastic process{  is said to be a normal tempered ; 0}tX t ≥ α -stable process. 
The CF of a normal tempered α -stable process can be obtained by the use of the 
subordination theorem of the equation (11.4). As the first step, obtain the CF of the 
original Lévy process which is a Brownian motion with drift process tt Bθ σ+ : 
 

2 2
( )( ) [ ] exp( ) exp{ ( )}

2
ti t B

B BE e i t t tω θ σ σ ωφ ω θω+= = − = ψ ω , 

 
where the characteristic exponent is: 
 

                                                      
2 2

( )
2B i σ ωψ ω θω= − .                                           (11.22) 

  
We saw that the Laplace exponent of the tempered α -stable subordinator  with 

 can be expressed as in the general case 0
tS

[ ]tE S t= 1α< <  by (11.16). Following the 
subordination theorem of the equation (11.2), the CF of the normal tempered α -stable 
process ( )

tt t SX S Bθ σ≡ +  can be obtained by a substitution of (11.22) into (11.16): 
 

{ } ( ){ }( ) exp( ) exp ( )X t SE i X tφ ω ω ψ ω≡ = L B , 
 
with its characteristic exponent: 
 

( )
2 2

( ) ( )
2X S B S i σ ωψ ω ψ ω θω

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
L L  

                                                   

2 2

21 1 1
1

i
α

σ ωκ θω
α

κα α

⎡ ⎤⎧ ⎫⎛ ⎞⎢ ⎥−⎪ ⎪⎜ ⎟− ⎢ ⎥⎪ ⎪⎝= − + ⎠
⎨ ⎬⎢ ⎥−⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

.                     (11.23) 
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Using the characteristic exponent (11.23), the mean, variance, skewness, and excess 
kurtosis of the normal tempered α -stable process with unit mean rate are calculated as in 
the general case 0 1α< < : 
 
     [ ]tE X tθ= ,                                                                                                            (11.24) 
     , 2 2[ ] ( )tVar X tκθ σ= +

     
2 2( ( 2) 3 ( 1))[ ]

1tSkewness X tκθ κθ α σ α
α
− + −

=
−

, 

2 4 2 2 2 2 4 2

2 2 2 2

( ( 5 6) 6 ( 3 2) 3 ( 1) ) [ ]
( 1) ( )tExcess Kurtosis X tκ κ θ α α κθ σ α α σ α
α κθ σ

− + + − + + −
=

− +
. 

 
Cont and Tankov (2004) shows that the Lévy density of the normal tempered α -stable 
process is given by (again we assume the drift of the subordinator is zero for simplicity, 
i.e. ): 0Sb =
 

                       

2 2

112 2
22

2 (1 )( , , , )( ) exp
xFx x K

x
αα

θ σ αθ α κ σ θ κ
σ σ++

⎛ ⎞
+ −⎜ ⎟⎛ ⎞ ⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎝ ⎠

⎜ ⎟
⎝ ⎠

A ,          (11.25) 

 

where 
1 1

2 42 2

2

2 2( , , , ) (1 )
(1 ) 2

F
α

1 ααα κ σ θ θ σ α
κ κα πσ

+ −−⎧ ⎫ ⎛ ⎞
⎠

= + −⎨ ⎬ ⎜ ⎟
⎩ ⎭ ⎝Γ −

 and K  is a 

modified Bessel function of the second kind (Appendix 7 gives its details).  
 
Note that because the probability density of tempered α -stable subordinator is not 
known in the general case (i.e. known only for 0α =  and 1/ ), the probability density of 
the normal tempered 

2
α -stable process is not known in the general case 0 1α< < , either. 

 
[11.2.7] Variance Gamma (VG) Process: Subordinated Brownian Motion Process 
with Tempered 0-Stable Subordinator with Unit Mean Rate: Normal Tempered 0-
Stable Process 
 
Consider a special case when 0α = . Define a new stochastic process { ;0 }tX t T≤ ≤  by 
random time changing (i.e. subordinating) a Brownian motion with drift process tt Bθ σ+  
by a tempered 0α = -stable subordinator{ ;0 }tS t T≤ ≤  with unit mean rate: 
 

( )
tt t SX S Bθ σ≡ + . 
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Then, the stochastic process{ ;0 }tX t T≤ ≤  is a normal tempered 0-stable process which is 
called a variance gamma (VG) process. Because the CF of VG process cannot be 
obtained by simply substituting 0α =  in (11.23), we need to do this step-by-step.  
 
Following the subordination theorem of the equation (11.2), the characteristic function of 
the VG (normal tempered 0-stable) process ( )

tt t SX S Bθ σ≡ +  can be obtained by 
substituting the CE of the Brownian motion with drift process (11.22) into the Laplace 
exponent of the gamma subordinator { ;0 }tS t T≤ ≤  with unit mean rate (11.19): 
 

( ){ } ( ){ }( ) exp exp ( )X t SE i X t Bφ ω ω ψ≡ = L ω , 
 
with its characteristic exponent: 
 

                  ( )
2 2 2 21( ) ( ) ln 1
2 2X S B i iσ ω σ ω κψ ω ψ ω θω θκ

κ
⎛ ⎞ ⎛

= = − = − + −⎜ ⎟ ⎜
⎝ ⎠ ⎝

L � L� ω
⎞
⎟
⎠

.    (11.26) 

 
The characteristic function of the VG process ( )Xφ ω  can be explicitly calculated as 
follows (corresponding to MCC (1998) equation 7): 
 

( ){ }
2 21( ) exp ( ) exp ln 1
2X S Bt t σ ω κφ ω ψ ω θκω

κ
i

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪= = − + −⎢ ⎥⎨ ⎬⎜ ⎟
⎪ ⎪⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦

L  

                   
2 2 2 2

ln ( ) ln 1 ln 1
2 2

t

X
t i i

κσ ω κ σ ω κφ ω θκω θκω
κ

−
⎛ ⎞ ⎛ ⎞

= − + − = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

                   
2 2

( ) 1
2

t

X i
κσ ω κφ ω θκω

−
⎛ ⎞

= + −⎜
⎝ ⎠

⎟ .                                                              (11.27) 

 
Consider obtaining a probability density function of a VG process{ ;0 }tX t T≤ ≤ . Start 
from the fact that a Brownian motion with drift tW t tBθ σ≡ +  has a normal density: 
 

( )
2

22

( )1 exp{ }
22
t

t
W tW

tt
θ

σπσ

−
= −P . 

 
Because of the subordination structure ( )

tt t SX S Bθ σ≡ + , by conditioning on the fact that 
the realized value of the random time change by a gamma subordinator  with unit mean 
rate is , the conditional probability density of VG process can be expressed as: 

tS

tS g=
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( )
2

22

( )1 exp
22
t

t t
x gVG x t S g

gg
θ

σπσ

⎧ ⎫−
= = = −⎨ ⎬

⎩ ⎭
. 

 
Therefore, the unconditional density of the VG process is calculated by multiplying out 
the gamma probability density of the equation (11.21): 
 

                      ( ) ( )
( )

/2 1 /
220

1/( )1 exp
2 /2

t t
gt

t
x gVG x g e dg

g tg

κ
κκ

κθ
σ κπσ

∞ − −⎧ ⎫−
= −⎨ ⎬ Γ⎩ ⎭
∫ ,         (11.28) 

 
which corresponds to MCC (1998) equation 6. After tedious algebra: 
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⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟+⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝⎝ ⎠= ⎜ ⎟ ⎜ ⎟Γ ⎜ ⎟ ⎜ ⎟+⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎝ ⎠

⎠ ,     (11.29) 

           
which is MCC (1998) equation 23 and K  is a modified Bessel function of the second 
kind. 
 
Using the CF (11.27), cumulants of the VG process are calculated as: 
 
                                      1cumulant tθ= , 
                                      , 2 2

2 ( )cumulant tκθ σ= +

                                      3 2 2
3 (2 3 )cumulant tθ κ σ θκ= + , 

4 4 3 2 2
4 (3 6 12 )cumulant t2σ κ θ κ σ θ κ= + + . 

 
From these cumulants (or by setting 0α =  in the equation (11.24)), annualized (per unit 
of time) mean, variance, skewness, and excess kurtosis of the variance gamma process 
are calculated as (corresponding to MCC (1998) equations 18, 19, and 20):  
 
                                [ ]tE X θ= , 
                                , 2 2[ ]tVar X κθ σ= +

                                3 2 2[ ] 2 3tSkewness X θ κ σ θ= + κ , 

                                
4 4 3 2 2

2 2 2

3 6 12 [ ]
( )tExcess Kurtosis X

2σ κ θ κ σ θ κ
κθ σ

+ +
=

+
.                   (11.30) 

 
Note that these standardized moments are not equivalent to those of log-return density of 
VG model. These are simply the moments of VG density. This point will be explained in 
section 11.4. Several very interesting properties of VG density should be worth 
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mentioning. If 0θ =  (i.e. subordination of zero-drift Brownian motion process with 
gamma subordinator), then: 
 
                                                  [ ] 0tE X = , 
                                                  2[ ]tVar X σ= , 
                                                  [ ] 0tSkewness X = , 

[ ] 3tExcess Kurtosis X κ= , 
 
which indicates that VG density is symmetric (zero-skewness) and its excess kurtosis (i.e. 
tail behavior) is determined by the variance rate κ  of the gamma subordinator . 
Generally, the sign of the drift parameter of the Brownian motion with drift process 

tS
θ  

determines the skewness of VG density as illustrated in Figure 11.1. The case 0.2θ = −  is 
a mirror image of the case 0.2θ = . 
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Figure 11.1: VG Density for Different Values of Drift Parameter of the Brownian 
Motion Process θ. Parameters fixed are 0.5t = , 0.2σ = , and 0.1κ = .  
 

Table 11.1 
Annualized Moments of VG Density in Figure 11.1 

 
Model                 Mean           Standard Deviation          Skewness          Excess Kurtosis 
 

0.2θ = −              -0.2                    0.209762                   -0.00256                0.352066 
0θ =                     0                       0.2                                   0                       0.3 
0.2θ =                  0.2                    0.209762                     0.00256                0.352066 

 
Secondly, larger value of variance rate κ  (i.e. the variance rate of the gamma 
subordinator  with unit mean rate and determines the degree of randomness of the 
subordination) makes the density fatter-tailed and higher-peaked as illustrated in Figure 
11.2.   

tS
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Figure 11.2: VG Density for Different Values of Variance Rate Parameter κ. 
Parameters fixed are , 0.5t = 0.2σ = , and 0θ = .   
 

Table 11.2 
Annualized Moments of VG Density in Figure 11.2 

 
Model                 Mean           Standard Deviation          Skewness          Excess Kurtosis 
 

0.001κ =                0                          0.2                              0                         0.003 
0.25κ =                 0                          0.2                              0                          0.75 
0.5κ =                   0                          0.2                              0                          1.5 

 
Also note that VG density has higher peak and fatter tails (more leptokurtic) when 
matched to the Normal density as illustrated in Figure 11.3. 
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Figure 11.3: VG Density vs. Normal Density. Parameters fixed for the VG density 
are , 0.5t = 0.2θ = − , 0.2σ = , and 0.1κ = . Normal density is plotted by matching the 
mean and variance to the VG.  
 

Table 11.3 
Annualized Moments of VG Density in Figure 11.3 
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Model                 Mean           Standard Deviation          Skewness          Excess Kurtosis 
 
VG with 

0.2θ = −              -0.2                    0.209762                   -0.00256                0.352066 
 
Normal                -0.2                    0.209762                          0                           0 
 
[11.3] Lévy Measure for Variance Gamma (VG) Process 
 
We saw that the Lévy measure for the normal tempered α -stable process in the general 
case 0 1α< <  is given by the equation (11.25). The Lévy density of the VG process can 
be obtained by setting 0α =  in (11.25) as:  
 

                                                  {1( ) exp }x Ax B x
xκ

= −A ,                                      (11.31) 

 

where 2A θ
σ

=  and 

2
2

2

2

B

σ θ
κ
σ

+
=  and (11.31) corresponds to MCC (1998) equation 14. 

Tails of both Lévy density of the equation (11.31) and probability density of the equation 
(11.29) of the VG process are exponentially decayed with rates B Aλ+ = −  (for the upper 
tail) and B Aλ− = +  (for the lower tail).  
 
A VG process is an infinite activity Lévy process since the integral of Lévy measure 

(11.31), ( )x dx
∞

−∞∫ A , does not converge in [0, ]∞  (i.e. an infinite integral). This means that 

a VG process has infinitely many small jumps but a finite number of large jumps 
inheriting the infinite arrival rate of jumps from the gamma subordinator. In other words, 
the Lévy measure ( )xA  of the VG process is concentrated around zero which will be 
illustrated soon.  
 
An example of Lévy measure ( )xA  for the VG process is plotted in Figure 11.4 where 
panel A plots the lower tail and panel B plots the upper tail because ( )xA  becomes 
complex infinity when  (i.e. infinite arrival rate). Generally, the sign of the drift 
parameter of the Brownian motion with drift process 

0x =
θ  determines the skewness of VG 

Lévy density as illustrated and the case 0.2θ = −  is a mirror image of the case 0.2θ = . 
This means that if 0θ = , we have a symmetric VG Lévy density. Larger values of the 
variance rate parameter  for the gamma subordinator with unit variance rate (i.e. higher 
degree of randomness of the subordination) leads to lower exponential decay rate of the 
Lévy measure

κ

( )xA  (i.e. lower B  in the above), thus the tails of Lévy measure becomes 
fatter indicating higher probability of large jumps. This point is illustrated in Figure 11.5. 

 187



-0.5 -0.4 -0.3 -0.2 -0.1
xt

0

2

4

6

8

10

yveL
ytisneD

θ=0.2

θ=0

θ=−0.2

 

 

A) Lower tail. 
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B) Upper tail. 
 
Figure 11.4: Lévy Measure ( )xA  for VG Process with Different Values for the Drift 
Parameter of the Brownian Motion Process θ. Parameters fixed are , 0.5t = 0.2σ = , 
and .  0.5κ =
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A) Lower tail. 
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B) Upper tail. 
 
Figure 11.5: Lévy Measure ( )xA  for VG Process with Different Values for the 
Variance Rate Parameter κ. Parameters fixed are 0.5t = , 0θ = , and 0.2σ = .  
 
[11.4] Modeling Stock Price Dynamics with VG Process and VG Log-Return 
Density 
 
We saw in section 7.6 that in the BS case, a stock price process { ;0 }tS t T≤ ≤  is modeled 
as an exponential Lévy process of the form: 
 

0 e tX
tS S= , 

 
where { ;0 }tX t T≤ ≤  is a Lévy process. BS choose a Brownian motion with drift 
(continuous diffusion process) as the Lévy process: 
 

21
2t tX t Bµ σ σ⎛ ⎞≡ − +⎜ ⎟

⎝ ⎠
. 

 
The fact that an stock price  is modeled as an exponential of Lévy process tS tX  means 

that its log-return 
0

ln( )tS
S

 is modeled as a Lévy process such that: 

 
2

0

1ln( )
2

t
t t

S X t
S

Bµ σ σ⎛ ⎞= = − +⎜ ⎟
⎝ ⎠

. 

 
BS model can be categorized as the only continuous exponential Lévy model apparently 
because a Brownian motion process is the only continuous (i.e. no jumps) Lévy process.  
 
Now by replacing a standard Brownian motion process tB  with a VG process 

( ; , , )tVG x θ σ κ  and  being the variance rate of the gamma subordinator, stock price κ
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dynamics under historical probability measure  can be expressed as (MCC (1998) 
equation 21): 

P

 

                  
2

0
1exp ln 1 ( ; , , )

2t tS S m t VG xσ κθ κ θ σ κ
κ

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪= + − − +⎢ ⎥⎨ ⎬⎜ ⎟
⎪ ⎪⎢ ⎥⎝ ⎠⎩ ⎭⎣ ⎦

P P
P P P P P

P

,       (11.32) 

 
where  is the instantaneous rate of return on the stock under P .  m
 
A stock price process {  is not a martingale under P  because risk-averse 
investors expect  to grow at a rate greater than the constant risk-free interest rate : 

;0 }tS t T≤ ≤

tS r
 

[ ]r
t t tE e S S− ∆

+∆ >P . 
 
Thus, for the purpose of option pricing we convert non-martingales into martingales by 
changing the probability measure. In other words, we will try to find an equivalent 
probability measure  (called risk-neutral measure) under which the stock price 
discounted by the risk-free interest rate becomes martingale: 

Q

 
[ ]r

t t tE e S S− ∆
+∆ =Q . 

 
This risk-neutral dynamics is given by: 
 

                   
2

0
1exp ln 1 ( ; , , )

2t tS S r t VG x
σ κ

θ κ θ σ κ
κ

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪= + − − +⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦

Q Q
Q Q Q Q Q

Q

.     (11.33) 

 
In VG model, log-return  is modeled as under historical probability 
measure : 

0ln( / )t tz S S≡
P

 

                         
21 ln 1 ( ; , , )
2t tz m t VG xσ κθ κ

κ
⎧ ⎫⎛ ⎞⎪ ⎪= + − − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

P P
P P P P P

P

θ σ κ .               (11.34) 

 
VG process tx  has VG density of the form of equation (11.29). Use the relationship 
(11.34): 
 

                                     
21 ln 1
2t tx z m σ κθ κ

κ
⎧ ⎫⎛ ⎞⎪ ⎪= − + − −⎨ ⎬⎜
⎪ ⎪⎝ ⎠⎩ ⎭

P P
P P

P

t⎟ ,                           (11.35) 

 
where the term inside the curly bracket is deterministic. Therefore, log-return 

 density under historical probability measure  in VG model can be 
written as (MCC (1998) equation 23): 

0ln( / )t tz S S≡ P
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               ( )
( )

1 2
2 4 2 2

22

12 2/
2 2

2
2 exp

2/

t

tt
t

t tt

xx
xVG z K

t

κ

κ
κ

σθ θ
κσ

σ σκ σ π κ θ
κ

−

−

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟+⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝⎝ ⎠= ⎜ ⎟ ⎜ ⎟Γ ⎜ ⎟ ⎜ ⎟+⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎝ ⎠

⎠ ,     (11.36) 

 

where 
21 ln 1
2t tx z m σ κθκ

κ
⎧ ⎫⎛⎪= − + − −⎨ ⎜
⎪ ⎪⎝ ⎠⎩ ⎭

t
⎞⎪
⎬⎟ . This answers to the statement we made in 

section 11.2 that those standardized moments of a VG process tx  in the equation (11.30) 
are not equivalent to those of log-return 0ln( / )t tz S S≡  density of VG model because of a 

correction term 
21 ln 1
2

m σ κθκ
κ

⎧ ⎫⎛⎪− + − −⎨ ⎜
⎪ ⎪⎝ ⎠⎩ ⎭

t
⎞⎪
⎬⎟ . VG log-return density  does not 

have a nice closed form expression for the standardized moments like those for a VG 
process. Thus, we will simply numerically calculate those when necessary. By taking 
care of this correction term we plot several figures here for the purpose of illustration. 
Several very interesting properties of VG log-return density 

( )tVG z

( )tVG z  should be worth 
mentioning. If 0θ =  (i.e. subordination of zero-drift Brownian motion process with 
gamma subordinator), VG log-return density is symmetric (zero-skewness). Generally, 
the sign of the drift parameter of the Brownian motion with drift process θ  determines 
the skewness of VG log-return density as illustrated in Figure 11.6. The case 0.2θ = −  is 
a mirror image of the case 0.2θ = .  
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Figure 11.6: VG Log-Return Density for Different Values of Drift Parameter of the 
Brownian Motion Process θ. Parameters fixed are 0.5t = , 0.2σ = , 0.1κ = , and 

.  0.05m =
 

Table 11.4 
Annualized Moments of VG Log-Return Density in Figure 11.6 
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Model                 Mean           Standard Deviation          Skewness          Excess Kurtosis 
 

0.2θ = −           0.028399              0.209762                   -0.392262              0.704132 
0θ =                 0.02998                0.2                                    0                     0.6 
0.2θ =             0.275439               0.209762                    0.392262              0.704132 

 
Secondly, larger value of variance rate κ  (which is the variance rate of the gamma 
subordinator with  and determines how random the subordination is) makes the 
density fatter-tailed and higher-peaked as illustrated in Figure 11.7.   
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Figure 11.7: VG Log-Return Density for Different Values of Variance Rate 
Parameter κ. Parameters fixed are 0.5t = , 0θ = , 0.2σ = , and 0.05m = .   
 

Table 11.5 
Annualized Moments of VG Log-Return Density in Figure 11.7 

 
Model                 Mean           Standard Deviation          Skewness          Excess Kurtosis 
 

0.001κ =        0.0299998                   0.2                               0                        0.006 
0.25κ =          0.0299498                   0.2                               0                        1.5 
0.5κ =            0.0298993                   0.2                               0                        3 

 
Also note that VG log return density has higher peak and fatter tails (more leptokurtic) 
when matched to the BS normal log return density as illustrated in Figure 11.8. 
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Figure 11.8: VG Log-Return Density vs. Black-Scholes Normal Log-Return Density. 
Parameters fixed for the VG log-return density are 0.5t = , 0.2θ = − , 0.2σ = , , 
and . Black-Scholes normal density is plotted by matching the mean and 
variance to the VG.  

0.1κ =
0.05m =

 
Table 11.6 

Annualized Moments of VG Log-Return Density in Figure 11.8 
 
Model                 Mean           Standard Deviation          Skewness          Excess Kurtosis 
 
VG with 

0.2θ = −         0.0283992               0.209762                  -0.392262               0.704132 
 
BS                  0.0283992               0.209762                          0                            0 
 
[11.5] Option Pricing with VG Model 
              
We saw that the risk-neutral dynamics of a stock price is given by the equation (11.33): 
 

2

0
1exp ln 1 ( ; , , )

2t tS S r t VG x
σ κ

θ κ θ σ κ
κ

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪= + − − +⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦

Q Q
Q Q Q Q Q

Q

, 

 
where { ;0 }tx t T≤ ≤  is a VG process on a space ( , , )Ω QF  and  is the constant risk-free 
interest rate. Then, a European call option price 

r
( ; )VG tC S T tτ = −  is calculated as: 

 
( )( ; ) max ,0r

VG t T tC S e E S Kττ − ⎡ ⎤= −⎣ ⎦
Q F . 

 
We saw in section 11.2.7 that because of the subordination structure ( )

tt t SX S Bθ σ≡ +  of 
the VG process{ ;0 }tX t T≤ ≤ , the probability density of VG process can be expressed as 
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the conditionally normal by conditioning on the fact that the realized value of the random 
time change by a gamma subordinator  with unit mean rate istS tS g= : 
 

( )
2

22

( )1 exp
22
t

t t
x gVG x t S g

gg
θ

σπσ

⎧ ⎫−
= = = −⎨ ⎬

⎩ ⎭
. 

 
Using this conditional normality of VG process, the call price conditioned on the fact that 
the realized value of the random time change by a gamma subordinator  with unit mean 
rate is  can be obtained as a BS type formula (equation 6.5 in Madan and Milne 
(1991)): 

tS

tS g=

2 2( ) ( )1 exp (
2 2VG t

s s g dC g S N s g
g

τ
κκ α α α

⎛ ⎞⎛ ⎞ ⎛ ⎞+ +
= − + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

)  

                             
2 2

exp( ) 1 exp
2 2

g dK r N
g

τ
κκα ατ α

⎛ ⎞⎛ ⎞ ⎛ ⎞
− − − +⎜⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠

g ⎟⎟ ,                 (11.37) 

 
where  is a cumulative distribution function for a standard normal variable. And the 
parameterizations are follows: 

N

 

2

θζ
σ

= − , 
2

21
2

s σ
θ κ
σ

=

+

, 
2

2

2

s θα ζ
θ κσ

= = −

+

, ( )2
1 2

c sκ α= + , 2
2 2

c κ α= , 

         
2

1

2

1 1 (
1 2

c
c

)σκ θ−
= + −

−
, and 1

2

11 ln( ) ( ) ln( )
1

tS cT td r T t
s K cκ
⎡ ⎤−−

= + − +⎢ ⎥−⎣ ⎦
. 

 
Unconditional call price is then obtained by integrating the conditional price VGC g  with 
respect to gamma density of the equation (11.21): 
 

                                    ( ) ( ) ( )
( )

/
1 /

0

1/
;

/

t t
g

VG t VGC S C g g e dg
t

κ
κκ

κ
τ

κ
∞ −=

Γ∫
−

.                       (11.38) 

 
MCC (1998) defines a user specified function ( , , )a b γΨ : 
 

                               
1

0

exp( )( , , )
( )

a u ua b N b u du
u

γ

γ
γ

−∞ −⎛ ⎞
Ψ = +⎜ ⎟ Γ⎝ ⎠∫ .                          (11.39) 

 
After numerous changes of variables, a European call price for VG model is obtained as 
(MCC (1998) theorem 2):  
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1

1

1( ; ) , ( ) ,
1VG t t

cC S S d s
c

κ ττ α
κ κ

⎛ ⎞−
= Ψ +⎜ ⎟⎜ ⎟−⎝ ⎠

 

                                                   2

2

1exp( ) , ,
1

cK rt d s
c
κ τα

κ κ
⎛ ⎞−

− − Ψ⎜ ⎟⎜ ⎟−⎝ ⎠
.               (11.40) 

 
Because the equation (11.39) is not a closed-form function, the call price (11.40) is not a 
closed-from option pricing function. In order to obtain a closed-form option pricing 
function, MCC (1998) rewrites (11.39) in terms of the modified Bessel function of the 
second kind K  and the confluent hypergeometric function of two variables 

( , , ; , )x yα β γΦ  as follows: 
    

( , , )a b γΨ  
( )1/ 2

1/ 2

exp sign( ) (1 ) 1( ) ( ,1 ,1 ; , sign( ) (1 ))
22 ( )

c a c u uK c a c u
γ γ

γ γ γ γ
π γ γ

+

+

+ +
= Φ − +

Γ
− +  

( )1/ 2 1

1/ 2

exp sign( ) (1 ) 1sign( ) ( ) (1 ,1 , 2 ; , sign( ) (1 ))
22 ( )(1 )

c a c u ua K c
γ γ

γ γ γ γ
π γ γ

+ +

−

+ +
− Φ + − +

Γ +
a c u− +  

( )1/ 2

1/ 2

exp sign( ) (1 ) 1sign( ) ( ) ( ,1 ,1 ; , sign( ) (1 )
22 ( )

c a c u ua K c
γ γ

γ γ γ γ
π γ γ

+

−

+ +
+ Φ − +

Γ
)a c u− + , 

 
where: 
 

1 1 1

0

( )( , , ; , ) (1 ) (1 ) exp( )
( ) ( )

x y u u uxα γ α β uy duγα β γ
α γ α

− − − −Γ
Φ = − −

Γ Γ − ∫ , 

                22c a b= + , 

                
22

bu
b

=
+

.                                                                                               (11.41) 

 
We were unsuccessful implementing the, so called, closed form VG call price of the 
equation (11.40) with (11.41). We believe this is due to the confluent hypergeometric 
function of two variables ( , , ; , )x yα β γΦ  having the singularity at 1u = . Therefore, we 
use the numerical VG call price of the equation (11.40) with (11.39). 
 
[11.6] Option Pricing Example of VG Model 
 
In this section we calculate the numerical VG call prices of the equation (11.40) with 
(11.39) and compare them with BS counterparts. Consider pricing a plain vanilla call 
with common parameters and variables fixed = 50, tS 0.2σ = , = 0.05, = 0.02, r q τ = 
0.25. VG parameters are set at 0.1θ = −  and 0.1κ = , unless mentioned otherwise.  
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The first thing we noticed when implementing the numerical VG call price is that its 
failure to achieve convergence since the integrand (11.39) has a non-integrable 
singularity at . Practical problem with this singularity is that the numerical VG call 
price cannot be calculated for deep OTM calls with 

0u =
60 K<  as illustrated in Figure 11.9 

where the numerical VG call prices are computed for the range of the strike 
price 0 . The level of out of moneyness of calls whose prices can be computed 
with the numerical VG formula depends on the VG parameters 

100K≤ ≤
θ  and . This is a big 

problem for the purpose of calibration because we are mainly interested in OTM options 
due to their high liquidity. For puts, the numerical VG price cannot be calculated for deep 
ITM puts. But this won’t be a huge problem. 
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B) Put. 
 
Figure 11.9: Numerical VG Prices. = 50, tS 0.2σ = , = 0.05, = 0.02, r q τ = 0.25. VG 
parameters are set at 0.1θ = −  and 0.1κ = .  
 
Figure 11.10 compares numerical VG call prices with BS counterparts. Note the 
followings: (1) When VG parameters (θ  and κ ) are small, these two prices cannot be 
distinguished by naked eyes in Panel A left. When the difference is plotted on the right, 
the numerical VG price underprices ATM calls by approximately 0.008. (2) The size of 
the drift parameter of the subordinated Brownian motion process θ  has very little impact 
on the numerical VG call price. As the size of θ  increases from -0.01 to -0.3 (i.e. 
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increased skewness of log-return density), the numerical VG price and the BS price are 
virtually identical as illustrated in Panel B where the numerical VG price overprices 
ATM call by approximately 0.0125. (3) As the variance rate parameter of the gamma 
subordinator  increases (i.e. increased randomness associated with time change), VG 
model underprices ATM call and overprices OTM call as illustrated in Panel C. Panel D 
shows the distinct character of the numerical VG call price is that the overvaluation of 
OTM call. 
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A) VG parameters: θ = -0.01 and κ = 0.01. 
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B) VG parameters: θ = -0.3 and κ = 0.01. 
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C) VG parameters: θ = -0.01 and κ = 0.3. 
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D) VG parameters: θ = -0.3 and κ = 0.3. 
 
Figure 11.10: VG Call Price vs. Black-Scholes Call Price. Parameters and variables 
used are = 50, tS 0.2σ = , r = 0.05, = 0.02, and q τ = 0.25. 
 
Figure 11.11 compares numerical VG put prices with BS counterparts. Note the 
followings: (1) When VG parameters (θ  and κ ) are small, these two prices cannot be 
distinguished by naked eyes in Panel A left. When the difference is plotted on the right, 
the numerical VG price slightly underprices ATM puts by approximately 0.008. (2) The 
size of the drift parameter of the subordinated Brownian motion process θ  has very little 
impact on the numerical VG put price. As the size of θ  increases from -0.01 to -0.3 (i.e. 
increased skewness of log-return density), the numerical VG price and the BS price are 
virtually identical as illustrated in Panel B where the numerical VG price overprices 
ATM put slightly by approximately 0.0125. (3) As the variance rate parameter of the 
gamma subordinator  increases (i.e. increased randomness associated with time κ
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change), VG model underprices ATM puts and overprices ITM calls as illustrated in 
Panel C. Panel D shows the distinct character of the numerical VG put price is that the 
overvaluation of ITM put. 

20 30 40 50 60 70 80
Strike K

0

5

10

15

20

25

tuP
ecirP

BS
VG

 
20 25 30 35 40 45 50

Strike K

-0.002

0

0.002

0.004

0.006

0.008

rorrE

BS−VG

 
A) VG parameters: θ = -0.01 and κ = 0.01. 
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B) VG parameters: θ = -0.3 and κ = 0.01. 
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C) VG parameters: θ = -0.01 and κ = 0.3. 
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D) VG parameters: θ = -0.3 and κ = 0.3. 
 
Figure 11.11: VG Put Price vs. Black-Scholes Put Price. Parameters and variables 
used are = 50, tS 0.2σ = , r = 0.05, = 0.02, and q τ = 0.25. 
 
[11.7] Lévy Measure of VG Log-Return zt
 
We saw in section 11.3 that the Lévy measure of the VG process is given by the equation 
(11.31). We saw in section 11.4 that the log-return 0ln( / )t tz S S≡  and a VG process tx  
are related by the equation (11.35). Therefore, the Lévy measure of the VG log-return  
can be expressed as: 

tz

 

                                                  {1( ) expz Ax
xκ

= −A }B x ,                                      (11.43) 

 
where: 
 

21 ln 1
2

x z m σ κθ κ
κ

⎧ ⎫⎛ ⎞⎪ ⎪= − + − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

P P
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σ
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An example of Lévy measure of the VG log-return  is plotted in Figure 11.12. 
Generally, the sign of the drift parameter of the subordinated Brownian motion with drift 
process 

tz

θ  determines the skewness of Lévy measure  of the VG log-return  as 
illustrated and the case 

( )zA tz
0.2θ = −  is a mirror image of the case 0.2θ = . This means that 

if 0θ = , we have a symmetric Lévy measure . Larger values of the variance rate 
parameter  for the gamma subordinator with unit variance rate (i.e. higher degree of 
randomness of the subordination) leads to lower exponential decay rate of the Lévy 
measure , thus the tails of Lévy measure becomes fatter indicating higher 
probability of large jumps. This point is illustrated in Figure 11.13. 
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Figure 11.12: Lévy Measures of VG Log-Return zt with Different Values for the 
Drift Parameter of the Subordinated Brownian Motion Process θ. Parameters fixed 
are 0.2σ = , , and = 0.05.  0.1κ = m
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Figure 11.13: Lévy Measures of VG Log-Return zt with Different Values for the 
Variance Rate Parameter of the Gamma Subordinator κ. Parameters fixed are 

0.2σ = , 0θ = , and m = 0.05.  
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[12] VG (Variance Gamma) Model with Fourier Transform Pricing 
 
We saw in section 11 that the most important character of VG model is its conditional 
normal property. Because of the subordination structure ( )

tt t SX S Bθ σ≡ +  of the VG 
process{ ;0 }tX t T≤ ≤ , the probability density of VG process can be expressed as the 
conditionally normal by conditioning on the fact that the realized value of the random 
time change by a gamma subordinator  with unit mean rate istS tS g= . Similarly, the 
conditional call price can be obtained as a BS type formula of (11.37) and the 
unconditional call price is then obtained by integrating the conditional price with respect 
to gamma density. As a result, a call price can be expressed as single numerical 
integration problem of the equation (11.40) with (11.39). 
 
But as we realize MCC (1998) use very complicated process of numerous changes of 
variables in order to obtain a closed form call price of the equation (11.40) with (11.41) 
and to express the call price in terms of special functions of mathematics. This procedure 
is not only cumbersome, but also deficient of generality. 
 
As far as the numerical VG call price is concerned, it is simpler to implement, but it has a 
critical problem of failing to achieve convergence for deep OTM calls since the integrand 
(11.39) has a non-integrable singularity at 0u = .  
 
Thus, we are in desperate need of more general and simpler method of pricing for VG 
model and other exponential Lévy models. In this section we present our version of 
Fourier transform option pricing with VG model. We would like readers to appreciate its 
generality and simplicity.   
 
[12.1] VG Model with Fourier Transform Pricing Method  
 
The first step to FT option pricing is to obtain the CF of the log stock price l . Risk-
neutral log stock price dynamics can be obtained from the equation (11.33) as: 

n tS

 

                 ( )
2

0
1ln ln ln 1 ; , ,

2t tS S r t VG x
σ κ

θ κ θ
κ

⎧ ⎫⎛ ⎞⎪ ⎪= + + − − +⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

Q Q
Q Q Q Q Q

Q

σ κ .        (12.1) 

 
VG process tx  has VG density of the form of equation (11.29). After rearrangement: 
 

                             
2

0
1ln ln ln 1

2t tx S S r
σ κ

θ κ
κ

⎡ ⎤
t

⎧ ⎫⎛ ⎞⎪ ⎪= − + + − −⎢ ⎥⎜ ⎟⎨ ⎬⎜⎢ ⎥⎟⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦

Q Q
Q Q

Q

,                  (12.2) 

 
where the term inside the square bracket is deterministic. Therefore, risk-neutral log stock 
price density in VG model can be written as: 
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where 
2

0
1ln ln ln 1

2t tx S S r
σ κ

θ κ
κ

⎡ ⎤⎧ ⎫⎛ ⎞⎪= − + + − −⎢ ⎥⎜⎨ ⎜⎢ ⎥⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦

Q Q
Q Q

Q

t⎪⎟⎬⎟ . By Fourier transforming 

(12.3) with FT parameters ( , , ) (1,1)a b = , its CF can be calculated. But this direct 
computation of CF is difficult because it involves the Bessel function.  
 
Consider a following example. The CF function of a multiplicative standard Brownian 
motion process { ;0 }tB t Tσ ≤ ≤  is: 
 

2

22

1( ) ( ) exp
22

t ti B i B t
B t t

Be B dB e d
tt

ω ωφ ω
σπσ

∞ ∞

−∞ −∞
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⎝ ⎠
∫ ∫P tB  

                                 
2 2

exp
2
tσ ω⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. 

 
When the drift term  is added, the CF function of a Brownian motion with drift 
process {

At
;0 }t tW At B t Tσ≡ + ≤ ≤  is: 

 

( )2

22

1( ) ( ) exp
22

t t ti W i W
W t t

W At
e W dW e dW

tt
ω ωφ ω

σπσ

∞ ∞

−∞ −∞
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                            ( )
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exp exp exp
2 2
t tiAt iAtσ ω σω ω

⎛ ⎞ ⎛
= − = −⎜ ⎟ ⎜

⎝ ⎠ ⎝

ω ⎞
⎟
⎠

)

. 

                
This implies that the CF of a Brownian motion with drift process can be obtained by 
simple multiplication of the CF function of a multiplicative standard Brownian motion 
process and (exp iAtω . Let’s use this logic in our context. We derived the CF of a VG 
process tx  which is given by the equation (11.27): 
 

                                               
2 2

( ) 1
2

t

X i
κσ ω κφ ω θκω

−
⎛ ⎞

= + −⎜
⎝ ⎠

⎟ .                                  (11.27) 
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From the VG risk-neutral log stock price dynamics of the equation (12.1), by taking care 

of the drift term
2

0
1ln ln 1

2
At S r t

σ κ
θ κ

κ

⎧ ⎫⎛ ⎞⎪ ⎪≡ + + − −⎜⎨ ⎬⎜⎪ ⎪⎝ ⎠⎩ ⎭

Q Q
Q Q

Q
⎟⎟ , the CF of log stock price 

can be expressed as: 
 

2 2 2
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2 2t

t

S i S r t i
κσ κ σ ω κφ ω ω θ κ θκω
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Q Q
Q Q
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Set t  and . And dropQ : T= ln TS s≡ T
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By substituting the above CF into the general FT call pricing formula of the equation 
(8.17), we obtain VG-FT call pricing formula: 
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( )2 2
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We implement the VG-FT formula (12.5) with decay rate parameter 1.5α =  and compare 
the result to the numerical VG call price using common parameters and variables 
fixed , 0 50S = 0.2σ = , , 0.05r = 0.02q = , 20 / 252T = , 0.1θ = − , and . Figure 
12.1 demonstrates two important points. One is that as previously mentioned, the 
numerical VG price cannot be calculated for deep OTM calls because they fail to  
converge which is shown in Panel B. The other is that although the VG-FT price can be 
calculated for deep OTM calls but they also fail to achieve convergence at the acceptable 
level of accuracy. On top of this, the additional issue with VG-FT price is that it oscillates 
severely for the deep ITM and OTM calls as illustrated by Figure 12.2. Especially for the 
deep OTM calls, this oscillation yields negative call prices. This interesting oscillation 
pattern for deep OTM calls occur for the BS-FT call price with much smaller degree. 
Merton-FT call price, in contrast, has no oscillation.  

0.1κ =
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A) VG-FT 1.5α =  call price. 
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B) Numerical VG call price. 
 
Figure 12.1: VG-FT α = 1.5 Call Price Vs. Numerical VG Call Price. Common 
parameters and variables fixed are 0 50S = , 0.2σ = , 0.05r = , 0.02q = , , 20 / 252T =

0.1θ = − , and .  0.1κ =
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A) Deep OTM call price for 60  on the left and for100K≤ ≤ 80 100K≤ ≤  on the right. 
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B) Deep ITM call price for1 6 . K≤ ≤
 
Figure 12.2: Oscillation of VG-FT α = 1.5 Price for Deep ITM and Deep OTM Calls. 
Common parameters and variables fixed are 0 50S = , 0.2σ = , 0.05r = , , 

, 
0.02q =

20 / 252T = 0.1θ = − , and .  0.1κ =
 
As a principle, VG-FT 1.5α =  call price and the numerical VG call price are same (i.e. 
they are supposed to be). Figure 12.3 plots the difference between the numerical VG and 
VG-FT call price for the range of strikes with which the numerical VG price can be 
computed. Panel A shows that the above mentioned oscillation of VG-FT price causes the 
price difference to oscillate for deep ITM calls of1 5K≤ ≤ . For example, for 1K =  call 
the numerical VG price is 48.9247 while VG-FT price is 49.9419 leading to an error of 
1.0173. But deep ITM calls are not most researchers’ interests. More important error 
occurs around ATM calls of the strike 45 55K≤ ≤  which is illustrated in Panel B. The 
maximum size of the error is about 0.1.  
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A) For the range of strike price1 100K≤ ≤ . 
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B) For the range of strike price 40 60K≤ ≤  
 
Figure 12.3: Numerical VG Call Price Minus VG-FT α = 1.5 Call Price. Common 
parameters and variables fixed are 0 50S = , 0.2σ = , 0.05r = , 0.02q = , , 20 / 252T =

0.1θ = − , and .  0.1κ =
 
Next, we discuss CPU time considering calls with 0 50S = , 0.2σ = , , , 
and  as a function of varying strike price 

0.05r = 0.02q =
20 / 252T = K . VG parameters are set as 

0.1θ = −  and . Table 12.1 reveals that VG-FT formula is slower than the 
numerical VG formula, but speed is not an issue for most of the pricing purposes.  

0.1κ =

  
Table 12.1: CPU Time for Calls with Different Moneyness 

Price is in the bracket.  
                                                                           Strike 
Method                                                 20K = 50K =                       80K =  
                              
VG (numerical)          0.08 seconds               0.05 seconds             0.11 seconds 
                                      (29.9999)                   (1.04663)                       (NA) 
 
VG-FT 1α =               0.17 seconds               0.09 seconds              0.16 seconds 
                                          (30)                        (1.04107)              ( ) 68.41091 10−− ×
 
We investigate the level of decay rate parameter α  for VG-FT formula. Figure 12.4 
illustrates the pricing error of VG-FT price relative to the numerical VG price for a one 
day to maturity  call as a function of varying1/ 252T = α  and Figure 12.5 is for one 
month to maturity  call. First of all, Panel A and C of Figure 12.4 and 12.5 
tell us that the size of the error does not vary significantly for 

20 / 252T =
0.05 10α≤ ≤  in the case of 

OTM and ATM call. Small exception is for OTM call with 1/ 252T =  in Panel A of 
Figure 12.4 where larger α  makes the error smaller. While Panel B in Figure 12.4 and 5 
shows that smaller α  is better for deep ITM calls. Judging from these findings, we 
recommend the choice of 1 2α≤ ≤  for the purpose of general pricing (i.e. ATM, OTM, 
and ITM calls) which includes the suggested value by MCC (1998) of 1.5α = .  
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A) For an OTM Call with . Numerical VG price cannot be calculated for deep 
OTM calls with 

60K =
K = 70 or 80. 
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B) For an ITM Call with . 20K =
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C) For an ATM Call with . 50K =
 
Figure 12.4: Numerical VG Price Minus VG-FT Price for One Day to Maturity Call 
as a Function of Decay Rate Parameter 0.05 10α≤ ≤ . Common parameters and 
variables fixed are , 0 50S = 0.2σ = , 0.05r = , 0.02q = , 1/ 252T = , 0.1θ = − , and 

.  0.1κ =
 

 208



0 2 4 6 8 10
Decay Rate α

0.0164265

0.016427

0.0164275

0.016428

0.0164285

0.016429

rorrE
 

A) For an OTM Call with . Numerical VG price cannot be calculated for deep 
OTM calls with 

60K =
K = 70 or 80. 
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B) For an ITM Call with . 20K =
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C) For an ATM Call with . 50K =
 
Figure 12.5: Numerical VG Price Minus VG-FT Price for Call with  as a 
Function of Decay Rate Parameter

20 / 252T =
0.05 10α≤ ≤ . Common parameters and variables 

fixed are , 0 50S = 0.2σ = , , 0.05r = 0.02q = , 0.1θ = − , and 0.1κ = .  
 
Which is better, VG-FT price of the equation (12.5) or the numerical VG price (11.40) 
with (11.39)? It is a tough call. Numerical VG call price has a critical problem of failing 
to achieve convergence for deep OTM calls since the integrand (11.39) has a non-
integrable singularity at . VG-FT formula calculates the prices for calls regardless of 
the moneyness, but it also has convergence problem and oscillation problem for deep 
ITM and OTM calls which yields negative prices. Can DFT solve these problems 

0u =
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associated with FT price? Let’s see in the next section. The value of the decay rate 
parameter 1.5α =  suggested by MCC (1998) seems to be appropriate.  
 
[12.2] Discrete Fourier Transform (DFT) Call Pricing Formula with VG Model 
 
To improve computational time of the VG-FT call price, we apply our version of DFT 
call price formula. 
 
VG-DFT call price can be simply obtained by substituting the CF of VG log stock price 
of the equation (12.5) into the general DFT call price of the equation (8.38): 
 

           ( ) ( )exp( )exp exp / 2
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ψ ω

α α ω α ω

− − +
=

+ − + +
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with ( )Tφ  given by (12.4). 
 
[12.3] Implementation and Performance of DFT Pricing Method with VG Model 
 
In this section, performance of VG-DFT 1.5α =  call price of the equation (12.6) is tested 
by comparing results to the VG-FT 1.5α =  call price of the equation (12.5) under various 
settings. VG-DFT 1.5α =  call price is implemented using 4096N =  samples and log 
strike space sampling interval .  This corresponds to angular frequency domain 
sampling interval of 

0.005k∆ =
ω∆ =  0.306796 radians, the total sampling range in the log strike 

space is , its sampling rate is 200 samples per unit of , and the total 
sampling range in the angular frequency domain is 

20.48N kΚ = ∆ = k
1256.64N ωΩ = ∆ = . 

 
Firstly, let’s investigate the difference in price and CPU time. Consider calculating 100-
point call prices for a range of strike price 1 1K 00≤ ≤  with interval 1 with common 
parameters and variables , 0 50S = 0.2σ = , 0.05r = , 0.02q = , 20 / 252T = , 0.1θ = − , 
and . Figure 12.6 reports the price and Table 12.2 compares CPU time. We notice 0.1κ =
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that prices are basically same (i.e. they are supposed to be same because DFT is an 
approximation of FT) and the use of DFT significantly improves the computational time.  
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Figure 12.6: VG-FT α = 1.5 Vs. VG-DFT α = 1.5. Common parameters and variables 
fixed are , 0 50S = 0.2σ = , , 0.05r = 0.02q = , 20 / 252T = , 0.1θ = − , and .  0.1κ =
 
Table 12.2 CPU Time for Calculating 100-point call prices for a range of strike price 

 with interval 1 Common parameters and variables fixed are , 1 1K≤ ≤ 00 0 50S =
0.2σ = , , , T , 0.05r = 0.02q = 20 / 252= 0.1θ = − , and 0.1κ = .  

 
Method                                                                    CPU Time                       
                                                               
VG-FT 1.5α =                                                      15.512 seconds 
 
VG-DFT 1.5α =                                                    0.571 seconds 

4096N = , ∆ =       0.005k
 
Secondly, we saw in section 12.1 that VG-FT price has an oscillation pattern for deep 
ITM and OTM calls. We find that VG-DFT price has almost zero oscillation for deep 
ITM calls and very small (i.e. negligible) oscillation for deep OTM calls demonstrated by 
Figure 12.7. 
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A) Deep OTM call price for . 80 100K≤ ≤
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B) Deep ITM call price for1 7 . K≤ ≤
 
Figure 12.7: Oscillation of VG-DFT α = 1.5 Price for Deep ITM and Deep OTM 
Calls. Common parameters and variables fixed are 0 50S = , 0.2σ = , , , 

, 
0.05r = 0.02q =

20 / 252T = 0.1θ = − , and .  0.1κ =
 
Thirdly, we pay attention to the price difference between VG-DFT and VG-FT especially 
for very near-maturity calls. Consider a call option with common parameters and 
variables , 0 50S = 0.2σ = , , and 0.05r = 0.02q = . VG parameters are set as 0.1θ = − , 
and . Figures 12.8 to12.10 plot three series of price differences computed by the 
VG-FT

0.1κ =
1.5α =  and VG-DFT 1.5α =  with 4096N =  and 0.005k∆ =  as a function of 

time to maturity of less than a month 1/ 252 20 / 252T≤ ≤ . These figures demonstrate 
that, as we expected, the price difference tends to increases as the maturity nears 
regardless of the moneyness of the call. We consider the maximum price difference of the 
size 0.025 negligible.  
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Figure 12.8: Plot of VG-FT α = 1.5 Price Minus VG-DFT α = 1.5 Price for Deep-
OTM Call as a Function of Time to Maturity1/ 252 20 / 252T≤ ≤ . Common 
parameters and variables fixed are 0 50S = , 80K = , 0.2σ = , 0.05r = , and 

0.02q = 0.1θ = − , and .  0.1κ =
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Figure 12.9: Plot of VG-FT α = 1.5 Price Minus VG-DFT α = 1.5 Price for ATM Call 
as a Function of Time to Maturity 1/ 252 20 / 252T≤ ≤ . Common parameters and 
variables fixed are , , 0 50S = 50K = 0.2σ = , 0.05r = , and 0.02q = 0.1θ = − , 
and .  0.1κ =
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Figure 12.10: Plot of VG-FT α = 1.5 Price Minus VG-DFT α = 1.5 Price for Deep-
ITM Call as a Function of Time to Maturity1/ 252 20 / 252T≤ ≤ . Common 
parameters and variables fixed are 0 50S = , 20K = , 0.2σ = , 0.05r = , and 

0.02q = 0.1θ = − , and .  0.1κ =
 
Figure 12.11 clarifies the superiority of VG-DFT price over VG-FT price for one day to 
maturity call. Panel A exhibits the oscillation of VG-FT price for deep ITM and OTM 
calls. In contrast, VG-DFT price has almost zero oscillation shown in Panel B. Panel C 
reminds us that as a principle these two prices are same despite the large deviation for 
deep ITM calls which is not so important.  
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A) Oscillation of VG-FT prices for Deep ITM and OTM calls. 

1 2 3 4 5 6 7 8
Strike Price K

42

43

44

45

46

47

48

49

GV
−

TFD
llaC

80 85 90 95 100
Strike Price K

0.0000175

0.00002

0.0000225

0.000025

0.0000275

0.00003

GV
−

TFD
llaC

 
B) Almost zero oscillation of VG-DFT prices for Deep ITM and OTM calls. 
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C) VG-FT Call Price – VG-DFT Call Price. 

 
Figure 12.11: VG-DFT α = 1.5 Price Vs. VG-FT α = 1.5 Price for 1-Day-to-Maturity 
( ). Common parameters and variables fixed are1/ 252T = 0 50S = , 50K = , 0.2σ = , 

, and 0.05r = 0.02q = 0.1θ = − , and 0.1κ = .  
 
We conclude this section by stating the following remarks. As a principle, VG-DFT 

1.5α =  price and VG-FT 1.5α =  price are same. Which is better? The clear-cut answer 
is VG-DFT price. One reason is that VG-DFT needs significantly smaller CPU time to 
compute hundreds of option prices which is very important for the calibration. Another 
reason is that VG-DFT price does not have the oscillation pattern observed with VG-FT 
price for deep ITM and OTM options.   
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[12.4] Summary of Formulae of Option Price with Fourier Transform in VG Model 
 

Table 12.3: Summary of Formulae for VG Model 
 
Method                                                                   Formula 
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[13] Conclusion 
 
We implemented the general FT call price (8.17) and our version of the general DFT call 
price (8.38) for three different types of exponential Lévy models. DFT call price is 
implemented using  samples and log strike space sampling interval 

.  This corresponds to angular frequency domain sampling interval of 
4096N =

0.005k∆ = ω∆ =  
0.306796 radians, the total sampling range in the log strike space is 20.48N kΚ = ∆ = , its 
sampling rate is 200 samples per unit of , and the total sampling range in the angular 
frequency domain is 

k
1256.64N ωΩ = ∆ = . 

 
In the classical Black-Scholes model, our version of DFT 1α =  call price yields the price 
virtually identical to the original BS price for OTM and ITM calls even for extreme near-
maturity case (i.e. ) although the size of error is larger than BS-FT formula. 
But the error of BS-DFT price becomes relatively large around (i.e.

1/ 252T =
3± ) ATM. In our 

example used, the maximum error is 0.0001345 which occurs at exactly ATM 
at . Increasing the decay rate parameter0 50S K= = α  or sampling more points (i.e. 
larger ) cannot reduce the size of this error. But we can accept this size of error when 
considering the dramatic improvement in the CPU time to compute hundreds of prices.   

N

 
The result of Merton JD model is the same as that of the BS. Our Merton-DFT 1α =  call 
price yields the price virtually identical to the original Merton price for OTM and ITM 
calls even for extreme near-maturity case (i.e. 1/ 252T = ) although the size of error is 
larger than Merton-FT formula. But the error of Merton-DFT price becomes relatively 
large around (i.e. ) ATM. In our example used, the maximum error is 0.0001343 which 
occurs at exactly ATM at .  

3±
0 50S K= =

 
In the VG model as a principle, VG-DFT 1.5α =  price and VG-FT 1.5α =  price are 
same. As we expected, the price difference tends to increases as the maturity nears 
regardless of the moneyness of the call. We consider the maximum price difference of the 
size approximately 0.025 negligible. Which is better? The clear-cut answer is VG-DFT 
price. One reason is that VG-DFT needs significantly smaller CPU time to compute 
hundreds of option prices which is very important for the calibration. Another reason is 
that VG-DFT price does not have the oscillation pattern observed with VG-FT price for 
deep ITM and OTM options.   
 
We hope readers appreciate the excellence of FT and DFT option pricing in the sense of 
its simplicity and generality and this sequel would be a good starting point.  
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Appendix 
 
 
 
[A.1] Set Theory: Notation and Basics1

 
o : Collection of all real numbers. Intervals in  are denoted via each endpoint. 

A square bracket [  indicates its inclusion and an open bracket (  indicates its 
exclusion. For example, [ ,

\ \

 ) { : }c d x c x d= ∈ ≤ <R . Unbounded intervals are 
described using ∞  and . Examples are ( ,−∞  ) { : x }a x a−∞ = ∈ <R

0}
 and 

[0,  ) { :x x +∞ = ∈ ≥ =R R .  
o : Collection of nonnegative elements of . +R \
o : -dimensional Euclidian space. Its elements dR d 1,...,( )k k dx x ==  and 

 are column vectors with  real components. 1,...,( )k k dy y == d
o : Collection of all positive integers. N
o : Collection of all integers. Z
o : Collection of all rational numbers. Q
o : Universal set (a set of all scenarios). Ω
o : Empty set. It has no members. ∅
o : Membership. The element  is a member of the setx A∈ x A . 
o A B⊂ : Set inclusion. Every member of A  is a member of B . 
o { : ( )}x A P x∈ : The set of elements of A  with property . P
o ( )AP : The set of all subsets (power set) of A . 
o { :    }A B x x A and x B= ∈ ∈∩ . Intersection. 
o { :    }A B x x A or x B= ∈ ∈∪ . Union. 
o :  The complement ofCA A . The elements of Ω  which are not members of A . 

\CA A= Ω  
o : The difference between the set \B A A  and B . \ { : } CB A x B x A B A= ∈ ∉ = ∩  
o : There exists. ∃
o : For all. ∀
o { :   for all } { :  ,  }A x x A x x Aα α α

α
α α

∈Λ
= ∈ ∈Λ = ∀ ∈Λ ∈∩  

o { :   for some } { :  ,  }A x x A x x Aα α α
α

α α
∈Λ

= ∈ ∈Λ = ∃ ∈Λ ∈∪  

o de Morgan’s law: ( )C CA Aα α
α α

=∪ ∩ ,   ( )C CA Aα α
α α

=∩ ∪  

o Disjoint sets: A  and B  are disjoint if A B = ∅∩ . 

                                                 
1 Based on Capinski, Kopp, and Kopp (2004). 
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o Pairwise disjoint sets: A family of sets ( )Aα α∈Λ  is pairwise disjoint if 
 wheneverA Aα β = ∅∩ ( , )α β α β≠ ∈Λ . 

o Cartesian product: Cartesian product C D×  of sets C  and  is the set of  ordered 
pairs . 

D
{( , ) : , }C D c d c C d D× = ∈ ∈

o A function : A subset of :f C D→ C D×  where each first coordinate determines 
the second. Its scope is described by its domain { :  ,  ( , )f c C d D c d f }= ∈ ∃ ∈ ∈D  
and range . A function  associates elements of 

 with those ofC , such that each 
{ :  ,  ( , )f d D c C c d f= ∈ ∃ ∈ ∈R } f

D c C∈  has at most one image . This is 
written as d f . 

d D∈
( )c=

o Indicator function : Indicator function 1  of the set  is the function C C

                                               
1    

1 ( )
0   .C

for x C
x

for x C
∈⎧

= ⎨ ∉⎩
 

o Upper bound: u  is an upper bound for a set A ⊂ R  if a u≤  for all .  a A∈
o Lower bound:  is a lower bound for a set l A ⊂ R  if l a≤  for all .  a A∈
o sup A : Supremum (least upper bound) of A . Minimum of all upper bounds. 
o inf A : Infimum (greatest lower bound) of A . Maximum of all lower bounds. 

 
[A.2] Measure2

 
[A.2.1] Null Sets 
 
Consider an interval to define the length of a set. Let H  be a bounded interval 

[ ,  ]H a b= , [ ,  )H a b= , ( ,  ]H a b= , or ( ,  )H a b= . In each case the length of H  is 
. A one element set is null since ( )l H b a= − ({ }) ([ ,  ]) 0l b l b b= =  (The length of a single 

point is ). Next, consider the length of a finite set0 {1,  5,  20}B = . The length of a finite 
set is 0  since . Thus the length of a set can be calculated by 
adding the lengths of its pieces. 

( ) (1) (5) (20) 0l B l l l= + + =

 
Definition: Null set 
A null set  is a set that may be covered by a sequence of intervals of arbitrarily 
small total length, that is, a sequence {  of intervals given any 

A⊆ R
: 1}nH n ≥ 0ε >  such that  

                                                                  
1

n
k

A H
∞

=
⊆ ∪

                                                                 
1

( )n
n

l H ε
∞

=

<∑ . 

Any one-element set { }x  is null. For example, when 1 ( ,  
8 8

H x x )ε ε
= − +  and  

for ,  

[0,  0]nH =

2n ≥

                                                 
2 Based on Capinski, Kopp, and Kopp (2004). 
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                                                       1
1

( ) ( )
4n

n
l H l H ε ε

∞

=

= = <∑ . 

More generally, any countable set 1 2{ ,  ,  ...}A x x=  is null.  
 
Theorem: Union of a Sequence of Null Sets 
Let  be a sequence of null sets, then their union 1( )k kN ≥

                                                                 
1

k
k

N N
∞

=
= ∪

is also null. 
 
Any countable set is null since it is quite sparse when compared with an interval and it 
does not contribute to its length. 
 
[A.2.2] Outer Measure 
 
Definition: (Lebesgue) Outer Measure 
The (Lebesgue) outer measure of any set  is the non-negative real number A⊆ R
                                                           *( ) inf Am A Z=  
where 

                                     
1 1

{ ( ) :   are intervals,  }A n n
n n

nZ l H H A H
∞ ∞

= =

= ⊆∑ ∑ . 

 
The outer measure is the infimum (greatest lower bound) of length of all possible covers 
of A . 
 
Theorem 
A⊆ R  is a null set if and only if *( ) 0m A = . 
 
Note that ,  for any*( ) 0m ∅ = *({ }) 0m x = x∈R , *( ) 0m =Q , and   for any 
countable Y . 

*( ) 0m Y =

 
Proposition 
If A B⊂ , .  *( ) *( )m A m B≤
 
This means that  is monotone: the larger the set, the greater its outer measure. *m
 
Theorem 
The outer measure of an interval is equal to its length. 
 
Theorem 
Outer measure is countably subadditive, i.e. for any sequence of sets { }nB  

                                                       . 
1 1

*( ) *( )n n
n n

m B m B
∞∞

= =

≤∑∪
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When an interval is shifted along the real line, there is no change in its length: 
 
                                               ([ ,  ]) ([ ,  ])l c d l c u d u d c= + + = − . 
 
Proposition 
Outer measure is transition invariant, 
 
                                                          *( ) *( )m A m A u= +  
 
where A ⊂ R , , and u ⊂ R { :  }A u a u a A+ = + ∈ . 
 
[A.2.3] Lebesgue Measurable Sets and Lebesgue Measure 
 
Consider the class of good sets for which outer measure is countably additive: 
 

                                                      
1 1

*( ) *( )n n
n n

m B m B
∞∞

= =

= ∑∪

 
for pairwise disjoint ( )nB . 
 
Definition: Lebesgue Measurability 
A set  is (Lebesgue) measurable if for every set  we have B ⊆ R A⊆ R
 
                                              *( ) *( ) *( )Cm A m A B m A B= +∩ ∩
 
and we write . B∈M
 
Theorem 
Any null set is measurable. Any interval is measurable. 
 
Theorem: Fundamental Properties of the Class  of All Lebesgue-Measurable 
Subsets 

M

(i) .  ∈R M
(ii) If , then . B∈M CB ∈M
(iii) If  for all , then .  nB ∈M 1, 2,...n = 1n nB∞

= ∈∪ M
       If  for all  and nB ∈M 1, 2,...n = j kB B = ∅∩  for j k≠ , then  

                                                    . 
1 1

*( ) *( )n n
n n

m B m B
∞∞

= =

= ∑∪

 
A family of sets is a σ -field if it contains the base set and is closed under complements 
and countable unions. Thus, theorem above means that  is a M σ -field. A [0 -valued , ]∞

 220



function defined on a σ -field is called a measure if it satisfies the theorem above for 
pairwise disjoint sets. 
 
More general approach to measure theory is to begin with the above theorem as axioms. 
Start with a measure space ( , , )µΩ F  where Ω  is an abstractly given set (a set of given 
scenarios), is a F σ -field of subsets ofΩ , and : [0, ]µ ∞6F  is a function satisfying the 
above theorem. 
 
Proposition 
If , , then kB ∈M 1, 2,...k =

                                                             . 
1

k
k

B B
∞

=
= ∈∩ M

 
M  is closed under countable unions, countable intersections, and complements. M  
contains intervals and all null sets. 
 
Summary: Lebesgue Measure 
Lebesgue measure  is a countably additive set function defined on the : [0,m ∞6M ] σ -
field M  of measurable sets. Lebesgue measure of an interval equals its length. Lebesgue 
measure of a null set is zero. 
 
[A.2.4] σ -field3  
 
Let Ω  be an arbitrary set and  be a family of subsets of F Ω , and A  be a set of .  
is said to be a 

d\ F
σ -field on Ω , if it satisfies: 

 
(1) , ∅∈  (It contains empty set.) Ω∈F F

(2) If  for (disjoint ), then nA ∈F 1, 2,...n = nA
1 nn
A∞

=
∈∪ F  and . 

Stability under unions and intersections. 
1 nn
A∞

=
∈∩ F

(3) If , then  (It contains the complements of every element.). A∈F CA ∈F
 
( , )Ω F  is called a measurable space. 
 
Let B  be a subset of A , i.e. B A⊂ , and the measure of a subset B  be a positive finite 
(possibly infinite) number, ( ) [0, ]Bµ ∈ ∞ . B  is said to be a measurable set. Properties of 
measurable sets include: 
 

1. An empty set ∅  has measure , i.e. 0 ( ) 0µ ∅ = .  
2. Additive property: If B  and C  are disjoint measurable sets, the measure of the 

union  is . B C∪ ( ) ( ) (B C B C)µ= +∪

                                                

µ µ

 
3 Based on Cont and Tankov (2004). 
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3. σ -additivity: Let ( be a infinite sequence of disjoint measurable subsets. 
Then:  

)n nB ∈`

 

11

( ) (n n
nn

)B Bµ µ
≥≥

= ∑∪ . 

 
4. It is possible that the measure of a set or subset is infinite, i.e. ( )Aµ = ∞  and 

( )Bµ = ∞ . 
5. If a set A  is finite (i.e. ( )Aµ < ∞ ) for any measurable set B , the measure of the 

complement cB  ( cB B A=∪ ) is ( ) ( ) ( )cB A Bµ µ µ= − . 
 
[A.2.5] Borel σ-Field 
 
Definition: Borel σ-field 
= ∩B { :  is a F F σ -field containing all intervals}. 

 
Borel σ -field is the collection of all Borel sets on  which is denoted by . Borel dR ( )dRB
σ -field is the σ -field generated by the open sets in . In other words, it is the smallest dR
σ -field containing all open sets in . A real-valued function  on  is said to be 
measurable if it is -measurable. 

dR ( )f x dR
( )dRB

 
[A.2.6] Probability 
 
Lebesgue measure restricted to [0  is a probability measure. We select a number from 

 at random, restrict Lebesgue measure  to the interval
,1]

[0,1] m [0,1]B = , and consider the 
σ -field of  of measurable subsets of [0 .  is a probability measure because it 
is a measure on  with total mass 1. 

[0,1]M ,1] [0,1]m

[0,1]M
 
Definition: Probability Space and Probability Measure ( , , )Ω PF  
Let Ω be an arbitrary set (a set of scenarios), be a F σ -field of subsets of , and P  be a 
mapping from  into . Let 

Ω
F R A  be a set of . A triplet ( ,d\ , )Ω PF  is said to be a 

probability space and  is said to be a probability measure if it satisfies the conditions: P
 

(1) . (A probability space is a measure space with total mass1.) ( ) 1Ω =P
(2)  and 0 ( )A≤ P 1≤ ( ) 0∅ =P . 
(3) If  for and they are disjoint (i.e.  for nA ∈F 1, 2,...n = n mA A =∅∩ n m≠ ), 

then . 
11

( ) (n nnn
A A∞ ∞

==
=∑∪P P )

 
Let B  be an event which is a measurable set B∈F . A probability measure  assigns a 
probability between  and 1 to each event: 

P
0
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:P   [0,1]→F
                                                                  ( )B B6 P . 
 
If two probability measures  and  on P Q ( , )Ω F  define the same impossible events, they 
are said to be equivalent: 
 

∼P Q  ⇔ [ , ( ) 0 ( )B B B 0]∀ ∈ = ⇔P QF = . 
 
Definition: Random Variable 
Consider a probability space ( , . A mapping , )Ω PF X  from Ω  into , i.e. 

, is said to be an -valued random variable if it is -measurable: 

dR
:X dΩ→ R dR F

 
{ : ( ) }X Bω ω ∈ ∈F  for each . ( )dB∈ RB

 
We can interpret that ( )X ω  is the outcome of the random variable when the scenario ω  
happens. Probability measures on  are said to be distributions (laws) on .  ( )dRB dR
 
Definition: Property A Almost Surely (a.s.) 
A random variable X  is said to have a property A almost surely (or with probability1), if 
there is  with  such that 0Ω ∈F 0( )Ω =P 1 ( )X ω  has the property A for every 0ω∈Ω . 
 
Definition: Conditional Probability 
Let . The conditional probability of the event ( ) 0B >P A  given B  is 

                                                        ( )( )
( )

A BA B
B

=
∩PP

P
. 

 
Given some disjoint hypotheses, the probability of an event can be calculated by means 
of conditional probabilities: 
 

                                                    
1

( ) ( ) ( )i i
i

A A O O
∞

=

= ∑P P P  

 
where  are pairwise disjoint events such that iO 1i iO∞

= ∈Ω∪  and . ( ) 0iO ≠P
 
Definition: Independence 
Let jX  be an -valued random variable forjdR 1,...,j n= . The family 1{ ,..., }nX X  is said 

to be independent if, for every ( )jd
jB ∈ RB : 

 
1 1 1 1( ,..., ) ( )... ( )n n n nX B X B X B X B∈ ∈ = ∈ ∈P P P . 
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We often say that 1,..., nX X  are independent rather than saying that the family 

1{ ,..., }nX X  is independent. 
 
[A.3] Stochastic Process 
 
A stochastic process { }tX  is a family [0, ){ }t tX ∈ ∞  of random variables on  defined on a 
common probability space ( , . For any increasing sequence of time  

, 

dR
, )Ω PF

1 20 ... nt t t≤ < < < 1 1( ( ) ,..., ( ) )n nX t B X t B∈ ∈P  determines a probability measure on 
. Sample function (path) of {(( ) )d nRB }tX  is ( , )X t ω . 

 
Let { }tX  and {  be two stochastic processes. {}tY }tX  and {  are said to be identical in 
law: 

}tY

 
{ }  { }t tX d Y , 

 
 if the systems of their finite-dimensional distributions are identical.  
 
A stochastic process { }tX  on  is said to be continuous in probability (stochastically 
continuous) if, for every  and 

dR
0t ≥ 0ε > : 

 
lim ( ) 0s ts t

X X ε
→

− > =P . 

 
[A.3.1] Filtration (Information Flow) 
 
An increasing family of σ -fields [0, ]( ) : 0,t t T s tt s∈ ∀ ≥ ≥ ⊆ ⊆F F F F  is called a filtration 
or information flow on . We can interpret  as the information known at time 

.  increases as time progresses. 
( , , )Ω PF tF

t tF
 
[A.3.2] Non-anticipating (Adapted) Process 
 
A stochastic process  is said to be non-anticipating with respect to the filtration  

or -adapted if the value of 
[0, ]( )t t TX ∈

[0, ]( )t t T∈F tF tX  is revealed at time  for each . t [0,  ]t T∈
 
[A.4] Martingales 
 
[A.4.1] General Concept 
 
Consider a trend of a time series of a stochastic process. A stochastic process is said to be 
a martingale if its time series have no trend. A process with increasing trend is called a 
submartingale and a process with decreasing trend is called a supermartingale. 
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Definition: Martingale 
Consider a probability space  with an filtration (information flow) . A cadlag 
process  is said to be a martingale with respect to its filtration  and the 

probability measure  if 

( , , )Ω PF tF

[0, ]( )t t TX ∈ tF

P X  is nonanticipating (adapted to ), tF tE X⎡ ⎤⎣ ⎦  is finite for any 
 and:  [0,  ]t∈ T

 
s t∀ > ,     [ ]s t tE X X=�F . 

 
The best prediction of a martingale’s future value is its present value. The definition of 
martingale makes sense only when the underlying probability measure  and the 
information flow  have been specified.  

P
[0, ]( )t t T∈F

 
The fundamental property of a martingale process is that its future variations are 
completely unpredictable with the information flow :  tF
 

0,  [ ] [ ] [ ] 0t u t t t u t t t t tu E x x E x E x x x+ +∀ > − = − = − =F F F . 
 
Example of Continuous-Time Martingale 1)4

Let  be a continuous stochastic process whose increments are normally 
distributed. Let  be a small time interval. Then: 

[0, ]( )t t TX ∈

∆
 

2( ,tX N µ σ )∆ ∆ ∆∼  
,s t∀ ≠ [( )( )] 0s tE X Xµ µ∆ − ∆ ∆ − ∆ = . 

 
Consider an expectation with the filtration  and with respect to a probability 
distribution described above: 

tF

 

0,u∀ >   
t u

t u t vt
X X dX

+

+ = + ∫
[ ] [ ] [ ] [ ]

t u t u

t u t t v t t t v t tt t
E X E X dX E X E dX X u Xµ

+ +

+ = + = + = + ≠∫ ∫� � � �F F F F t . 

 
Obviously,  is not a martingale. But the process : [0, ]( )t t TX ∈ [0, ]( )t t TY ∈

 
t tY X uµ= − , 

 
is a martingale since: 
 

[ ] [ ] [ ( )t u t t u t t t u t tE Y E X u E X X X uµ µ+ + += − = + − −� �F F ]�F

                                                

 

 
4 Based on Neftci (2000). 
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[ ] [ ] [ ]t t t u t t t t tE X E X X E u X u u Xµ µ µ+= + − + − = + − =� � �F F F . 
 
Example of Continuous-Time Martingale 2) Standard Brownian Motion Process 
Consider a standard Brownian motion process  defined on some probability 
space . Standard Brownian motion is a continuous adapted process with 
properties that , increments 

[0, ]( )t t TB ∈

( , , )Ω PF

0 0B = 0t sB B− =  for 0 s t≤ <  are independent of sF  and are 
normally distributed with mean 0  and variance t s− . Obviously,  is a 
martingale: 

[0, ]( )t t TB ∈

 

0,u∀ >  
t u

t u t vt
B B d

+

+ = + ∫ B  

[ ] [ ] [ ] [ ] 0
t u t u

t u t t v t t t v t t tt t
E B E B dB E B E dB B B

+ +

+ = + = + = + =∫ ∫� � �� �F F F F . 

 
[A.4.2] Martingale Asset Pricing 
 
Most of financial asset prices are not martingales (i.e. are not completely unpredictable). 
Consider a risky stock price  at time  and let  be the risk-free interest rate. In a small 
time interval  risk-averse investors expect  to grow at some positive rate. This can be 
written as under actual probability measure : 

tS t r
∆ tS

P
 

[ ]t t tE S S+∆ >P . 
 
Obviously,  is not a martingale. To be more precise risk-averse investors expect  
to grow at a rate greater than : 

tS +∆ tS
r

 
[ ]r

t t tE e S S− ∆
+∆ >P . 

 
The stock price discounted by the risk-free interest rate r

te S− ∆
+∆  is not martingale under 

. P
 
But interestingly, non-martingales can be converted to martingales by changing the 
probability measure. We will try to find an equivalent probability measure  (called 
risk-neutral measure) under which the stock price discounted by the risk-free interest rate 
becomes martingale: 

Q

 
[ ]r

t t tE e S S− ∆
+∆ =Q . 

 
[A.4.3] Continuous Martingales, Right Continuous Martingales, Square-Integrable 
Martingales 
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Let { ;0 }tX t≤  be a continuous martingale. Continuous martingales have continuous 
trajectories, when : 0∆→
 

( )tP S 0ε∆ > →     for all 0ε > . 
 
It tells us when the time step becomes extremely small, the probability that the stock 
price changes by some amount approaches zero. Example is a standard Brownian motion 
process.  
 
In contrast to continuous martingales, right continuous martingales basically change by 
jumps. Compensated Poisson process is an example of right continuous martingales. 
 
A continuous martingale { ;0 }tX t≤  is said to be a continuous square integrable 
martingale if X has a finite second moment: 
 

2[ ]tE X < ∞ . 
 
[A.5] Poisson Process5

 
[A.5.1] Exponential Distribution 
 
Suppose a positive random variable X  follows an exponential distribution with 
parameter 0λ > . Its probability density function is: 
 

( ) x
Xf x e λλ −=  for . 0x >

 
The distribution function is:  
 

( ) Pr( ) 1 x
XF x X x e λ−= ≤ = −    for . 0x >

 
Its mean and variance are: 
 

1[ ]E X
λ

=  and 2

1[ ]Var X
λ

= . 

 
For example, the probability density function of an exponential random variable X  with 

0.01λ =  is plotted below. 
 

                                                 
5 Based on Cont and Tankov (2004). 
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The exponential distribution has an important feature called memory-less property. 
Suppose that the arrival time of a large earthquake, X , follows an exponential 
distribution with mean 100  years. Consider a situation where 10s =  years have passed 
since the last large earthquake and let {X s X s}− >  be the remaining arrival time. Since 

 and  are both positive, x s
 

Pr{   } Pr{ } Pr{ }Pr{ }
Pr{ } Pr{ } Pr{ }

X s x and X s X s x X x sX s x X s
X s X s X s

− > > − > >
− > > = = =

> >
+

>
 

( )1 ( ) (1 ( ))(1 ( ))1 (1 ) 1 (
1 ( ) 1 ( ) 1 ( ) 1 ( )

x s x s
X X

X
X X X X

F x s F x F se e e F x
F s F s F s F s

λ λ λ− + − −− + − −− −
= = = = = −

− − − −
)X  

        Pr{ }X x= > . 
 
So the expected remaining arrival time of a next large earthquake is 100  years, i.e. the 
exponential random variable X  does not remember that 10years have passed since the 
last large earthquake. 
 
Memory-less property of exponential distribution 
If a random variable X  follows an exponential distribution, 
 

, 0x s∀ > ,    Pr{ } Pr{ }X x s X s X x> + > = > . 
 
If X  is a random time, the distribution of X s−  given  is the same as the 
distribution of 

X s>
X  itself. 

 
[A.5.2] Poisson Distribution 
 
If  1( )i iτ ≥  are independent exponential random variables with parameterλ , the random 
variable for any : 0t >
 

1
inf{ 1, }

n

t i
i

N n τ
=

t= ≥ >∑ , 
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follows a Poisson distribution with parameter tλ : 
 

( ), ( )
!

t n

t
e tn N n

n

λ λ−

∀ ∈ = =N P . 

 
If 1X  and 2X  are independent Poisson variables with parameters 1λ  and 2λ , then 

1 2X X+  follows a Poisson distribution with parameter 1 2λ λ+ . This indicates that a 
Poisson random variable X  is infinitely divisible, i.e. X  can be divided into an arbitrary 
number of  random variables: . . .i i d
 
                                   if ( )X Poisson λ∼ , 

n∀ ∈N ,   
1

n

i

XX
n=

= ∑ ,   . . . ( )X i i d Poisson
n n

λ∼ . 

 
[A.5.3] Compensated Poisson Process 
 
A compensated Poisson process j 0( )t tN ≥  is a centered version of a Poisson 
process : 0( )t tN ≥

 
j

t tN N tλ= − . 
 
The mean and variance of a compensated Poisson process are: 
 

j[ ] [ ] 0t tE N E N t t tλ λ λ= − = − = , 
j j 2 2[ ] [ ] [( ) ] [ ]t t t tVar N E N E N t Var N tλ λ= = − = = . 

 
Increments of  are independent and iN iN  is a martingale: 
 

j j j j j j j j j[ , ] [ ] [ ]t s t s s s t sE N N s t E N N N N E N N N≤ = − + = − + s  
j j j j j[ ] [ ] 0 0t s s sE N E N N N N= − + = − + = s . 

 
0( )ttλ ≥  called the compensator of a Poisson process  is the quantity which needs to 

be subtracted in order to make the process a martingale. 
0( )t tN ≥

 
Unlike a Poisson process, a compensated Poisson process is not integer-valued and not a 
counting process.  
 
A compensated Poisson process j 0( )t tN ≥   behaves like a Brownian motion after rescaling 
it by 1/λ  because: 

 229



 
j

[ ] 0tNE
λ

=    and   
j

[ ]tNVar t
λ

= . 

 
Formally, when the intensity λ  of its jumps becomes larger, the compensated Poisson 
process converges in distribution to a Brownian motion: 
 

j
[0, ]

[0, ]

( )t
t t T

t T

N B
λ ∈

∈

⎛ ⎞
⇒⎜ ⎟⎜ ⎟

⎝ ⎠
   when   λ →∞ . 

 
[A.6] Other Distributions Used  
 
[A.6.1] Gamma Function 
 
Let c  be a complex number. The integral called gamma function: 
 

1

0
( ) c tc t e

∞ − −Γ = ∫ dt

)c

 

 
converges absolutely, if the real part of  is positive. By integration by parts: c
 

( 1) (c cΓ + = Γ . 
 
Since , for all natural numbers : (1) 1Γ = n
 

( 1)n n!Γ + = . 
 
Properties of a gamma function which are often used in the process of calculation are: 
 

(1 ) ( )c c cΓ − = − Γ − , 
( ) 1

(1 )
c
c c

Γ −
= −

Γ −
, 

(1 )
( )

c c
c

Γ +
=

Γ
, 

(2 ) (2 ) (1 ) (1 )
( ) (1 ) ( )

c c c c c
c c c

Γ + Γ + Γ +
= =

Γ Γ + Γ
+

t

. 

 
[A.6.2] Incomplete Gamma Function 
 
The incomplete gamma function is defined by an indefinite integral of the same integrand 

. For  and complex variablec , if the real part of  is positive: 1ct e− − x +∈R c
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1( , ) c t

x
c x t e dt

∞ − −Γ = ∫ , 

1

0
( , )

x c tc x t e dtγ − −= ∫ , 

 
where  is when the lower limit of integration is variable and ( , )c xΓ ( , )c xγ  is when upper 
limit of the integration is variable. Obviously, we have following relationship: 
 

( ) ( , ) ( , )c c x c xγΓ = + Γ  
                                                      ( ) ( , 0)c cΓ = Γ  
                                                      ( , ) ( )c x cγ → Γ    as   . x →∞
 
[A.6.3] Gamma Distribution 
 
Let X  be a gamma distributed random variable with the shape parameter  and the 
scale parameter (controls the tail behavior)

0c >
0λ > . Its probability density function can be 

expressed as: 
 

1
0( ) 1

( )

c
c x

xf x x e
c

λλ − −
≥=

Γ
. 
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Figure A.6.1: The Gamma Density with 3c =  and 2λ =  
 
Its distribution function in terms of the incomplete gamma function is 
 

00

( , )( ) ( ) 1
( ) x

c xF x f z dz
c

γ λ∞

≥= =
Γ∫ . 

 
Its characteristic function ( )φ ω  for any ω∈R  is calculated as 
 

10

1( ) [ ( )]( ) ( ) [ ]
(1 )

i x i x
x cf x e f x dx E e

i
ω ωφ ω ω

ωλ
∞

−= = = =
−∫L . 

 
The mean, variance, skewness, and excess kurtosis of a gamma random variable are 
follows: 
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                                                    [ ] cE X
λ

= , 

                                                    2[ ] cVar X
λ

= , 

                                                    2[ ]Skewness X
c

= , 

6 [ ]Excess Kurtosis X
c

= . 

 
A gamma distributed random variable X  with the shape parameter  and the scale 
parameter

0c >
0λ >  possesses the following properties: 

 
o Suppose 1 2,  ,  ...,  nX X X  are independent gamma distributed random variables 

with parameters 1 2( , ),  ( , ),  ...,  ( , )nc c cλ λ λ , then 11 1
( ,n n

ii i
X Gamma c )λ

= =∑ ∑∼ . 
o If , the gamma distribution reduces to an exponential distribution with 

parameter 
1c =

λ .  
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Figure A.6.2: The Gamma Density with c = 1  and λ = 2 
 
[A.7] Modified Bessel Functions: Modified Bessel Function of the First Kind Iv(z) 
and Second Kind Kv(z)  
 
Modified Bessel differential equation is the second-order ordinary differential equation of 
the form 
 

2
2 2

2 ( )d y dyz z z v y
dz dz

2 0+ − + = . 

 
Its solutions can be expressed for 0,1, 2,...n = , 
 

1 2( ) ( )n ny a J iz a Y iz= − + −  
                                                    1 2( ) ( )n nb I z b K z= + , 
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where  is called a Bessel function of the first kind of order ,  a Bessel 
function of the second kind of order , 

( )vJ z v ( )vY z
v ( )vI z  a modified Bessel function of the first kind 

of order v ,  a modified Bessel function of the second kind of order , and ( )vK z v v +∈R . 
The modified Bessel function of the first kind ( )vI z  admits the series expansion 
 

2

0 0

1( )1 ( /4( ) ( )
2 ! ( 1) ! ( 1)

k
v k

v
v

k k

z zI z z
k k v k k v

+∞ ∞

= =

= =
Γ + + Γ + +∑ ∑ 0z ≥2)    for    and , 0v ≥

 
which is the solution of the modified Bessel differential equation which is bounded when 

. For  0z → 0,1, 2,...n =
 

( ) ( )n nI z I z− = . 
 

( )vI z  has asymptotic behavior  
 

1( ) [1 ( )]
2

z

v
eI z

zz
ο

π
= +    when   , z →+∞

                                      ( / 2)( )
( 1)

v

v
zI z
vΓ +

∼    when   . 0z →
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Figure A.7.1: Plot of the modified Bessel functions of the first kind. ( )vI z  for 

 from left to right. 1, 2,3, 4,5v =
 
The modified Bessel function of the second kind  admits the series expansion ( )vK z
 

( ) ( )( )
2 sin( )

v v
v

I z I zK z
v

π
π

− −
=    for    and , 0z ≥ 0v ≥

 
which is the solution of the modified Bessel differential equation which is bounded when 

. For all orders : z →+∞ v
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( ) ( )v vK z K z− = . 

 
( )vI z  has asymptotic behavior:  

 
1( ) [1 ( )]

2
z

vK z e
z z
π ο−= +    when   , z →+∞

                                       for   0 ( ) logK z z−∼ 0v = , 

                                    1( ) ( )( / 2)
2

v
vK z v z −Γ∼    for   . 0v >
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Figure A.7.2: Plot of the modified Bessel functions of the second kind. ( )  for 

 from left to right. 
vK z

1, 2,3, 4,5v =
 
[A.8] Itô Formula 
 
[A.8.1] Itô Formula for Brownian Motion 
 
Let (0, )tB Normal t∼  be a standard Brownian motion and  be an arbitrary function 
of a Brownian motion. Consider a very small time interval . A Taylor series expansion 
of a function about a point 

( )f B
h

( )t hf B + tB  is given by: 
 

2
2

2

( ) ( ) 1( ) ( ) ( ) ( )
2!

t t
t h t t h t t h t

df B d f Bf B f B B B B B
dB dB+ +− = − + −+  

3
3

3

( ) 1 ( ) ...
3!

t
t h t

d f B B B
dB ++ − +

)

. 

 
Thus: 
 

( )( 1)
1

( ) (
n

t jh t j h
j

f B f B+ + −
=

−∑  

( ) ( ) ( )2 (( ) ( ) ( ) ( ) ... ( ) ( )t h t t h t h t nh t n hf B f B f B f B f B f B+ + + += − + − + + − 1)+ −  
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( ) (t nh t )f B f B+= −  
2 3

2 3
2 3

( ) ( ) ( )1 1( ) ( ) ( )
2! 3!

t t t
t h t t h t t h t

df B d f B d f BB B B B B B
dB dB dB+ + += − + − + − ...+  

2 3
2 3

2 2 22 3

( ) ( ) ( )1 1( ) ( ) ( )
2! 3!

t h t h t h
t h t h t h t h t h t h

df B d f B d f BB B B B B B
dB dB dB

+ + +
+ + + + + ++ − + − + − ...+

2
( 1) ( 1) 2

( 1) ( 1)2

( ) ( ) 1( ) ( )
2!

t n h t n h
t nh t n h t nh t n h

df B d f B
B B B B

dB dB
+ − + −

+ + − + + −+ − + −  
3

( 1) 3
( 1)3

( ) 1 ( ) ...
3!

t n h
t nh t n h

d f B
B B

dB
+ −

+ + −+ − +  
2

( 1) ( 1) 2
( 1) ( 1)2

1 1

( ) ( )1( ) ( )
2!

n n
t j h t j h

t jh t j h t jh t j h
j j

df B d f B
B B B B

dB dB
+ − + −

+ + − + + −
= =

= − + −∑ ∑  

3
( 1) 3

( 1)3
1

( )1 ( ) ...
3!

n
t j h

t jh t j h
j

d f B
B B

dB
+ −

+ + −
=

+ −∑ + . 

Use the approximation: 
 

2 2
( 1)

2 2

( ) ( )t j h td f B d f B
dB dB

+ − =    and   
3 3

( 1)
3 3

( ) ( )t j h td f B d f B
dB dB

+ − = . 

 
Thus, 
 

( 1)
( 1)

1

( )
( ) ( ) (

n
t j h

t nh t t jh t j h
j

df B
f B f B B B

dB
+ −

+ +
=

− = −∑ )+ −  

2 3
2 3

( 1) ( 1)2 3
1 1

( ) ( )1 1( ) ( )
2! 3!

n n
t t

t jh t j h t jh t j h
j j

d f B d f BB B B B
dB dB+ + − + + −

= =

+ − + −∑ ∑ ...+ . 

 
Note the following: 
 

                   ( 1)
( 1)

1

( )
( )

n t tt j h
t jh t j h t

j

df B dfB B d
dB dB

+∆+ −
+ + −

=

− ≡∑ ∫ B , 

2 2 2
2 2

( 1)2 2
1

( )1 1( ) ( )
2! 2 2

n t tt
t jh t j h t

j

df B df df
2

1B B dB
dB dB dB

+∆

+ + −
=

t− = =∑ ∫ ∆ ,6

                   
3

3
( 1)3

1

( )1 ( ) ... 0
3!

n
t

t jh t j h
j

df B B B
dB + + −

=

− +∑ ≈

                                                

. 

 
Therefore, we have the integral version of Itô formula for the Brownian motion: 
 

 
6 In the mean square limit . 2

0
( )

t
dX t=∫
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2

2

( ) ( )1( ) ( )
2

t t t t

t t t t t

df B df Bf B f B dB
dB dB

τ τ
τ dτ

+∆ +∆

+∆ − = +∫ ∫ , 

 
or in terms of time interval between 0  and t : 
 

2

0 20 0

( ) ( )1( ) ( )
2

t ts s
t s

df B df Bf B f B dB d
dB dB

= + +∫ ∫ s . 

 
Its differential version is: 
 

2

2

1
2

df d fdf dB dt
dB dB

= + . 

 
Consider a simple example of 2( )f B B=  where: 
 

2df B
dB

=    and   
2

2 2d f
dB

= . 

 
Thus the function  satisfies the stochastic differential equation (SDE): ( )f B
 

2df BdB dt= + .7

 
[A.8.2] Wimott’s (1998) Rule of Thumb of Itô Formula for Brownian Motion 
 
A Taylor series expansion of a function (f B dB)+ about a point B  is given by8: 
 

2
2

2

( ) 1 ( )( ) ( )
2

df B d f Bf B dB f B dB dB
dB dB

+ − = + , 

                                  
2

2
2

( ) 1 ( )
2

df B d f Bdf dB dB
dB dB

= + . 

 

Since in the mean square limit 2

0
( )

t
dX t=∫ , setting 2dB dt=  yields the Itô formula: 

 
2

2

( ) 1 ( )
2

df B d f Bdf dB dt
dB dB

= + . 

 
This is of course technically wrong, but it is very useful. 
 
[A.8.3] Itô Formula for Brownian Motion with Drift 

                                                 
7 In ordinary calculous (if B  were deterministic variable), 2df BdB= . 
8 Ignore higher order terms. 
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Consider a function of a random variable  and  is a Brownian motion with drift: ( )V S S
 

( ) ( )dS a S dt b S dB= + , 
 
where the drift parameter  and the volatility parameter  depends on . Using 
Wilmott’s rule of thumb, the function  satisfies the SDE: 

a b S
( )V S

 
2

2
2

1
2

dV d VdV dS b dt
dS dS

= + . 

 
In terms of a Bronwian motion B , the function  satisfies the SDE: ( )V S
 

2
2

2

1( ( ) ( ) ) ( )
2

dV d VdV a S dt b S dB b S dt
dS dS

= + +  

                                   
2

2
2

1( ) ( ) ( )
2

dV d V dVdV a S b S dt b S dB
dS dS dS

⎛ ⎞
= + +⎜ ⎟
⎝ ⎠

. 

 
[A.8.4] Itô Formula for Brownian Motion with Drift in Higher Dimensions 
 
Consider a function of a random variable  and  is a Brownian motion with drift ( , )V S t S
 

( , ) ( , )dS a S t dt b S t dB= + , 
 
where the drift parameter  and the volatility parameter  depends on  and time . 
The function  satisfies the SDE: 

a b S t
( , )V S t

 
2

2
2

1
2

V V VdV dt dS b dt
t S S

∂ ∂ ∂
= + +
∂ ∂ ∂

. 

 
An example is that if  is a Brownian motion with drift of the formS 9: 
 

dS Sdt SdBµ σ= + , 
 
the function  satisfies the SDE: ( , )V S t
 

2
2 2

2

1
2

V V VdV dt dS S dt
t S S

σ∂ ∂ ∂
= + +
∂ ∂ ∂

. 

 
 
[A.8.5] Itô Formula for Jump-Diffusion (Finite Activity Lévy) Processes 
                                                 
9 Geometric Brownian motion. 
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Let X  be a jump-diffusion process of the form: 
 

0 0 0
1

tNt t

t s s s
i

iX X b ds dB Xσ
=

= + + + ∆∑∫ ∫ , 

 

where  is a sum of a drift term, 
0

t

sb ds∫ 0

t

s sdBσ∫  is a stochastic integral of a 

(multiplicative) Brownian motion process with 2

0
[ ]

T

tE dtσ < ∞∫ , and 
1

tN

i
i

X
=

∆∑  is a 

compound Poisson Process. Drift and volatility processes  and b σ  are continuous and 
nonanticipating.  
 
Let  be any  function. Then, the integral version of Itô formula for 
jump-diffusion processes is:       

:[0, ]f T × →R R 1,2C

 

                  0 0

( , ) ( , )( , ) ( ,0)
t s s

t s
f X s f X sf X t f X b ds

s x
∂ ∂⎡ ⎤− = +⎢ ⎥∂ ∂⎣ ⎦∫  

                                                 
2

2
20 0

( , ) ( , )1
2

t ts s
s s s

f X s f X sds dB
x x

σ σ∂ ∂
+ +

∂ ∂∫ ∫  

                                                 
{ 1, }

[ ( ) ( )]
i i

i

T i T
i T t

f X X f X− −
≥ ≤

+ + ∆ −∑ . 

 
Its differential version becomes: 
 

2 2

2

( , ) ( , ) ( , )( , )
2

t t t
t t

tf X t f X t f X tdf X t dt b dt dt
t x x

σ∂ ∂ ∂
= + +

∂ ∂ ∂
 

                                        ( , ) [ ( ) ( )]t
t t t t

f X t dB f X X f Xtx
σ − −

∂
+ + + ∆ −

∂
. 

 
For more details, see Cont and Tankov (2004). 
 
[A.8.6] Itô Formula for General (Finite and Infinite Activity) Scalar Lévy Processes 
 
Let {  be a general scalar Lévy process with its characteristic triplet ; 0}tX t ≥ 2( , , )vσ γ  
and   be any  function. Then, the integral version of Itô formula is:       :f →R R 2C
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Its differential version is: 
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The integral version of Itô formula in higher dimention is: 
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For more details, see Cont and Tankov (2004). 
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