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Abstract 
 
 
 
The goal of this sequel is to provide the foundations of the mathematics of Lévy 
processes for the readers with undergraduate knowledge of stochastic processes as simple 
as possible. The simplicity is a key because, for the beginners such as finance majors 
without the experience in stochastic processes, some available books on Lévy processes 
are not accessible. Lévy processes constitute a wide class of stochastic processes whose 
sample paths can be continuous, continuous with occasionally discontinuous, and purely 
discontinuous. Traditional examples of Lévy processes include a Brownian motion with 
drift (i.e. the only continuous Lévy processes), a Poisson process, a compound Poisson 
process, a jump diffusion process, and a Cauchy process. All of these are well studied and 
well applied stochastic processes. We define and characterize Lévy processes using 
theorems such as the Lévy-Itô decomposition and the Lévy-Khinchin representation and 
in terms of their infinite divisibilities and the Lévy measures . In the last decade and in 
the field of quantitative finance, there was an explosion of literatures modeling the log 
asset prices using purely non-Gaussian Lévy processes which are pure jump Lévy 
processes with infinite activity. To raise a few examples of purely non-Gaussian Lévy 
processes used in finance, variance gamma processes, tempered stable processes, and 
generalized hyperbolic Lévy motions. We cover these purely non-Gaussian Lévy 
processes in the next sequel with a finance application. This is because we like to keep 
this sequal as simple as possible with the pourpose of providing the introductory 
foundations of the mathematics of Lévy processes. 
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[1] Introduction to the Mathematics of Lévy Processes 
 
First of all, we have to say that Lévy processes are nothing new because their properties 
were originally characterized by Paul Lévy in the 1930s. Lévy processes are simply 
defined as stochastic processes 1) whose increments are independent and stationary, 2) 
they are stochastically continuous, and 3) whose sample paths are right continuous and 
left limit functions of time with probability 1. Thus, Lévy processes constitute a wide 
class of stochastic processes whose sample paths can be continuous, continuous with 
occasionally discontinuous, and purely discontinuous. Traditional examples of Lévy 
processes include a Brownian motion with drift (i.e. the only continuous Lévy processes), 
a Poisson process, a compound Poisson process, a jump diffusion process, and a Cauchy 
process. All of these are well studied and well applied stochastic processes. 
 
The probability distributions of all Lévy processes are characterized by infinite 
divisibility. In other words, there is one to one correspondence between an infinitely 
divisible distribution and a Lévy process. For example, a Brownian motion with drift 
which is a Lévy process is a stochastic process generated by a normal distribution which 
is an infinitely divisible distribution. 
 
Lévy-Itô decomposition states that every sample path of Lévy process can be represented 
as a sum of two independent processes which are each expressed using a Lévy triplet 
( , , )A γ : One is a continuous Lévy process and the other is a compensated sum of 
independent jumps. Obviously, a continuous Lévy process is a Brownian motion with 
drift. One trick is that the jump component has to be a compensated sum of independent 
jumps because a sum of independent jumps at time t  may not converge.  
 
Following Lévy-Itô decomposition, Lévy-Khinchin representation gives the characteristic 
functions of all infinitely divisible distributions. In other words, it gives the characteristic 
functions of all processes whose increments follow infinitely divisible distributions – 
Lévy processes in terms of a Lévy triplet ( , , )A γ .  
 
The Lévy measure  of a Lévy process  is defined as a unique positive measure 
on  which measures (counts) the expected (average) number of jumps of all sizes per 
unit of time. In other words, it is a unique positive measure on  which measures arrival 
rate of jumps of all sizes per unit of time. Note that by definition of the Lévy measure , 
all Lévy processes have finite expected number of large jumps per unit of time. If a Lévy 
process has finite expected number of small jumps per unit of time (i.e. a finite integral 
of ), then, it is said to be a finite activity Lévy process such as a compound Poisson 
process. If a Lévy process has infinite expected number of small jumps per unit of time 
(i.e. an infinite integral of ), then, it is said to be an infinite activity Lévy process such as 
a gamma process.  

[0, )( tX ∈ ∞ )
R

R

 
Another important characterization of Lévy processes is that Lévy processes are 
stochastically continuous Markov processes with time homogeneous and spatially 
homogeneous transition functions.  
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The goal of this sequel is to provide the foundations of the mathematics of Lévy 
processes for the readers with undergraduate knowledge of stochastic processes as simple 
as possible. The simplicity is a key because, for the beginners such as finance majors 
without the experience in stochastic processes, some available books on Lévy processes 
are not accessible (from our own experience). For those advanced readers who intend to 
learn Lévy processes using theorems and proofs approach, we highly recommend the 
excellent book by Sato (1999) which is by far the best among available books treating 
Lévy processes.  
 
The structure of this sequel is as follows. Section 2 provides readers with minimal 
necessary knowledge of stochastic processes. We especially emphasize the sample paths 
properties such as the concepts of continuity and limits and the total variation of 
stochastic processes. Martingale and Markov properties are also introduced here. Section 
3 defines Lévy processes, then, provides theorems such as the Lévy-Itô decomposition 
and the Lévy-Khinchin representation. Infinite divisibility and the Lévy measure  of 
Lévy processes are discussed in detail along with various ways to categorize Lévy 
processes. Section 4 gives three traditional examples of Lévy processes – Brownian 
motion, a Poisson process, and a compound Poisson process. Section 5 deals with stable 
processes which are Lévy processes with the broad-sense selfsimilarity.                                       
 
To gain simplicity, we needed to limit the scope of the discussion in a couple of ways. 
One is that we only deal with one dimensional stochastic process in this sequel, not a -
dimensional vector of stochastic processes. The other is that we only treat the traditional 
examples of Lévy processes, namely a Brownian motion, a Poisson process, and a 
compound Poisson process.  

d

 
In the last decade and in the field of quantitative finance, there was an explosion of 
literatures modeling the log asset prices using purely non-Gaussian Lévy processes which 
are pure jump Lévy processes with infinite activity. To raise a few examples of purely 
non-Gaussian Lévy processes used in finance, variance gamma processes, tempered 
stable processes, and generalized hyperbolic Lévy motions. We cover these purely non-
Gaussian Lévy processes in the next sequel with a finance application. 
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[2] Basics of Stochastic Processes 
 
This chapter presents the fundamental concepts of functions and stochastic processes 
which are essential to the understanding of Lévy processes.  
 
[2.1] Function 
 
[2.1.1] Function 
 
Definition 2.1 Function     A function  or  on  uniquely maps 
(relates) a set of input values  to a set of output values

: (f a f a→ ) :f A B→ R
a A∈ ( )f a B∈ . The domain of a 

function is the set A  on which a function is defined and the set of all actual outputs 
 is called the range of a function. ( )f a B∈

 
A function is a many-to-one mapping (i.e. not one-to-many mapping). For example, a 
function  is a one-to-one mapping, ( )f a a= 2( )f a a= −  is a two-to-one mapping except 
for , and 0a = ( ) sin(2 )f a aπ=  is a many-to-one mapping. 

-2 -1 0 1 2
a

-4

-3

-2

-1

0

1

2

fH
aL

sinH2πaL

−a2

a

 
Figure 2.1: Examples of a function . : (f a f a→ )

)

 
[2.1.2] Left Limit and Right Limit of a Function 
 
Definition 2.2 Left limit and Right limit of a function     A function  on 

 has a left limit  at a point 
: (f a f a→

R ( )f b− a b=  if  approaches ( )f a ( )f b−  when  approaches 
 from the below (the left-hand side): 

a
b
 

lim ( ) ( )a b f a f b→ − = − . 
 
A function  on  has a right limit : (f a f a→ ) R ( )f b+  at a point a b=  if  
approaches  when  approaches b  from the above (right-hand side): 

( )f a
( )f b+ a
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lim ( ) ( )a b f a f b→ + = + . 

 
[2.1.3] Right Continuous Function and Right Continuous with Left Limit (RCLL) 
Function 
 
Definition 2.3 Right continuous function     A function  on  is said to be right 
continuous at a point  if it satisfies the following conditions: 

f R
a b=

 
(1)  is defined. In other words, a point b  is in the domain of a function .   ( )f b f
(2) Right limit of the function as a  approaches  from the above (right hand side) exists, b
      i.e. lim ( ) ( )a b f a f b→ + = + .  
(3) . ( ) ( )f b f b+ =
 
Definition 2.4 Right continuous with left limit (rcll) function     A function  on R  is 
said to be right continuous with left limit at a point 

f
a b=  if it satisfies the following 

conditions: 
 
(1)  is defined. In other words, a point b  is in the domain of a function .   ( )f b f
(2) Right limit of the function as a  approaches  from the above (right hand side) exists, b
      i.e. lim ( ) ( )a b f a f b→ + = + . Left limit of the function as a  approaches  from the b
      below (left hand side) exists, i.e. lim ( ) ( )a b f a f b→ − = − . 
(3) . ( ) ( )f b f b+ =
 
The above definitions imply that a rcll function is right continuous, but the reverse is not 
true. In other words, a rcll function is more restrictive than a right continuous function 
because a rcll function needs left limit. This point is illustrated in Figure 2.2.    

 
Figure 2.2: Relationship between rc function and rcll function.  
 
Consider a piecewise constant function defined as (illustrated in Figure 2.3): 
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0   if   1

( ) 1   if   1 <2
2   if   2 <3

a
f a

a

<⎧
⎪= ≤⎨
⎪ ≤⎩

a .                                            (2.1) 

 
The right limit at a point  is equal to the actual value of the function at a point1a = 1a = : 
 

(1 ) (1) 1f f+ = = , 
 
this means  is right continuous at a point f 1a = . But the left limit at a point  is not 
equal to the actual value of the function at a point

1a =
1a = : 

 
(1 ) 0 (1) 1f f− = ≠ = , 

 
this means  is not left continuous at a point f 1a = . Therefore, this function is right 
continuous with left limit. And the jump size is: 
 

(1 ) (1 ) 1 0 1f f+ − − = − = . 
 

 
Figure 2.3: Right continuous with left limit (rcll) function. 
 
[2.1.4] Left Continuous Function and Left Continuous with Right Limit (LCRL) 
Function 
 
Definition 2.5 Left continuous function     A function  on R  is said to be left   
continuous at a point  if it satisfies the following conditions: 

f
a b=

 
(1)  is defined. In other words, a point b  is in the domain of a function .   ( )f b f
(2) Left limit of the function as  approaches b  from the below (left hand side) exists, a
      i.e. lim ( ) ( )a b f a f b→ − = − . 
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(3) . ( ) ( )f b f b− =
 
Definition 2.6 Left continuous with right limit (lcrl) function     A function  on  is 
said to be left continuous with right limit at a point a

f R
b=  if it satisfies the following 

conditions: 
 
(1)  is defined. In other words, a point b  is in the domain of a function .   ( )f b f
(2) Right limit of the function as a  approaches  from the above (right hand side) exists, b
      i.e. lim ( ) ( )a b f a f b→ + = + . Left limit of the function as a  approaches  from the b
      below (left hand side) exists, i.e. lim ( ) ( )a b f a f b→ − = − . 
(3) . ( ) ( )f b f b− =
 
Consider a piecewise constant function defined as: 
 

                                                    
0   if   1

( ) 1   if   1 2
2   if   2 3

a
f a a

a

≤⎧
⎪= < ≤⎨
⎪ < ≤⎩

.                                            (2.2) 

 
The left limit at a point  is equal to the actual value of the function at a point1a = 1a = : 
 

(1 ) (1) 0f f− = = , 
 
this means  is left continuous at a point f 1a = . But the right limit at a point  is not 
equal to the actual value of the function at a point

1a =
1a = : 

 
(1 ) 1 (1) 0f f+ = ≠ = , 

 
this means  is not right continuous at a point f 1a = . Therefore, this function is left 
continuous with right limit. And the jump size is: 
 

(1 ) (1 ) 1 0 1f f+ − − = − = . 
 
[2.1.5] Continuous Function 
 
Definition 2.7 Continuous function     A function  on R  is said to be 
continuous at a point  if it satisfies the following conditions: 

: (f a f a→ )
a b=

 
(1)  is defined. In other words, a point b  is in the domain of a function .   ( )f b f
(2) Right limit of the function as a  approaches  from the above (right hand side) exists, b
      i.e. lim ( ) ( )a b f a f b→ + = + . Left limit of the function as a  approaches  from the b
      below (left hand side) exists, i.e. lim ( ) ( )a b f a f b→ − = − . 
(3) . ( ) ( ) ( )f b f b f b+ = − =
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In other words, a continuous function is a left and right continuous function which in turn 
means that a continuous function is the most restrictive among rc, rcll, and continuous 
functions. All the functions in Figure 2.1 are continuous.  
 

 
Figure 2.4: Illustration of a continuous function. 

 
Figure 2.5: Relationship between rc, rcll, and continuous functions.  
 
[2.1.6] Discontinuous Function 
 
Definition 2.8 Discontinuous function     A function  on  is said to be 
discontinuous at a point  (called a point of discontinuity) if it fails to satisfy being a 
continuous function. 

: (f a f a→ )

)

R
a b=

 
There are three different categories of points of discontinuities.  
 
Definition 2.9 A function with removable discontinuity (singularity)     A function 

 on R  is said to have a removable discontinuity at a point  if it 
satisfies the following conditions: 

: (f a f a→ a b=

 7



 

 
(1)  is defined or  is not defined.  ( )f b ( )f b
(2) Left limit lim ( ) ( )a b f a f b→ − = −  exists. Right limit lim ( ) ( )a b f a f b→ + = +  exists. 
(3) . ( ) ( ) ( )f b f b f b− = + ≠
 
This means that a removable discontinuity at a point a b=  looks like a dislocated point 
as shown by Figure 2.6 where the example is a function: 
 

5   if   3 
( )

5   if   3
a a

f a
a

− + ≠⎧
= ⎨ =⎩

. 

 
This function has a left limit 2 which is equal to the right limit at a point : 3a =
 

(3 ) (3 ) 2f f− = + = , 
 
but these limits are not equal to the actual value that this function takes at a point : 3a =
 

(3 ) (3 ) 2 (3) 5f f f− = + = ≠ = , 
 
which indicates that  is discontinuous at a point f a b= . 

 
Figure 2.6: Example of a removable discontinuity with the defined discontinuity 
point . (3) 5f =
 
Or, consider a function: 
 

2 25( )
5

af a
a
−

=
−

, 

 
which is undefined at a point . But its left limit and right limit exist and they are 
equal: 

5a =
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(5 ) (5 ) 10f f− = + = . 
 
Therefore, it is a function with removable discontinuity, too. 

 
Figure 2.7: Example of a removable discontinuity with the undefined discontinuity 
point . (5)f
 
Definition 2.10 A function with discontinuity of the first kind (jump discontinuity)     
A function  on  is said to have a jump discontinuity at a point a  if it 
satisfies the following conditions: 

: (f a f a→ ) R b=

 
(1)  is defined. In other words, a point b  is in the domain of a function .   ( )f b f
(2) Left limit  exists. Right limit ( )f b− ( )f b+  exists. 
(3) . ( ) ( )f b f b− ≠ +
 
Then, the jump is defined by the amount ( ) ( )f b f b+ − − . 
 
Consider a function:  
 

                                                      
1   if   1

( ) 0   if   1 
1   if   1

a
f a a

a

>⎧
⎪= =⎨
⎪− <⎩

.                                              (2.3) 

 
This function has a left limit -1 which is not equal to the right limit 1 at a point : 1a =
 

(1 ) 1 (1 ) 1f f− = − ≠ + = , 
 
and the jump size is: 
 

(1 ) (1 ) 1 ( 1) 2f f+ − − = − − = . 
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Figure 2.8: Example of a jump discontinuity. 
 
Definition 2.11 A function with discontinuity of the second kind (essential 
discontinuity)     A function  on  is said to have an essential 
discontinuity at a point  if either (or both) of left limit 

: (f a f a→ ) R
a b= ( )f b−  or right limit ( )f b+   

does not exist. 
 
The typical example of an essential discontinuity given in most textbooks is the function: 
 

                                                
sin(1/ )   if   0

( )
0   if   0

a a
f a

a
≠⎧

= ⎨ =⎩
,                                          (2.4) 

 
which does not have both left limit ( )f b−  and right limit ( )f b+  as shown by Figure 2.9. 

-4 -2 0 2 4
a

-1

-0.5

0

0.5

1

fH
aL

 
Figure 2.9: Example of an essential discontinuity. 
 
Figure 2.10 illustrates the relationship between rcll, continuous, and discontinuous 
functions.  
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Figure 2.10: Relationship between rcll, continuous, and discontinuous functions.  
 
[2.2] Stochastic Processes 
 
A stochastic process is a collection of random variables: 
 

[0, ]( )t TX ∈ , 
 
where the index denotes time. Note that we are interested in the continuous time 
stochastic process where the time index takes any value in the interval  (or it 
could be an infinite horizon). Discrete time stochastic process can be defined using a 
countable index set : 

[0, ]t T∈

t∈N
 

( )tX ∈N . 
 
A stochastic process is defined on a filtered probability space [0, ]( , , )t T∈Ω PF  where Ω  is 
an arbitrary set and  is a probability measure on .  is called a filtration 
which is an increasing family of 

P [0, ]t T∈F [0, ]t T∈F
σ -algebras of a subset ofΩ  which satisfy for 

:   0 s t∀ ≤ ≤
 

s t⊆F F . 
 
Intuitively speaking, a filtration is an increasing information flow about  as time 
progresses.  

[0, ]( t TX ∈ )

 
We can alternatively state that a real valued continuous time stochastic process is a 
random function: 
 

:[0, ]X T ×Ω→ R . 
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After the realization of the randomnessω , a sample path of  is defined as: [0, ]( t TX ∈ )
 

( ) :X tω → R  or ( ) : ( )tX t Xω ω→ . 
 
A stochastic process  is said to be nonanticipating with respect to the filtration 

 or -adapted if the value of 
[0, ]( t TX ∈ )

tF tF tX  is revealed at time t  for each [0,  ]t T∈ .  
 
[2.2.1] Convergence of Random Variables 
 
Definition 2.12 Pointwise convergence     Let ( )( )nX ω∈N  be a sequence of real valued 
random variables on a space ( ,  under a scenario (i.e. event or randomness), )Ω PF ω∈Ω . 
A sequence ( ( )nX )ω∈N  is said to converge pintwisely to a random variable X  if: 
 

lim ( )nn
X Xω

→∞
= . 

 
Pointwise convergence is the strongest notion of convergence because it requires 
convergence to a random variable X  for all scenarios (samples)ω∈Ω , i.e. even for 
those scenarios with zero probability.   
 
Definition 2.13 Almost sure convergence     Let ( )( )nX ω∈N  be a sequence of real 
valued random variables on a space ( , , )Ω PF  under a scenarioω∈Ω . A sequence 
( ( )nX )ω∈N  is said to converge almost surely to a random variable X  if: 
 

( )lim ( ) 1nn
X Xω

→∞
= =P . 

 
Almost sure convergence is weaker than pointwise convergence since those samples 
ω∈Ω  with non convergence lim ( )nn

X Xω
→∞

≠  have zero probability: 

 

( ) ( )lim ( ) lim ( ) 1 0 1n nn n
X X X Xω ω

→∞ →∞
= + ≠ =P P + = . 

 
Almost sure convergence is used in the strong law of large numbers. Almost sure 
convergence implies convergence in probability which in turn implies convergence in 
distribution. 
 
Definition 2.14 Convergence in probability     Let ( )nX ∈N  be a sequence of real valued 

random variables on a space ( , . A sequence , )Ω PF ( )nX ∈N  is said to converge in 
probability to a random variable X  if for everyε +∈R : 
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( )lim 0nn
X X ε

→∞
− > =P , 

 
or equivalently: 
 

( )lim 1nn
X X ε

→∞
− ≤ =P . 

 
Intuitively speaking, convergence in probability means that the probability of nX  getting 
closer to X  rises (and eventually converges to 1) as we take  larger and larger. 
Convergence in probability is used in the weak law of large numbers. Convergence in 
probability implies convergence in distribution. 

n

 
Definition 2.15 Convergence in mean square     Let ( )nX ∈N  be a sequence of real 

valued random variables on a space ( , , )Ω PF . A sequence ( )nX ∈N  is said to converge in 
mean square to a random variable X  if for everyε +∈R : 
 

( )2lim 0nn
E X X

→∞
− = . 

 
Convergence in mean square implies convergence in probability following Chebyshev’s 
inequality. 
 
Definition 2.16 Convergence in distribution (Weak convergence)     Let  be a 

sequence of real valued random variables on a space
( nX ∈N )

( , , )Ω PF . A sequence ( )  is 
said to converge in distribution to a random variable 

nX ∈N

X  if for z∈R : 
 

( ) ( )lim nn
X z X z

→∞
≤ = ≤P P . 

 
Loosely speaking, convergence in distribution means that only when we take sufficiently 
large n , the probability that nX  is in the interval [ ,  approaches the probability that ]a b
X  is in the interval [ , . Convergence in distribution is the weakest definition of 
convergence in the sense that it does not imply any other convergence but implied by all 
other notions of convergence listed above.   

]a b

 
[2.2.2] Law of Large Numbers and Central Limit Theorem 
 
Definition 2.17 Weak law of large numbers     Let 1 2, , 3X X X … be  random 
variables from a distribution with mean 

. .i i d
µ  and variance 2σ < ∞ . Define its sample mean 

as: 
 

1 2 ... n
n

X X XX
n

+ + +
= . 
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Then, the sample mean nX  converges in probability to the (population) meanµ : 
 

( )lim 0nn
X µ ε

→∞
− > =P , 

 
for any . Or equivalently: ε +∈R
 

( )lim 1nn
X µ ε

→∞
− < =P . 

 
Definition 2.18 Strong law of large numbers     Let 1 2 3, ,X X X … be  random 
variables from a distribution with mean

. .i i d
µ < ∞ . Define its sample mean as: 

 
1 2 ... n

n
X X XX

n
+ + +

= . 

 
Then, the sample mean nX  converges almost surely to the (population) mean µ : 
 

( )lim 1nn
X µ

→∞
= =P , 

 
for any .  ε +∈R
 
Definition 2.19 Central limit theorem     Let 1 2, , 3X X X … be  random variables 
from a distribution with mean

. .i i d
µ < ∞  and variance 2σ < ∞ . Define the sum of a sequence 

of random variables as: 
 

1 2 ...n nS X X X= + + + . 
 
We know the followings: 
 
                              [ ] [ ] [ ] [ ]1 2 ...n nE S E X X X nµ= + + = , 

[ ] [ ] [ ] [ ] 2
1 2 ...n nVar S Var X Var X Var X nσ= + + + = . 

 
Then, informally, the sum  converges in distribution to a normal distribution with 
mean 

nS
nµ  and variance 2nσ  as : n →∞

 
                   ( ) (lim nn

S b Y b
→∞

≤ = ≤P P )

( )2

22

1 1exp
22

b Y n
dY

nn

µ
σπ σ−∞

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∫ , 
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where Y  is a normal random variable, i.e. ( )2,Y N n nµ σ∼ .  
 
Formal central limit theorem is a standardization of the above informal one. Define a 
random variable nZ  as: 
 

n
n

S nZ
n
µ

σ
−

= . 

 
Then, nZ  converges in distribution to the standard normal distribution as : n →∞
 
                           ( ) ( )lim nn

Z b Z
→∞

≤ = ≤P P b  

21 1exp
22

b
Z dZ

π−∞

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫ , 

 
where Z  is the standard normal random variable, i.e. ( )0,1Z N∼ .  
 
[2.2.3] Inequalities 
 
Definition 2.20 Markov’s inequality     Let X  be a nonnegative random variable. Then, 
for anyb : +∈R
 

( ) [ ]E X
X b

b
≥ ≤P . 

 
Proof 
 

[ ] ( ) ( ) ( )
0 0

b

b
E X Xd X Xd X Xd X

∞ ∞
= = +∫ ∫ ∫P P P

≥

. 

 
This means: 
 

[ ] ( ) ( ) ( ) ( )
b b b

E X Xd X bd X b d X b X b
∞ ∞ ∞

≥ ≥ = =∫ ∫ ∫P P P P . 

 
Thus: 
 

[ ] ( )E X
X b

b
≥ ≥P . 

,  
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Markov’s inequality provides an upper bound of the probability that a nonnegative 
random variable is greater than an arbitrary positive constant  by relating a probability 
to an expectation. A variant of Markov’s inequality is called Chebyshev’s inequality. 

b

 
Definition 2.21 Chebyshev’s inequality     Let X  be a random variable on  (i.e. both 

 and ) with mean 
R

+R −R µ < ∞  and variance 2σ < ∞ . Then, for any : k +∈R
 

( )
2

2X k
k
σµ− ≥ ≤P . 

 
Proof 
 
Start with Markov’s inequality: 
 

( ) [ ]E X
X b

b
≥ ≤P

. 
 
Replace a random variable X  with a random variable 2(X )µ−  and  with : b 2k
 

( )
2 2

2 2
2 2

( )
( )

E X
X k

k k
µ σµ

⎡ ⎤−⎣ ⎦− ≥ ≤ =P , 

 
which in turn indicates: 
 

                                                      ( )
2

2X k
k
σµ− ≥ ≤P , 

( ) 2

1X k
k

µ σ− ≥ ≤P . 

,  
 
Chebyshev’s inequality provides bounds of random variables from any distributions as 
long as their means and variances are known. For example, when 2k = : 
 

                                            ( ) 12
4

X µ σ− ≥ ≤P  

                                            ( ) 12 , 2
4

X Xµ σ µ σ− + ≥ − ≥ ≤P  

                                            ( ) 12 , 2
4

X Xµ σ µ σ≤ − ≥ + ≤P  

                                            ( ) 32 2
4

Xµ σ µ σ− ≤ ≤ + ≥P . 
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This tells us that the probability that any random variable lies within two standard 
deviations is at least .75.  
 
Definition 2.22 Cauchy-Schwarz’s inequality     Let X  and Y  be jointly distributed 
random variables on R  with each having finite variance. Then: 
 

( )2 2 2[ ] [ ] [ ]E XY E X E Y≤ . 
 
Proof 
 
Refer to Abramowitz (1993). 
 
[2.3] Putting Structure on Stochastic Processes 
 
The purpose of any mathematical (statistical) modeling regardless of the field is to fit less 
complicated models to the highly complicated real world phenomena as accurate as 
possible. Mathematical models are less complicated in the sense that they make some 
simplifying assumptions or put some simplifying structures (restrictions) on the real 
world phenomena for the purpose of gaining tractability. There are some popular 
dependence structures put on stochastic processes which mathematicians have developed 
and used for years.    
 
[2.3.1] Processes with Independent and Stationary Increments: Imposing Structure 
on a Probability Measure  P
 
Before giving the definition of processes with independent and stationary increments, we 
must know the basics. 
 
Definition 2.23 Conditional probability     The conditional probability of an arbitrary 
event A  given an event with positive probability B  is: 
 

( )( )
( )

A BA B
B

=
∩PP

P
. 

 
When , ( ) 0B =P ( )A BP  is undefined. 
 
Definition 2.24 Statistical (Stochastic) independence     Two arbitrary events A  and B  
are said to be independent, if and only if: 

 
( ) ( ) ( )A B A B=∩P P P . 

 
This definition of independence has two advantages. Firstly, it is symmetric in A  and B . 
In other words, an event A ’s independence of an event B  implies an event B ’s 
independence of an event A . Secondly, this definition holds even when an event B  has 
zero probability, i.e. .  ( ) 0B =P
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When two arbitrary events A  and B  are independent, from the definition of a 
conditional probability: 
 

( ) ( )( ) (
( )

A BA B A
B

= =
P PP P
P

) . 

 
It is important to note that this is a result of statistical independence and not the 
definition. This is because the above equation is not true (i.e. undefined) when ( ) 0B =P  
and it is not symmetric in that ( ) ( )A B =P P A  does not necessarily imply 

( ) (B A B=P P ) .  
 
Definition 2.25 Mutual statistical independence     Arbitrary events , , …,  are 
said to be mutually independent, if and only if: 

1A 2A nA

 
1 2 1 2( ... ) ( ) ( )... ( )n nA A A A A A=∩ ∩ ∩P P P P

)

. 
 
Definition 2.26 Processes with Independent and Stationary Increments     A 
stochastic process (  with values in  on a filtered probability space 

 is said to be a process with independent and stationary increments if it 
satisfies the following conditions: 

[0, ]t TX ∈ R

[0, ]( , , )t T∈Ω PF

 
(1) Its increments are independent. In other words, for 1 2 ... nt t t< < < : 

 
2 1 3 2 1 2 1 3 2

( ... ) ( ) ( )... ( )
n n n nt t t t t t t t t t t tX X X X X X X X X X X X

− −
− − − = − − −∩ ∩ ∩P P P

1
P . 

 
(2) Its increments are stationary: i.e. for h +∀ ∈R , t h tX X+ −  has the same distribution 
as hX . In other words, the distribution of increments does not depend on  (i.e. temporal 
homogeneity).  

t

      
Consider an increasing sequence of time 1 20 ... nt t t t u< < < < < < < ∞  where t  is the 
present. As a result of independent increments condition: 
 
                                      

1 2 10( , ,..., )
nu t t t t t tX X X X X X X X− − − −P  

                                  1 2 1

1 2 1

0

0

( , ,..., )
( , ,..., )

n

n

u t t t t t t

t t t t t

X X X X X X X X
X X X X X X

− − − −
=

− − −

∩P
P

 

1 2 1

1 2 1

0

0

( ) ( , ,..., )
( , ,..., )

n

n

u t t t t t t

t t t t t

X X X X X X X X
X X X X X X

− − − −
=

− − −

P P
P

 

                                  ( )u tX X= −P , 

 18



 

 
which means that there is no correlation (probabilistic dependence structure) on the 
increments among the past, the present, and the future.  
 
For example, independent increments condition means that when modeling a log stock 
price l  as an independent increment process, the probability distribution of a log 
stock price in year 2005 – 2006 is independent of the way the log stock price increment 
has evolved over the years (i.e. stock price dynamics), i.e. it doesn’t matter if this stock 
crushes or soars in year 2004 – 2005):  

n tS

 
2006 2005 2003 2002 2004 2003 2005 2004(ln ln ..., ln ln , ln ln , ln ln )S S S S S S S S− − − −P  

              . 2006 2005(ln ln )S S= −P
 
Using the simple relationship ( )u u t tX X X X≡ − +  for an increasing sequence of time 

: 1 20 ... nt t t t u< < < < < < < ∞
 

1 2 1 20 0( , , ,..., , ) (( ) , , ,..., , )
n nu t t t t u t t t t t tX X X X X X X X X X X X X X= − +P P  

                                                             ( )u tX X= P , 
 
which holds because an increment ( )u tX X−  is independent of tX  by definition and the 
value of tX  depends on its realization ( )tX ω . This is a strong probabilistic structure 
imposed on a stochastic process because this means that the conditional probability of the 
future value uX  depends only on the previous realization ( )tX ω  and not on the entire 
past history of realizations

1 20 , , ,..., ,
nt t t tX X X X X  (i.e. called Markov property which is 

discussed soon).   
 
Although this condition seems too strong, it imposes a very tractable property on the 
process. Because if two variables X  and Y  are independent: 
 
                                           [ ] [ ] [ ]E XY E X E Y= , 
                                           [ ] [ ] [Var X Y Var X Var Y ]+ = + , 

[ , ] 0Cov X Y =  (i.e. [ , ] 0Corr X Y = ). 
 
Stationary increments condition means that the distributions of increments t h tX X+ −  do 
not depend on the time , but they depend on the time-distance  of two observations (i.e. 
interval of time). In other words, the probability density function of increments does not 
change over time. For example, if you model a log stock price l  as a process with 
stationary increments, the distribution of increment in year 2005 – 2006 is the same as 
that in year 2050 – 2051: 

t h

n tS

 
2006 2005 2051 2050ln ln   ln lnS S d S S− − . 
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There is no doubt that the above independent and stationary increments conditions 
impose a strong structure on a stochastic process ( )[0, ]t TX ∈ , as a result of these 
restrictions, the mean and variance of the process is tractable: 
 
                                                       0 1[ ]tE X tµ µ= + , 

2 2
0 1[ ]tVar X tσ σ= + , 

 
where 0 0[ ]E Xµ = , 1 1 0[ ]E Xµ µ= − 2 2

0 0 0[( ) ]E Xσ µ= − 2
0, , and 2 2

1 1 1[( ) ]E Xσ µ σ= − − . 
 
[2.3.2] Martingale: Structure on Conditional Expectation 
 
[2.3.2.1] Definition of Martingale 
 
Originally, the word ‘martingale’ comes from a French acronym of a gambling strategy. 
Imagine a coin flip gamble in which you win if a head turns up and you lose if a tail turns 
up. Martingale strategy requires a gambler to double his bet after every loss. Following 
martingale strategy, a gambler can recover all the losses he made and end up with an 
initial amount of his wealth plus an initial bet. Table 2.1 gives a sample path of a 
martingale strategy in which a gambler initially owns $200 of wealth, start betting with a 
stake of $2, and due to his bad luck his first win comes at the seventh trial. As you can 
see, he basically ends up where he started, i.e. his initial wealth of $200 (plus an initial 
bet of $2). Thus, a martingale strategy tells that after gambling many hours a gambler 
gains nothing (loses nothing) and his wealth remains constant on average.      
 

Table 2.1 Martingale Gambling Strategy 
Trial 0 1 2 3 4 5 6 7 
Result  Loss Loss Loss Loss Loss Loss Win 
Bet  $2 $4 $8 $16 $32 $64 $128 
Net Gain  -$2  -$4 -$8 -$16 -$32 -$64 +$128 
Wealth $200 $198 $194 $186 $170 $138 $74 +$202 
 
In probability theory, a stochastic process is said to be a martingale if its sample path has 
no trend. Formally, a martingale is defined as the follows. 
 
Definition 2.27 Martingale     Consider a filtered probability space [0, ]( , , )t T∈Ω PF . A rcll 
stochastic process  is said to be a martingale with respect to the filtration  
and under the probability measure P  if it satisfies the following conditions: 

[0, ]( )t t TX ∈ tF

 
(1) tX  is nonanticipating. 
(2) [ ]tE X < ∞  for . Finite mean condition.   [0,  ]t∀ ∈ T

(3) [ ]u t tE X X=�F  for . u t∀ >
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In other words, if a stochastic process is a martingale, then, the best prediction of its 
future value is its present value. Note that the definition of martingale makes sense only 
when the underlying probability measure  and the filtration  have been 
specified.  

P [0, ]( )t t T∈F

 
The fundamental property of a martingale process is that its future variations are 
completely unpredictable with the filtration :  tF
 

0,  [ ] [ ] [ ] 0t u t t t u t t t t tu E x x E x E x x x+ +∀ > − = − = − =F F F . 
 
Finite mean condition is necessary to ensure the existence of the conditional expectation. 
 
[2.3.2.2] Example of Continuous Martingale: Standard Brownian Motion  
 
Let  be a standard Brownian motion process defined on a filtered probability 
space . Then,  is a continuous martingale with respect to the 
filtration  and the probability measure .  

[0, )( tB∈ ∞ )
)

)

[0, )( , , )t∈ ∞Ω F P [0, )( tB∈ ∞

[0, )t∈ ∞F P
 
Proof 
 
By definition,  is a nonanticipating process (i.e. [0, )( tB∈ ∞ [0, )t∈ ∞F - adapted process) with 

the finite mean [ ] 0tE B = < ∞  for [0, )t∀ ∈ ∞ . For 0 t u∀ ≤ ≤ < ∞ : 
 

                                                          
u

u t t vB B dB= + ∫ .                                                   

 
Using the fact that a Brownian motion is a nonanticipating process, i.e. [ ]t t tE B B=F : 
 

[ ] [ ] [ ] [ ]
u

u t t u t t t t v tt
E B B E B E B E B dB− = − = + −∫F F F F tB  

                        [ ] [ ] [ ]
u

u t t t t v tt
E B B E B E dB B− = + −∫F F F t  

                        [ ] 0u t t t tE B B B B− = + −F 0= , 
  
or in other words: 
 

[ ] [ ] [ ] [ ]
u u

u t t v t t t v t tt t
E B E B dB E B E dB B= + = + = +∫ ∫� � � �F F F F 0  

                     [ ]u t tE B B=�F , 
 
which is a martingale condition. 

,  
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Let  be a standard Brownian motion process defined on a filtered probability 
space . Then, a Brownian motion with drift 

[0, )( tB∈ ∞ )
)[0, )( , , )t∈ ∞Ω F P [0, ) [0, )( ) (t tX t Bµ σ∈ ∞ ∈ ∞≡ +  is 

not a continuous martingale with respect to the filtration [0, )t∈ ∞F  and the probability 
measure .  P
 
Proof 
 
By definition,  is a nonanticipating process (i.e. [0, )( tX ∈ ∞ ) [0, )t∈ ∞F - adapted process) with 
the finite mean [ ] [ ]t tE X E t B tµ σ µ= + = < ∞  for [0, )t∀ ∈ ∞  andµ ∈R . For 

: 0 t u∀ ≤ ≤ < ∞
 

                                                         
u

u t t
X X dX= + v∫ .                                      

 
Using the fact that a Brownian motion with drift is a nonanticipating process, i.e. 

[ ]t t tE X X=F : 
 

[ ] [ ] [ ] [
u u

u t t v t t t v tt t
E X E X dX E X E dX= + = +∫ ∫� � �F F F ]�F  

                          [ ] (u t tE X X u tµ= + −�F )

)t

, 
 
which violates a martingale condition.  

,  
 
But one way to transform nonmartingales into martingales is to make the process 
driftless. In other words, eliminating the trend of the process which is sometimes called a 
detrending. Consider the following example. 
 
A detrended Brownian motion with drift defined as: 
 

[0, ) [0, ) [0, )( ) ( ) (t tX t t B t Bµ µ σ µ σ∈ ∞ ∈ ∞ ∈ ∞− ≡ + − ≡ , 
 
is a continuous martingale with respect to the filtration [0, )t∈ ∞F  and the probability 
measure .  P
 
Proof 
              
For : 0 t u∀ ≤ ≤ < ∞
 

                        [ ] [( ) (
u u

u t t vt t
E X u E X t dX dvµ µ µ− = − + −∫ ∫� �F F) ]t  
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[ ] [( ) ] [( ) ]
u u

u t t t vt t
E X u E X t E dX dvµ µ µ− = − + −∫ ∫� �F F t�F  

                         [ ] ( ) (u t tE X u X t u t u tµ µ µ µ− = − + − −�F )−  

                         [ ]u t tE X u X tµ µ− = −�F , 
 
which satisfies a martingale condition.  

,  
 
[2.3.2.3] Martingale Asset Pricing 
 
Most of financial asset prices are not martingales because they are not completely 
unpredictable and most financial time series have trends. Consider a stock price process 

 on a filtered probability space { ;0 }tS t T≤ ≤ [0, ]( , , )t T∈Ω PF  and let  be the risk-free 
interest rate. In a small time interval

r
∆ , risk-averse investors expect  to grow at some 

positive rate. This can be written as under actual probability measure : 
tS
P

 
[ ]t tE S S+∆ >P F t . 

 
This means that a stock price  is not martingale under  and with respect to . To be 
more precise, risk-averse investors expect  to grow at a rate greater than  because a 
stock is risky: 

tS P tF

tS r

 
[ ]r

t tE e S S− ∆
+∆ >P F t . 

 
The stock price discounted by the risk-free interest rate r

te S− ∆
+∆  is not martingale under 

 and with respect to .  P tF
 
How can we convert a discounted stock price r

te S− ∆
+∆  into a martingale? First approach 

is to eliminate the trend. The trend in this case is the risk premium π  which risk-averse 
investors demand for bearing extra amount of risk. If we can estimateπ  correctly, a 
discounted stock price  can be converted into a martingale by detrending:   r

te S− ∆
+∆

 
( )[ ] [r r

t t t tE e e S E e S Sπ π− ∆ − ∆ − + ∆
+∆ +∆ ] t= =P PF F . 

 
But this approach involves the rather difficult job of estimating the risk premium π  and 
is not used in quantitative finance. Martingale asset pricing uses the second approach to 
convert non-martingales into martingales by changing the probability measure. We will 
try to find an equivalent probability measure  (called risk-neutral measure) under 
which a discounted stock price becomes martingale: 

Q

 
[ ]r

t tE e S S− ∆
+∆ t=Q F . 
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[2.3.2.4] Submartingales and Supermartingales 
 
Definition 2.28 Submartingale     Consider a filtered probability space . A 
rcll stochastic process  is said to be a submartingale with respect to the filtration 

 and under the probability measure  if it satisfies the following conditions: 

[0, ]( , , )t T∈Ω PF

[0, ]( )t t TX ∈

tF P
 
(1) tX  is nonanticipating. 
(2) [ ]tE X < ∞  for . Finite mean condition.   [0,  ]t∀ ∈ T

(3) [ ]u t tE X X≥�F  for . u t∀ >
 
Intuitively, a submartingale is a stochastic process with a positive (upward) trend. A 
submartingale gains or grows on average as time progresses. 
 
Definition 2.29 Supermartingale     Consider a filtered probability space . 
A rcll stochastic process  is said to be a supermartingale with respect to the 
filtration  and under the probability measure  if it satisfies the following conditions: 

[0, ]( , , )t T∈Ω PF

[0, ]( )t t TX ∈

tF P
 
(1) tX  is nonanticipating. 
(2) [ ]tE X < ∞  for . Finite mean condition.   [0,  ]t∀ ∈ T

(3) [ ]u t tE X X≤�F  for . u t∀ >
 
Intuitively, a supermartingale is a stochastic process with a negative (downward) trend. A 
supermartingale loses or declines on average as time progresses. 
 
By definition, any martingale is a submartingale and a supermartingale.  
 

 
Figure 2.11: Relationship among martingales, submartingales, and 
supermartingales. 
 

 24



 

[2.3.3] Markov Processes: Structure on Conditional Probability 
 
This section gives a brief introduction to a class of stochastic processes called Markov 
processes which impose a restriction on the conditional probabilities. This differs from 
martingales which impose a structure on conditional expectations.  
 
[2.3.3.1] Discrete Time Markov Chains 
 
Definition 2.30 Discrete time Markov chain     Consider a discrete time stochastic 
process (  (i.e. ) defined on a filtered probability space  
which takes values in a countable or a finite set 

)n nX ∈N 0,1, 2,...n = ( , , )n∈Ω N PF
E  called a state space of the process. A 

realization nX  is said to be in state i E∈  at time n  if nX i= . An E -valued discrete time 
Markov chain is a stochastic process which satisfies for n∀ ∈N  and ,i j E∀ ∈ : 
 

1 0 1 2 1( , , ,..., ) ( )n n nX j X X X X i X j X+ += = = =P P n i= . 
 
This is called a Markov property. Markov property means that the probability of a 
random variable 1nX +  at time  (tomorrow) being in a state 1n+ j  conditional on the 
entire history of the stochastic process 0 1 2( , , ,..., )nX X X X  is equal to the probability of a 
random variable 1nX +  at time  (tomorrow) being in a state 1n+ j  conditional only on the 
value of a random variable at time  (today). In other words, the history (sample path) of 
the stochastic process 

n
0 1 2( , , ,..., )nX X X X  is of no importance in that the way this 

stochastic process evolved or the dynamics 1 0 2 1( , ,...)X X X X− −  does not mean a thing 
in terms of the conditional probability of the process. The only factor which influences 
the conditional probability of a random variable 1nX +  at time 1n+  (tomorrow) is the state 
of a random variable at time  (today). n
 
The probability 1( n nX j X+ = =P )i  which is a conditional probability of moving from a 
state i  at time  to a state n j  at time 1n+  is called a one step transition probability. In 
the general cases, transition probabilities are dependent on the states and time such 
that : m n∀ ≠ ∈N
 

1 1( ) (n n m mX j X i X j X+ += = ≠ = =P P )i . 
 
When transition probabilities are independent of time , discrete time Markov chains are 
said to be time homogeneous or stationary. 

n

 
Definition 2.31 Time homogeneous (stationary) discrete time Markov chain     
Consider a discrete time stochastic process ( )n nX ∈N  (i.e. 0,1, 2,...n = ) defined on a filtered 
probability space (  which takes values in a countable or a finite set , , )n∈Ω N PF E  called a 
state space of the process. A realization nX  is said to be in state i E∈  at time  n
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if nX i= . An E -valued time homogeneous discrete time Markov chain is a stochastic 
process which satisfies for  andn∀ ∈N ,i j E∀ ∈ : 
 
                           1 0 1 2 1( , , ,..., ) ( )n n nX j X X X X i X j X+ += = = =P P n i=  

                                                                                 1 0( )X j X i= = =P  

                                                                                 ( )j i= P . 
 
In other words, transition probabilities do not depend on time  and only depend on 
transition states from i  to

n
j . A matrix of transition probabilities 

,
( )

i j E
j i

∈
=P P  is called 

a transition probability matrix: 
 

,

(0 0)  (1 0)  (2 0)  (3 0)  

(0 1)   (11)  (2 1)   (3 1)  

(0 2)  (1 2)  (2 2)  (3 2)  ( )
                                  

(0 )   (1 )   (2 )   (3 )  
                           

i j E
j i

i i i i

∈
=

"

"

"
# # # #

"
# # #

P P P P
P P P P
P P P PP

P P P P
       #

. 

 
Transition probabilities ( )j iP  satisfy the following conditions: 
 
(1) ( ) 0j i ≥P  for . ,i j E∀ ∈

(2) ( ) 1
j E

j i
∈

=∑ P  for . i E∀ ∈

 
Condition (2) guarantees the occurrence of a transition including a case in which the state 
remains unchanged. 
 
Proposition 2.1 Defining a discrete time Markov chain     An E -valued general 
discrete time Markov chain ( )n nX ∈N  is completely defined if it satisfies the following 
conditions: 
 
(1) All transition probabilities 1 1( n n n nX i X i+ + )= =P  are known.          
(2) The probability distribution of the initial (i.e. time 0) state of the Markov chain 

 is known. 0 0( )X i= =P 0P
 
Proof 
 
Consider obtaining the joint probability distribution of an E -valued general discrete time 
Markov chain . From the definition of a conditional probability: ( )n nX ∈N
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0 0 1 1 2 2( , , ,..., )n nX i X i X i X i= = = =P  

0 0 1 1 2 2 1 1 0 0 1 1 2 2 1 1( , , ,..., ) ( , , ,..., )n n n n n nX i X i X i X i X i X i X i X i X i− − −= = = = = = = = = =P P − . 
 
Since  is a Markov chain: ( )n nX ∈N

 
0 0 1 1 2 2 1 1( , , ,..., )n n n nX i X i X i X i X i− −= = = = =P 1 1( )n n n nX i X i− −= = =P 1( )n ni i −= P . 

 
Joint probability can be calculated as: 
 
   0 0 1 1 2 2( , , ,..., )n nX i X i X i X i= = = =P  
                      1 0 0 1 1 2 2 1( ) ( , , ,..., )n n n ni i X i X i X i X i− −= = = =P P 1−=  

1 1 1 0 0 1 1 2 2 2 2( ) ( , , ,..., )n n n n n ni i X i X i X i X i X i− − − −= = = = =P P −=  
                          0 0 1 1 2 2 2 2( , , ,..., )n nX i X i X i X i− −× = = = =P  
                      1 1 2 0 0 1 1 2 2 2( ) ( ) ( , , ,..., )n n n n n ni i i i X i X i X i X i− − − − −= = = =P P P 2=  

                      1 1 2 2 1 1 0( ) ( )... ( ) ( )n n n ni i i i i i i i− − −= P P P P 0P  
,  

 
Consider a transition probability of a time homogeneous discrete time Markov chain 

 from a state i  at time k  (i.e. ( )n nX ∈N kX i= ) to a state j  at time k n+ . This is called a 
-step transition probability and expressed as: n

 
( )

0( ) ( ) n
k n k nX j X i X j X i j+ = = = = = =P P ( )iP . 

 
Proposition 2.2  step transition probability matrix (a special case of Chapman-
Kolmogorov equation)     Consider a time homogeneous discrete time Markov chain 

 defined on a filtered probability space (

n

( )n nX ∈N , , )n∈Ω N PF  which takes values in a 
countable or a finite set E  called a state space of the process. Then, its -step transition 
probability matrix from a state  at time  (i.e. 

n
i k kX i= ) to a state j  at time  is 

given by for  and : 
k n+

,k n∀ ∈N ,i j E∀ ∈
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )n n y z y z
v E v E

j i j i v i j v v i j
∈ ∈

= = =∑ ∑P P P P P P v . 
 
where  and y z n+ = (0) ( )j iP  is defined as: 
 

(0) 1   for   
( )

0   for   
i j

j i
i j
=⎧

= ⎨ ≠⎩
P . 

 
Proof 
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When : 1n =
 

(1) ( ) ( )j i j=P P i . 
 
When : 2n =
 

(2) ( ) ( ) ( )
v E

j i v i
∈

= j v∑P P P . 
 
By induction: 
 

( 1) ( ) ( ) (n n
v E

)j i v i+
∈

= j v∑P P P . 
,  

 
One interesting topic about this  step transition probability matrix is its asymptotic 
behavior as . As  becomes larger, the initial state i  becomes less important and 
in the limit as , 

n
n →∞ n

n →∞ ( )n j iP  is independent of . We recommend Karlin and Taylor 
(1975) for more details. 

i

 
[2.3.3.2] Markov Processes 
 
Definition 2.32 Markov Processes (Continuous time Markov chains)     Consider a 
continuous time stochastic process ( )[0, ]t TX ∈  defined on a filtered probability space 

 which takes values in  (for simplicity) called a state space of the 

process. (  is said to be a time homogeneous Markov process if for  and 
: 

[0, ]( , , )t T∈Ω PF N

)[0, ]t TX ∈ h +∀ ∈R
,i j∀ ∈N

 
( ) ( ) ( )h t h t t h tj i X j X j X+ += = = =F�P P P i= . 

 
Markov property means that the probability of a random variable t hX +  at time t h  
(tomorrow) being in a state 

+
j  conditional on the entire history of the stochastic process 

[0, ] [0, ]t tX≡F  is equal to the probability of a random variable t hX +  at time t h  
(tomorrow) being in a state 

+
j  conditional only on the value of a random variable at time 

 (today). In other words, the history (sample path) of the stochastic process  is of no 
importance in that the way this stochastic process evolved or the dynamics does not mean 
a thing in terms of the conditional probability of the process.  

t [0, ]tF

 
We discuss Markov processes more in detail in section 3.8. 
 
[2.4] Sample Path Properties of Stochastic Processes 
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[2.4.1] Continuous Stochastic Process 
 
In this section we give the formal definition of the continuity of a sample path of a 
stochastic process. Note that the continuity of path and continuity of time are different 
subjects. In other words, a continuous time stochastic process does not imply continuous 
stochastic process. For example, a Poisson process is a continuous time stochastic 
process, but it has discontinuous sample paths.  
 
There are different notions of continuity of sample paths which use different notions of 
convergence of random variables we saw in section 2.2.1. 
 
Definition 2.33 Continuous in mean square     A real valued stochastic process 

 on a filtered probability space [0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω PF  is said to be continuous in mean 
square if for : [0,  ]t T∀ ∈
 

2lim [ ] 0s ts t
E X X

→
− = . 

 
Continuity in mean square implies continuity in probability following Chebyshev’s 
inequality. 
 
Definition 2.34 Continuous in probability     A real valued stochastic process  
on a filtered probability space  is said to be continuous in probability if 
for  and every : 

[0, ]( )t TX ∈

[0, ]( , , )t T∈Ω PF

[0,  ]t∀ ∈ T ε +∈R
 

( )lim 0s ts t
X X ε

→
− > =P , 

 
or equivalently: 
 

( )lim 1s ts t
X X ε

→
− ≤ =P . 

 
Intuitively speaking, continuity in probability means that the probability of sX  getting 
closer to tX  rises (and eventually converges to 1) as s  approaches . t
 
For example, a Brownian motion process is continuous in mean square and continuous in 
probability although its proof is not that easy. But it turns out that the above definitions of 
continuity are too loose because a Poisson process can be proven to be continuous in 
mean square and probability (consult Karlin and Taylor (1975) for details). Therefore, a 
more strict definition of continuity is used for the definition of a continuity of a sample 
path of a stochastic process. 
 
Definition 2.35 Continuous stochastic process     A real valued nonanticipating 
stochastic process  on a filtered probability space [0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω PF  is said to be 
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(almost surely) continuous if a sample path of the process [0, ]( (t TX ))ω∈  is almost surely a 
continuous function for . In other words, a sample path of the process [0,  ]t∀ ∈ T

))[0, ]( (t TX ω∈  satisfies for : [0,  ]t T∀ ∈
 
(1) Right limit of the process as s  approaches t  from the above (right hand side) exists, 
      i.e.

,
lim s ts t s t

X X +→ >
= . Left limit of the process as  approaches  from the below s t

      (left hand side) exists, i.e.
,

lim s ts t s t
X X −→ <

= . 

(2) t t tX X X+ −= = . 
 
This means that a continuous stochastic process is a right continuous and left continuous 
stochastic process. 
 
[2.4.2] Right Continuous with Left Limit (RCLL) Stochastic Processes 
 
Definition 2.36 Right continuous with left limit (rcll) stochastic processes     A real 
valued nonanticipating stochastic process  on a filtered probability space 

 is said to be a rcll stochastic process if for
[0, ]( t TX ∈ )

[0, ]( , , )t T∈Ω PF [0,  ]t T∀ ∈ : 
 
(1) Right limit of the process as s  approaches t  from the above (right hand side) exists, 
      i.e.

,
lim s ts t s t

X X +→ >
= . Left limit of the process as  approaches  from the below s t

      (left hand side) exists, i.e.
,

lim s ts t s t
X X −→ <

= . 

(2) t tX X+ = . 
 
In other words, only the right continuity is needed (this allows jumps). Apparently, a 
continuous stochastic process implies a rcll stochastic process (but the reverse is not 
true). What we encounter in finance literatures are all rcll stochastic processes (for the 
modeling of stock price dynamics. Rcll processes include jump discontinuous process 
such as Poisson processes and infinite activity Lévy processes. Essentially discontinuous 
processes are useless in finance because they don’t have either (or both) of the left limit 

tX −  or the right limit tX + .   
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Figure 2.12: Relationship between rcll, continuous, and jump discontinuous 
processes.  
 

 
A) A continuous stochastic process.              B) A jump discontinuous stochastic process. 
Figure 2.13: Examples of rcll stochastic processes. 
 
Suppose  is a discontinuity point. The jump of the stochastic process at  is defined as:  t t
 

t t tX X X −∆ = − . 
 
A rcll nonanticipating stochastic process  can have a finite number of large 
jumps and countable number (possibly infinite) of small jumps. 

[0, ]( t TX ∈ )

]

 
[2.4.3] Total Variation 
 
Definition 2.37 Total variation of a function     Let  be a bounded function 
defined in the interval[ , : 

( )f x
]a b

 
( ) :[ , ]f x a b → R . 

 
The interval can be infinite, i.e.[ ,−∞ ∞ . Consider partitioning the interval [ ,  with the 
points: 

]a b
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0 1 2 1... n na x x x x x b−= < < < = . 

 
Then, the total variation of a function  is defined by: ( )f x
 

1
1

( ) sup ( ) ( )
n

i i
i

T f f x f x −
=

= −∑ , 

 
where sup indicates a supremum (least upper bound).  
 
Definition 2.38 Function of finite variation     A function  on the interval [ ,  is 
said to be a function of finite variation, if its total variation on the interval [ ,  is finite: 

( )f x ]a b
]a b

 

1
1

( ) sup ( ) ( )
n

i i
i

T f f x f x −
=

= − <∑ ∞ . 

  
Proposition 2.3 Every bounded increasing or decreasing function is of finite variation on 
the interval[ , .  ]a b
 
Proof 
 
Consider an increasing function  on the interval[ , . By its definition, for : ( )f x ]a b i∀
 

1( ) ( ) 0i if x f x −− ≥ . 
 

And: 
 

{ }1 1 2 2 1 1( ) sup ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )n n n nT f f x f x f x f x f x f x f x f x− − −= − + − + + − + − 0  

      { }0( ) sup ( ) ( )nT f f x f x= −  

      { }( ) sup ( ) ( )T f f b f a= − , 
 
which is finite because  is bounded: ( )f x
 

( ), ( )f a f b−∞ < < ∞ . 
,  

 
Definition 2.39 Total variation of a stochastic process     Consider a real valued 
stochastic process  on a filtered probability space[0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω PF . Partition the 
time interval [0  with the points: , ]T
 

0 1 2 10 ... n nt t t t t T−= < < < < = . 
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Then, the total variation of a stochastic process  on the time interval [0  is 
defined by: 

[0, ]( t TX ∈ ) , ]T

 

1
1

( ) sup ( ) ( )
n

i i
i

T X X t X t −
=

= −∑ , 

 
where sup indicates a supremum (least upper bound).  
 
Definition 2.40 Stochastic process of finite variation     A real valued stochastic 
process  on a filtered probability space[0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω PF on the interval [0  is said 
to be a stochastic process of finite variation, if the total variation on the interval [0  of 
a sample path of the process is finite with probability 1: 

, ]T
, ]T

 

1
1

( ( ) sup ( ) ( ) ) 1
n

i i
i

T X X t X t −
=

= − < ∞∑P = . 
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[3] Lévy Processes 
 
In this chapter some theorems and propositions are presented without proofs. This is 
obviously because it is not the goal of this sequel to prove theorems and some proofs are 
beyond what we need while consuming too many pages. But for those inquisitive readers, 
we provide the information about where to look for more details of the subjects and their 
proofs. Our goal is to present the foundations of the mathematics of Lévy processes as 
simple as possible.  
 
[3.1] Definition of Lévy Processes 
 
Definition 3.1 Lévy processes     A real valued stochastic process  on a filtered 
probability space  is said to be a Lévy process on  if it satisfies the 
following conditions: 

[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P R

 
(1) Its increments are independent. In other words, for 1 20 ... nt t t≤ < < < < ∞ : 
 

0 1 0 2 1
( ... )

n nt t t t t t tX X X X X X X
−1

− − −∩ ∩ ∩ ∩P  
                                . 

0 1 0 2 1
( ) ( ) ( )... ( )

n nt t t t t t tX X X X X X X
−

= − − −P P P P
1

 
(2) Its increments are stationary (time homogeneous): i.e. for , 0h ≥ t h tX X+ −  has the 
same distribution as hX . In other words, the distribution of increments does not depend 
on t .  
(3) . The process starts from 0 almost surely (with probability 1). 0( 0)X = =P 1
(4) The process is stochastically continuous: 0ε∀ > , 

0
lim ( ) 0t h th

X X ε+→
− ≥ =P . 

(5) Its sample path (trajectory) is rcll almost surely. 
 
Next, we describe what each condition implies. Consider an increasing sequence of time 

 where t  is the present. As a result of independent 
increments condition: 

1 20 ... nt t t t u< < < < < < < ∞

 
                                      

1 2 10( , ,..., )
nu t t t t t tX X X X X X X X− − − −P  

                                  1 2 1

1 2 1

0

0

( , ,..., )
( , ,..., )

n

n

u t t t t t t

t t t t t

X X X X X X X X
X X X X X X

− − − −
=

− − −

∩P
P

 

1 2 1

1 2 1

0

0

( ) ( , ,..., )
( , ,..., )

n

n

u t t t t t t

t t t t t

X X X X X X X X
X X X X X X

− − − −
=

− − −

P P
P

 

                                  ( )u tX X= −P , 
 
which means that there is no correlation (probabilistic dependence structure) on the 
increments among the past, the present, and the future.  

 34



 

 
For example, independent increments condition means that when modeling a log stock 
price l  as an independent increment process, the probability distribution of a log 
stock price in year 2005 – 2006 is independent of the way the log stock price increment 
has evolved over the years (i.e. stock price dynamics), i.e. it doesn’t matter if this stock 
crushes or soars in year 2004 – 2005):  

n tS

 
2006 2005 2003 2002 2004 2003 2005 2004(ln ln ..., ln ln , ln ln , ln ln )S S S S S S S S− − − −P  

              . 2006 2005(ln ln )S S= −P
 
Using the simple relationship ( )u u t tX X X X≡ − +  for an increasing sequence of time 

: 1 20 ... nt t t t u< < < < < < < ∞
 

1 2 1 20 0( , , ,..., , ) (( ) , , ,..., , )
n nu t t t t u t t t t t tX X X X X X X X X X X X X X= − +P P  

                                                             ( )u tX X= P , 
 
which holds because an increment ( )u tX X−  is independent of tX  by definition and the 
value of tX  depends on its realization ( )tX ω . This is a strong probabilistic structure 
imposed on a stochastic process because this means that the conditional probability of the 
future value uX  depends only on the previous realization ( )tX ω  and not on the entire 
past history of realizations

1 20 , , ,..., ,
nt t t tX X X X X  (i.e. called Markov property which is 

discussed soon).   
 
Although this condition seems too strong, it imposes a very tractable property on the 
process. Because if two variables X  and Y  are independent: 
 
                                           [ ] [ ] [ ]E XY E X E Y= , 
                                           [ ] [ ] [Var X Y Var X Var Y ]+ = + , 

[ , ] 0Cov X Y =  (i.e. [ , ] 0Corr X Y = ). 
 
Stationary increments condition (2) means that the distributions of increments t h tX X+ −  
do not depend on the time , but they depend on the time distance  of two observations 
(i.e. interval of time). In other words, the probability density function of increments does 
not change over time. For example, if you model a log stock price  as a process with 
stationary increments, the distribution of a log stock price increment in 2005-2006 is the 
same as that in 2050-2051: 

t h

ln tS

 
2006 2005 2051 2050ln ln ln lnS S d S S− − . 

 
Processes satisfying the conditions (1) and (2) are called processes with independent and 
stationary increments. Independent increments condition is a restriction on the 
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probabilistic dependence structure of increments among the past, present, and future. 
Stationary increments condition is a restriction on the shape of the distribution of 
increments among the past, present, and future.  
 
The condition (4) (which is implied by the conditions (2), (3), and (5)) does not imply the 
continuous sample paths of the process. It means that if we are at time , the probability 
of a jump at time t  is zero because there is no uncertainty about the present. Jumps occur 
at random times. This property is called stochastic continuity or continuity in probability 
which we saw in section 2.4.  

t

 
Rcll condition (5) does not need to be imposed. This is because a real valued Lévy 
process in law which is a process satisfying conditions (1), (2), (3), and (4) is modified to 
a Lévy process which satisfies the conditions (1), (2), (3), (4) , and (5) (theorem 11.5 of 
Sato (1999)). In other words, the condition (5) results from the conditions (1), (2), (3), 
and (4) through a theorem. 
 
Definition 3.2 Right continuous with left limit (rcll) stochastic process     A real 
valued nonanticipating stochastic process  on a filtered probability space 

 is said to be a rcll stochastic process if for
[0, ]( t TX ∈ )

[0, ]( , , )t T∈Ω PF [0,  ]t T∀ ∈ : 
 
(1) Right limit of the process as s  approaches t  from the above (right hand side) exists, 
      i.e.

,
lim s ts t s t

X X +→ >
= . Left limit of the process as  approaches  from the below s t

      (left hand side) exists, i.e.
,

lim s ts t s t
X X −→ <

= . 

(2) t tX X+ = . 
 
As you can see, the fact that left continuity is not needed allows the process to have 
jumps. A continuous stochastic process implies a rcll stochastic process but the reverse is 
not true. All stochastic processes used in finance literatures for the modeling of asset 
price dynamics are rcll stochastic processes. Rcll processes include jump discontinuous 
process such as Poisson processes and infinite activity Lévy processes. Essentially 
discontinuous processes are useless in finance because they don’t have either (or both) of 
the left limit tX −  or the right limit tX + .   
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Figure 3.1: Relationship between rcll, continuous, and jump discontinuous 
processes.  
 

 
A) A continuous stochastic process.              B) A jump discontinuous stochastic process. 
Figure 3.2: Examples of rcll stochastic processes. 
 
Suppose  is a discontinuity point. The jump of the stochastic process at  is defined as:  t t
 

t t tX X X −∆ = − . 
 
A rcll nonanticipating stochastic process  can have a finite number of large 
jumps and countable number (possibly infinite) of small jumps. 

[0, ]( t TX ∈ )

 
We saw the definition of a Lévy process. Next we discuss infinite divisibility of a 
distribution. It turns out that we cannot separate Lévy processes from infinitely divisible 
distributions because Lévy processes are generated by infinitely divisible distributions. 
 
[3.2] Infinitely Divisible Random Variable and Distribution 
 
Definition 3.3 Infinitely divisible random variable and distribution     A real valued 
random variable X  with the probability density function ( )xP  is said to be infinitely 
divisible if for  there exist  random variablesn∀ ∈N . . .i i d 1 2, ,..., nX X X satisfying: 
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1 2  ... nX d X X X+ + + . 

 
( )xP  is said to be an infinitely divisible distribution. 

 
Definition 3.4 Characteristic function     Let X  be a random variable with its 
probability density function ( )xP . A characteristic function ( )φ ω  with ω∈R  is defined 
as the Fourier transform of the probability density function ( )xP  using Fourier transform 
parameters : ( , ) (1,1)a b =
 

                                      ( ) [ ( )] ( ) [ ]i x i xx e x dx E eωφ ω
∞

−∞
≡ ≡ ≡∫F P P ω .                              (3.1) 

 
In terms of a characteristic function, infinite divisibility is defined as follows. 
 
Proposition 3.1 Infinitely divisible random variable and distribution     A real valued 
random variable X  with the probability density function ( )xP  and the characteristic 
function ( )Xφ ω  is said to be infinitely divisible if for n∀ ∈N  there exist  random 
variables

. . .i i d

1 2, ,..., nX X X  each with a characteristic function ( )
iXφ ω  such that: 

 
( ) ( ( ))

i

n
X Xφ ω φ ω=  or 1/( ( )) (

i

n
X X )φ ω φ= ω . 

 
( )xP  is said to be an infinitely divisible distribution. 

      
Proof 
 
Consult Applebaum (2004) section 1.2.2. 
 
Examples of infinitely divisible distributions include normal distributions on , gamma 
distributions onR , 

R
α -stable distributions on , Poisson distributions on , compound 

Poisson distributions on , geometric distributions onR , negative binomial distributions 
on , exponential distributions on . From Sato (1999), probability measures with 
bounded supports (e.g. uniform and binomial distributions) are not infinitely divisible. 

R R
R

R R

 
Suppose that a random variable Y  is drawn from a normal distribution with the mean µ  
and the variance 2σ : 
 

2

22

1 1 (( ) exp
22

yy µ
σπσ

)⎧ ⎫−
= −⎨ ⎬

⎩ ⎭
P . 
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Consider  normal random variables  with the mean . . .i i d 1 2, ,..., nY Y Y / nµ  and the 
variance . We learn in any undergraduate statistics courses that the sum of normal 
distributions is also normal with the linear mean and the linear variance: 

2 / nσ

 
                1 2[ ... ] [ ( / )]nE Y Y Y E n nµ µ+ + + = = , 

2 2
1 2 1 2[ ... ] [ ] [ ] ... [ ] ( / )n nVar Y Y Y Var Y Var Y Var Y n nσ σ+ + + = + + + = = . 

 
Therefore, a normal distribution is an infinitely divisible distribution since it satisfies: 
 

1 2  ... nY d Y Y Y+ + + . 
 
This can be shown more formally using characteristic functions. The characteristic 
function of a normal random variable 2( , )Y N µ σ∼  is: 
 

2 2

( ) [ ( )]( ) ( ) exp( )
2

i y
Y Y y e y dy iω σ ωφ ω ω µω

∞

−∞
= = = −∫F P P . 

 
The characteristic function for the   summands ofY , , can be computed as: . . .i i d n iY
 

                               ( ) [ ( )]( ) ( )i

i i

i y
Y Y i iy e ωφ ω ω

∞

−∞
= = ∫F P P y dy

2

22

( / )1 1( ) exp
2 /2 /

i

i

i y i
Y

y ne d
nn

ω µφ ω
σπσ

∞

−∞
y

⎧ ⎫−
= −⎨ ⎬

⎩ ⎭
∫  

                              
2 2( / )( ) exp ( / )

2iY
ni n σ ωφ ω µ ω

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
. 

 
But, we can see the obvious relationship between ( )Yφ ω  and ( )

iYφ ω : 
 

1/2 2 2 2
1/ ( / )( ) ( ( )) exp( ) exp ( / )

2 2i

n
n

Y Y
ni i nσ ω σφ ω φ ω µω µ ω

⎧ ⎫ ⎧
= = − = −⎨ ⎬ ⎨

⎩ ⎭ ⎩

ω ⎫
⎬
⎭

. 

 
This proves that the   summands of . . .i i d n 2( , )Y N µ σ∼  are also normally distributed 
with the mean / nµ  and the variance  (because a characteristic function uniquely 
determines a probability distribution) and therefore proving the infinite divisibility of a 
normal distribution: 

2 / nσ

 
1

0
  n

kk
Y d Y−

=∑ , . 2. . . ( / , / )kY i i d N n nµ σ∼
 
Another example is a Poisson case. Suppose that Z  is a Poisson random variable, i.e. 

( )Z Poisson λ∼  with . Its characteristic function is: λ +∈R
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0
( ) [ ( )]( ) exp[ ( 1)]

!

z
i z i

Z Z z

ez e
z

λ
ω ωλφ ω ω λ

−
∞

=
= = =∑F P e − . 

 
Many readers learned that the sum of Poisson random variables is also a Poisson random 
variable. Consider  Poisson random variables . . .i i d 1 2, ,..., nZ Z Z  with the intensity / nλ . 
Its characteristic function is: 
 

/

0

/( ) [ ( )]( ) exp[ ( 1)]
!

i
i

i i i

zn
i z i

Z Z i z
i

e nz e
z n

λ
ω ωλ λφ ω ω

−
∞

=
= = =∑F P e − . 

 
But, we can see the obvious relationship between ( )Zφ ω  and ( )

iZφ ω : 
 

1/ 1/( ) ( ( )) [exp{ ( 1)}] exp{ ( 1)}
i

n i n i
Z Z e e

n
ω ωλφ ω φ ω λ= = − = − . 

 
This proves that the   summands of . . .i i d n ( )Z Poisson λ∼  are also Poisson distributed 
with the intensity / nλ  (because a characteristic function uniquely determines a 
probability distribution) and therefore proving the infinite divisibility of a Poisson 
distribution: 
 

1

0
  n

kk
Z d Z−

=∑ , . . . ( /k )Z i i d Poisson nλ∼ . 
 
[3.3] Relationship between Lévy Processes and Infinitely Divisible Distributions 
 
Proposition 3.2     If  is a real valued Lévy process on a filtered probability 
space , then, 

[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P tX  has an infinitely divisible distribution for . This 
corresponds to the corollary 11.6 of Sato (1999). 

[0, ]t T∀ ∈

 
Proof 
 
Consider a realization tX  at time t . Partition the time t  into n∈N  intervals using 

: ( / )it i t n=
 

0 1 20, / , 2 / ,..., /nt t t n t t n t nt n= = = = = t . 
 
A realization tX  can be considered as a sum of n∈N  increments: 
 

1 0 2 1
( ) ( ) ... (

n nt t t t t t tX X X X X X X
−

= − + − + + −
1
) . 
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Note that all these increments are  increments because  is a real valued 
Lévy process. Let 

. . .i i d [0, )( tX ∈ ∞ )
( ; ( ))X tφ ω  be the characteristic function of tX  and 1( ; ( ))i iX t tφ ω −−  

be the characteristic function of  increments. Then, we have: . . .i i d
 
                                               ,                                       (3.2) 1( ; ( )) ( ; ( ))n

i iX t X t tφ ω φ ω −= −
 
which follows from the property of a characteristic function: if { , 1,..., }kX k n=  are 
independent random variables, the characteristic function of their sum 1 2 ... nX X X+ + +  
is the product of their characteristic functions: 
 

1 2 ...
1

( ) ( )
n k

n

X X X X
k

φ ω φ+ + +
=

=∏� ω . 

 
The equation (3.2) satisfies the proposition 3.1. Therefore, the distribution of Lévy 
process possesses infinite divisibility. 

,  
 
Thus, for every  and [0, )t∈ ∞ h +∈R , increments of a Lévy process t h tX X+ −  follows an 
infinitely divisible law. Its converse is also true. 
 
Proposition 3.3     For every infinitely divisible distribution  on , there exists a Lévy 
process ( )  on R  whose distribution of increments 

P R
[0, )tX ∈ ∞ t h tX X+ −  is governed byP . 

This is the corollary 11.6 of Sato (1999).  
 
This proposition is extremely important because it means that there is one-to-one 
correspondence between an infinitely divisible distribution and a Lévy process. Some 
typical examples are illustrated in Table 3.1. 
 

                                                 

         follow 

        generate 

 
Figure 3.3: Relationship between Lévy Processes and Infinitely Divisible 
Distributions 
 
Table 3.1: One-to-one correspondence between an infinitely divisible distribution 
and a Lévy process 
 
Infinitely divisible probability measure                         Lévy process  P
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Normal distribution                                                            Brownian motion (with drift) 
 
Poisson distribution                                                            Poisson process 
 
Compound Poisson distribution                                         Compound Poisson process 
 
Cauchy distribution                                                            Cauchy process 
 
Exponential distribution                                                     Gamma process          
 
 
[3.4] Lévy-Khinchin Representation 
 
Lévy-Khinchin representation gives the characteristic functions of all infinitely divisible 
distributions. In other words, it gives the characteristic functions of all processes whose 
increments follow infinitely divisible distributions – Lévy processes.  
 
Theorem 3.1 General Lévy-Khinchin representation (formula) of all infinitely 
divisible distributions    Let ( )xP  be a real valued infinitely divisible distribution. Then, 
its characteristic function ( )Xφ ω  is given by for ω∀ ∈R : 
 

( )( ) exp ( )X Xφ ω ψ= ω , 
 
where ( )Xψ ω  called a characteristic exponent (or a log characteristic function) is given 
by: 
 

                            {
2

( ) exp( ) 1 1 ( )
2X D

A i i x i xω } dxψ ω γω ω ω
∞

−∞
= − + + − −∫ A ,                   (3.3) 

 
where { : 1}D x x= ≤ , A  is a unique nonnegative constant (i.e. A +∈R ), γ  is a unique 
constant on R , and A  is a unique measure on R  satisfying: 
 

({0}) 0=A  and 2min{ ,1} ( )x dx
∞

−∞
< ∞∫ A . 

 
Proof 
 
Consult Sato (1999) p.37-p.47. 
 
Theorem 3.2 Converse of Theorem 3.1     Consider a characteristic function ( )Xφ ω  of a 
probability distribution ( )xP . If there exist a unique nonnegative constant A , a unique 
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real valued constantγ , and a unique real valued measure A  satisfying  and ({0}) 0=A
2min{ ,1} ( )x dx

∞

−∞
< ∞∫ A  which yield the characteristic function of the form: 

 
( )( ) exp ( )X Xφ ω ψ= ω , 

 
where: 
 

{ }
2

( ) exp( ) 1x 1 ( )
2X D

A i i i x dxωψ ω γω ω
∞

−∞
= − + + −∫ A , ω −

 
then, ( )xP  is infinitely divisible.  
 
Proof 
 
Consult Sato (1999) p.37-p.47. 
 
Theorem 3.3 General Lévy-Khinchin representation (formula) of all Lévy processes 
(processes whose increments follow infinitely divisible distributions)    Let  
be a real valued Lévy process defined on a filtered probability space

[0, )( )tX ∈ ∞

[0, )( , , )t∈ ∞Ω F P . Then, 
for anyω∈R , the characteristic function ( )Xφ ω  of a Lévy process  can be 
expressed as: 

[0, )( tX ∈ ∞ )

 
( )( ) exp ( )X Xtφ ω ψ= ω , 

 
where ( )Xψ ω  called a characteristic exponent (or a log characteristic function) is given 
by: 
 

                           {
2

( ) exp( ) 1 1 ( )
2X D

A i i x i xω } dxψ ω γω ω ω
∞

−∞
= − + + − −∫ A ,                    (3.4) 

 
where { : 1}D x x= ≤ , A  is a unique nonnegative constant (i.e. A +∈R ), γ  is a unique 
constant on R , and A  is a unique measure on R  satisfying: 
 

({0}) 0=A  and 2min{ ,1} ( )x dx
∞

−∞
< ∞∫ A . 

 
Proof 
 
Consult Sato (1999) p.37-p.47. 
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Theorem 3.4 Converse of Theorem 3.3     Consider a characteristic function ( )Xφ ω  of a 
random variable tX  of a real valued stochastic process  defined on a filtered 
probability space . If there exist a unique nonnegative constant

[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P A , a unique 
real valued constantγ , and a unique real valued measure A  satisfying  and ({0}) 0=A

2min{ ,1} ( )x dx
∞

−∞
< ∞∫ A  which yield the characteristic function of the form: 

 
( )( ) exp ( )X Xtφ ω ψ= ω , 

 
where: 
 

{ }
2

( ) exp( ) 1 1 ( )
2X D

A i i x i xω dxψ ω γω ω ω
∞

−∞
= − + + − −∫ A , 

 
then,  is a real valued Lévy process (a process whose increments follow an 
infinitely divisible distribution).  

[0, )( tX ∈ ∞ )

 
Proof 
 
Consult Sato (1999) p.37-p.47. 
 
Definition 3.5 Lévy triplet (generating triplet)     In theorem 3.3, a unique nonnegative 
constant A  is called a Gaussian variance and a unique real valued measure A  satisfying 

 and ({0}) 0=A 2min{ ,1} ( )x dx
∞

−∞
< ∞∫ A  is called a Lévy measure. A unique real valued 

constantγ  does not have any intrinsic meaning since it depends on the behavior of a Lévy 
measure . It turns out that these triplets uniquely define a Lévy process as a result of 
Lévy-Itô decomposition. This triplet is called a Lévy triplet and compactly written as 

A

( , , )A γA .  
 
Next, we present special cases of the general Lévy-Khinchin representation of all Lévy 
processes by restricting the behavior of the Lévy measure . A
 
Theorem 3.5 Lévy-Khinchin representation of Lévy processes whose Lévy measure 
satisfies the additional condition

1
( )

x
x dx

≤
< ∞∫ A     Let  be a real valued Lévy 

process defined on a filtered probability space
[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P  whose Lévy measure 

satisfies the additional condition
1

( )
x

x dx
≤

< ∞∫ A . Then, for anyω∈R , the characteristic 

function ( )Xφ ω  of a Lévy process  can be expressed as: [0, )( tX ∈ ∞ )
 

( )( ) exp ( )X Xtφ ω ψ= ω , 
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where ( )Xψ ω  called a characteristic exponent (or a log characteristic function) is given 
by from the equation (3.4): 
 

                     { }
2

1( ) exp( ) 1 1 ( )
2X x

A i i x i xω dxψ ω γω ω ω
∞

≤−∞
= − + + − −∫ A  

( ) { }
2

1
( ) ( ) exp( ) 1 ( )

2X x

A i x dx i x dxωψ ω γ ω ω
∞

≤ −∞
= − + − + −∫ ∫A A  

                     { }
2

0( ) exp( ) 1 ( )
2X

A i i xω dxψ ω γ ω ω
∞

−∞
= − + + −∫ A ,                                     (3.5) 

 
where 0 1

( )
x

x dxγ γ
≤

≡ − ∫ A  is a unique real valued constant called a drift, A  is a unique 

nonnegative constant (i.e. ) called a Gaussian variance, and A  is a unique measure 
on R  called a Lévy measure satisfying: 

A +∈R

 

({0}) 0=A  , 2min{ ,1} ( )x dx
∞

−∞
< ∞∫ A , 

1
( )

x
x dx

≤
< ∞∫ A . 

 
Theorem 3.6 Lévy-Khinchin representation of Lévy processes whose Lévy measure 
satisfies the additional condition

1
( )

x
x dx

>
< ∞∫ A     Let  be a real valued Lévy 

process defined on a filtered probability space
[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P  whose Lévy measure 

satisfies the additional condition
1

( )
x

x dx
>

< ∞∫ A . Then, for anyω∈R , the characteristic 

function ( )Xφ ω  of a Lévy process  can be expressed as: [0, )( tX ∈ ∞ )
 

( )( ) exp ( )X Xtφ ω ψ= ω , 
 
where ( )Xψ ω  called a characteristic exponent (or a log characteristic function) is given 
by from the equation (3.4): 
 

{ }
2

1( ) exp( ) 1 1 ( )
2X x

A i i x i xω dxψ ω γω ω ω
∞

≤−∞
= − + + − −∫ A  

                           {
2

1( ) exp( ) 1 ( )
2X

A i i x i xω } dxψ ω γ ω ω ω
∞

−∞
= − + + − −∫ A ,                      (3.6) 

 
where 1γ  is a unique real valued constant called a center (identical to the mean), A  is a 
unique nonnegative constant (i.e. A +∈R ) called a Gaussian variance, and  is a unique 
measure on  called a Lévy measure satisfying: 

A
R

 

({0}) 0=A  , 2min{ ,1} ( )x dx
∞

−∞
< ∞∫ A , 

1
( )

x
x dx

>
< ∞∫ A . 
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Consult Cont and Tankov (2004) page 83 for more details. 
 
Next, we consider a Lévy-Khinchin representation for a subclass of Lévy processes 
called a finite variation Lévy process. For a detailed description of the concept of 
variation, read section 2.4.3. 
 
Definition 3.6 Total variation of a stochastic process     Consider a real valued 
stochastic process  on a filtered probability space[0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω PF . Partition the 
time interval [0  with the points: , ]T
 

0 1 2 10 ... n nt t t t t T−= < < < < = . 
 
Then, the total variation of a stochastic process  on the time interval [0  is 
defined by: 

[0, ]( t TX ∈ ) , ]T

 

1
1

( ) sup ( ) ( )
n

i i
i

T X X t X t −
=

= −∑ , 

 
where sup indicates a supremum (least upper bound).  
 
Definition 3.7 Stochastic process of finite variation     A real valued stochastic process 

 on a filtered probability space[0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω PF on the interval [0  is said to be a 
stochastic process of finite variation, if the total variation on the interval [0  of a 
sample path of the process is finite with probability 1: 

, ]T
, ]T

 

1
1

( ( ) sup ( ) ( ) ) 1
n

i i
i

T X X t X t −
=

= − < ∞∑P = . 

 
Definition 3.8 Lévy process of finite variation     A real valued Lévy process  
on a filtered probability space on the interval [0  is said to be a Lévy 
process of finite variation, if the total variation on the interval [0  of a sample path of 
the Lévy process is finite with probability 1: 

[0, ]( )t TX ∈

[0, ]( , , )t T∈Ω PF , ]T
, ]T

 

1
1

( ( ) sup ( ) ( ) ) 1
n

i i
i

T X X t X t −
=

= − < ∞∑P =

)

. 

 
Theorem 3.7 Lévy process of finite variation     If  is a real valued Lévy 
process of finite variation on a filtered probability space

[0, ]( t TX ∈

[0, ]( , , )t T∈Ω PF  on the interval 
, then, its Lévy triplet ( ,[0, ]T , )A bA  satisfies: 

 
0A =  and 

1
( )

x
x dx

≤
< ∞∫ A . 
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This corresponds to the proposition 3.9 of Cont and Tankov (2004) where its proof is 
given. 
 
Theorem 3.8 Lévy-Khinchin representation for Lévy processes of finite variation      
Let  be a real valued Lévy process of finite variation with Lévy triplet [0, )( tX ∈ ∞ )

)( 0, ,A b= A  defined on a filtered probability space [0, )( , , )t∈ ∞Ω F P . Then, for anyω∈R , 
its characteristic function ( )Xφ ω  can be expressed as: 
 

( )( ) exp ( )X Xtφ ω ψ= ω , 
 
where ( )Xψ ω  called a characteristic exponent (or a log characteristic function) is given 
by: 
 

                            { }1( ) exp( ) 1 1 ( )X xib i x i x dxψ ω ω ω ω
∞

≤−∞
= + − −∫ A  

                            ( ) { }
1

( ) ( ) exp( ) 1 ( )X x
i b x dx i x dxψ ω ω ω

∞

≤ −∞
= − + −∫ ∫A A ,                     (3.7) 

 
Theorem 3.9 Approximation of Lévy processes by compound Poisson processes     
Every infinitely divisible distribution can be obtained as the weak limit of a sequence of 
compound Poisson distributions. This means that every Lévy process can be obtained as 
the weak limit of a sequence of compound Poisson random variables. In other words, 
every Lévy process can be approximated by a compound Poisson process. This theorem 
corresponds to corollary 8.8 of Sato (1999) where you can find its proof.  
 
[3.5] Lévy-Itô Decomposition of Sample Paths of Lévy Processes 
 
Historically speaking, Paul Lévy proposed the original idea of Lévy-Itô decomposition  
and as a result of Lévy-Itô decomposition, Lévy-Khinchin representation was proposed. 
In other words, Lévy-Khinchin representation uses the results of Lévy-Itô decomposition. 
Later, both Lévy-Itô decomposition and Lévy-Khinchin representation were formally 
proven by Kiyoshi Itô.  
 
Lévy-Itô decomposition basically states that every sample path of Lévy process can be 
represented as a sum of two independent processes: One is a continuous Lévy process 
and the other is a compensated sum of independent jumps. Obviously, a continuous Lévy 
process is a Brownian motion with drift. One trick is that the jump component has to be a 
compensated sum of independent jumps because a sum of independent jumps at time  
may not converge. 

t

 
Theorem 3.10 General Lévy-Itô Decomposition of Sample Paths of Lévy Processes     
Consider a real valued Lévy process  with Lévy triplet ( ,[0, )( tX ∈ ∞ ) , )A γA  defined on a 
filtered probability space . Then, Lévy-Itô decomposition states: [0, )( , , )t∈ ∞Ω F P
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(1) Let ( , )XJ J A ω≡  be the random jump measure at time t  of a Lévy process  
which contains the information of the timing of jumps and the size of jumps and the jump 
size belongs to a Borel set, i.e.

[0, )( )tX ∈ ∞

( ) ( ) ( )t t tX X Xω ω ω ∈BR−∆ = − . Then,  has a Poisson 
distribution with the mean (intensity) .  

XJ
( )dx dtA

(2) Every sample path of Lévy process can be represented as a sum of a continuous Lévy 
process and a discontinuous Lévy process:  
 

( ) ( ) ( )C D
t t tX X Xω ω ω= + . 

 
(3) The continuous part ( )C

tX ω  has a Lévy triplet ( , 0, )A γ . This means that the 
continuous part is a Brownian motion with drift: 
 

( )C
t tX t AB t tBω γ γ= + = +σ , 

 
where 2[ ] [ ]t tVar t AB Var t B At tγ γ σ σ+ = + = = . This is why A  is called a Gaussian 
variance. 
(4) The discontinuous part ( )D

tX ω  is a Lévy process with Lévy triplet  which 
is the definition of a compound Poisson process (we will discuss this soon). The 
discontinuous part

(0, ,0)< ∞A

( )D
tX ω  can be decomposed into a large jumps part ( )L

tX ω  and a limit 
as 0ε →  of compensated small jumps part ( )S

tX ω� : 
 

0
( ) ( ) lim ( )D L S

t t tX X X
ε

ω ω ω
↓

= + � . 

 
We arbitrarily define large jumps as those with absolute size greater than 1 (i.e. this is 
completely arbitrary) and small jumps as those with absolute size between  and 1: ε +∈R
 

( ) ( ) 1L
t tX Xω ω∆ ≡ ∆ >  and ( ) ( ) 1S

t tX Xω ε ω∆ ≡ < ∆ < . 
 
A large jumps part ( )L

tX ω  is a sum of large jumps during the time interval (0  and , ]t
( )L

tX ω  is almost surely finite because Lévy processes have finite number of large jumps 
by the definition of the Lévy measure (read section 3.6): 
 

( )
0

( ) ( ) 1L L
t r

r t

X Xω ω
≤ ≤

⎛ ⎞
< ∞ = ∆ < ∞ =⎜ ⎟

⎝ ⎠
∑P P . 

 
This implies that there is no convergence issue with respect to a large jumps part ( )L

tX ω .  
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Next, consider a non-compensated small jumps part ( )S
tX ω  which is simply a sum of 

small jumps during the time interval (0 : , ]t
 

(0, ], 1
0

( ) ( ) ( , )S S
t r Xs t x

r t
X X xJ ds dx

ε
ω ω ω

∈ <∆ <
≤ ≤

= ∆ = ×∑ ∫ , 

 
which is a compound Poisson process. The reason that we cannot use a non-compensated 
small jumps part ( )S

tX ω  in Lévy-Itô decomposition is that in the limit , 0ε ↓ ( )S
tX ω  

almost surely does not achieve convergence (i.e.
0

lim ( )S
tX

ε
ω

↓
= ∞ ) because Lévy processes 

can have infinitely many number of small jumps (i.e. Lévy measure A  can have a 
singularity at 0). Therefore, a non-compensated small jumps part ( )S

tX ω  must be 
compensated by its mean (i.e. because ( )dx dsA ( )S

tX ω  is Poisson process) as: 
 

( ) ( ) ( 1)S S
t tX X dxω ω ε≡ − < <� A dt , 

 
which makes ( )S

tX ω�  a martingale so that 
0

lim ( )S
tX

ε
ω

↓
�  can now achieve convergence. In 

other words, a compensated small jumps part ( )S
tX ω�  is a compensated sum of small 

jumps during the time interval (0 : , ]t
 

(0, ], 1
0

{ ( ) ( )S S
t r Xs t x

r t
}X X xJ x dx ds

ε
ω

∈ <∆ <
≤ ≤

= ∆ = −∑ ∫� � A , 

 
which always converges. 
(5) Two processes ( )C

tX ω  (i.e. a Brownian motion with drift) and ( )D
tX ω  (i.e. a 

compound Poisson process) are independent. 
 
Proof 
 
Consult Sato (1999) section 19. 
 
[3.6] Lévy Measure  
 
Definition 3.9 Lévy measure of all Lévy processes    Let  be a real valued 
Lévy process with Lévy triplet ( ,

[0, )( tX ∈ ∞ )
, )A γA  defined on a filtered probability space 

. The Lévy measure A  of a Lévy process  is defined as a unique 
positive measure on R  which measures (counts) the expected (average) number of jumps 
per unit of time: 

[0, )( , , )t∈ ∞Ω F P [0, )( tX ∈ ∞ )

 
( ) [#{ [0,1] : 0, }]t t t tA E t X X X X A−= ∈ ∆ = − ≠ ∆ ∈A , 
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where tX A∆ ∈  indicates that the jump size belongs to a set A  and a set A  is a member 
of Borel set. This definition is equivalent to stating that the Lévy measure  of a Lévy 
process  is defined as a unique positive measure on  which measures arrival 
rate of jumps per unit of time. We like to emphasize that a Lévy measure A  measures the 
expected number of jumps of all sizes (i.e. small jumps plus large jumps) per unit of time. 
This definition of Lévy measure  is true regardless of the types of Lévy processes (i.e. it 
doesn’t matter whether it is a finite activity Lévy processes or an infinite activity Lévy 
processes). For more details, consult Cont and Tankov (2004) section 3.3. 

A
[0, )( tX ∈ ∞ ) R

A

 
By definition, a Lévy measure  satisfies the two conditions:  A
 
(1) , i.e. the measure of an empty set is zero. ({0}) 0=A

(2) 2min{ ,1} ( )x dx
∞

−∞
< ∞∫ A , mathematicians write this as 2( 1) ( )x dx

∞

−∞
∧ < ∞∫ A . 

 
Condtion (2) is extremely important. When the jump size is greater than 1 (i.e. 1x > ), the 
jump is defined as a large jump using the arbitrary truncation point of 1 (the choice of 
truncation point is of no importance), then, the condition (2) reduces to:  
 

1
( )

x
dx

>
< ∞∫ A , 

 
which tells that the expected number of large jumps per unit of time is finite. When the 
jump size is less than 1 (i.e. 1x < ), the jump is defined as a small jump, then, the 
condition (2) reduces to:  
 

2

1
( )

x
x dx

<
< ∞∫ A , 

 
which means that a Lévy measure must be square-integrable around the origin. This 
indicates the following definition of Lévy processes with respect to the number of small 
and large jumps. 
 
Definition 3.10 Lévy processes     Lévy processes have finite expected number of large 
jumps per unit of time. Lévy processes can have finite or infinite expected number of 
small jumps per unit of time. 
 
Depending on the behavior of Lévy measures, Lévy processes can be classified into three 
types. 
 
Definition 3.11 Lévy process with zero Lévy measure 0=A      Let  be a real 
valued Lévy process with Lévy triplet ( ,

[0, )( tX ∈ ∞ )
, )A γA  defined on a filtered probability space 

. If the Lévy measure A  of this Lévy process is [0, )( , , )t∈ ∞Ω F P 0=A ,  is a 
Brownian motion (with drift). Zero Lévy measure 

[0, )( )tX ∈ ∞

0=A  means that the Lévy process 
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[0, )( tX ∈ ∞ )

)

 has no small or large jumps, in other words, sample paths of the process is 
continuous.  
 
Definition 3.12 Finite Activity Lévy processes    Let  be a real valued Lévy 
process with Lévy triplet

[0, )( tX ∈ ∞

( , , )A γA  defined on a filtered probability space . A 
Lévy process  is said to be a finite activity Lévy process if its Lévy measure A  
has a finite integral: 

[0, )( , , )t∈ ∞Ω F P

[0, )( tX ∈ ∞ )

 

( )dx
∞

−∞
< ∞∫ A . 

 
It is important to emphasize that the above condition implies that a finite activity Lévy 
process has a finite expected number of small jumps and a finite expected number of 
large jumps per unit of time: 
 

1
( )

x
dx

<
< ∞∫ A  and 

1
( )

x
dx

>
< ∞∫ A . 

 
Definition 3.13 Infinite Activity Lévy processes    Let  be a real valued Lévy 
process with Lévy triplet

[0, )( tX ∈ ∞ )
( , , )A γA  defined on a filtered probability space . A 

Lévy process  is said to be an infinite activity Lévy process if its Lévy measure 
 has an infinite integral: 

[0, )( , , )t∈ ∞Ω F P

[0, )( tX ∈ ∞ )
A
 

( )dx
∞

−∞
= ∞∫ A . 

 
It is important to emphasize that the above condition implies that an infinite activity Lévy 
process has an infinite expected number of small jumps and a finite expected number of 
large jumps per unit of time: 
 

1
( )

x
dx

<
= ∞∫ A  and 

1
( )

x
dx

>
< ∞∫ A . 

 
[3.7] Classification of Lévy Processes 
 
In this section, we present various ways to categorize Lévy processes.  
 
[3.7.1] In Terms of Gaussian or Not 
 
Definition 3.14 Gaussian Lévy Process     A real valued Lévy process  on a 
filtered probability space  is said to be a Gaussian Lévy process if it 
satisfies one of the following three equivalent conditions: 

[0, ]( )t TX ∈

[0, ]( , , )t T∈Ω F P
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(1)  is a Brownian motion (with drift). In other words, for [0, ]( t TX ∈ ) [0, )t T∀ ∈  and 

, its increments h +∀ ∈R t h tX X+ −  follow a normal distribution.  
(2) Its sample path is continuous.  
(3) Its Lévy measure is zero, . 0=A
 
Definition 3.15 Continuous Lévy Process (same as Gaussian Lévy Process)     The 
only continuous Lévy process is a Gaussian Lévy process which is a Brownian motion 
(with drift). 
 
Definition 3.16 Non-Gaussian Lévy Processes (same as jump Lévy Processes)     A 
real valued Lévy process  on a filtered probability space [0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω F P  is said to 
be a non-Gaussian Lévy process if it satisfies one of the following three equivalent 
conditions: 
 
(1) For  and , its increments [0, )t T∀ ∈ h +∀ ∈R t h tX X+ −  do not follow a normal 
distribution.  
(2) Its sample path is discontinuous.  
(3) Its Lévy measure is not zero, 0≠A . 
 
Definition 3.17 Purely non-Gaussian Lévy Processes (same as pure jump Lévy 
Processes)     A real valued Lévy process  on a filtered probability space 

 is said to be a purely non-Gaussian Lévy process if it satisfies either 
condition (1) or (2) (i.e. these conditions are equivalent): 

[0, ]( t TX ∈ )

[0, ]( , , )t T∈Ω F P

 
(1) Its Gaussian variance A  is zero, that is, its Lévy triplet is given by ( 0, , )A b= A .  
(2) The process  does not contain a Brownian motion (with drift). [0, ]( t TX ∈ )
 
Consider a jump diffusion (JD) process which is a Brownian motion (with drift) plus a 
compound Poisson process. Firstly, a JD process obviously contains a Brownian motion 
(with drift), thus, it is not a purely non-Gaussian Lévy process. But the increments 

t h tX X+ −  of a JD process do not follow a normal distribution (because of the addition of 
compound Poisson process), thus, it is not a Gaussian Lévy process. Therefore, a JD 
process is a non-Gaussian Lévy process. Variance process is a purely non-Gaussian Lévy 
process because it does not contain a Brownian motion (with drift).  
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Figure 3.4 Classification of Lévy processes in terms of Gaussian or not 
 
[3.7.2] In Terms of the Behavior of Lévy Measure A  
 
Read section 3.6 for the definition of Lévy measure .  A
 
Definition 3.18 Lévy process with zero Lévy measure 0=A      Let  be a real 
valued Lévy process with Lévy triplet ( ,

[0, )( tX ∈ ∞ )
, )A γA  defined on a filtered probability space 

. If the Lévy measure A  of this Lévy process is[0, )( , , )t∈ ∞Ω F P 0=A ,  is a 
Brownian motion (with drift). Zero Lévy measure 

[0, )( )tX ∈ ∞

0=A  means that the Lévy process 
 has no small or large jumps, in other words, sample paths of the process is 

continuous.  
[0, )( tX ∈ ∞ )

)
 
Definition 3.19 Finite Activity Lévy processes    Let  be a real valued Lévy 
process with Lévy triplet

[0, )( tX ∈ ∞

( , , )A γA  defined on a filtered probability space . A 
Lévy process  is said to be a finite activity Lévy process if its Lévy measure A  
has a finite integral: 

[0, )( , , )t∈ ∞Ω F P

[0, )( tX ∈ ∞ )

 

( )dx
∞

−∞
< ∞∫ A . 

 
It is important to emphasize that the above condition implies that a finite activity Lévy 
process has a finite expected number of small jumps and a finite expected number of 
large jumps per unit of time: 
 

1
( )

x
dx

<
< ∞∫ A  and 

1
( )

x
dx

>
< ∞∫ A . 

 
Definition 3.20 Infinite Activity Lévy processes    Let  be a real valued Lévy 
process with Lévy triplet

[0, )( tX ∈ ∞ )
( , , )A γA  defined on a filtered probability space . A [0, )( , , )t∈ ∞Ω F P
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Lévy process  is said to be an infinite activity Lévy process if its Lévy measure 
 has an infinite integral: 

[0, )( tX ∈ ∞ )
A
 

( )dx
∞

−∞
= ∞∫ A . 

 
It is important to emphasize that the above condition implies that an infinite activity Lévy 
process has an infinite expected number of small jumps and a finite expected number of 
large jumps per unit of time: 
 

1
( )

x
dx

<
= ∞∫ A  and 

1
( )

x
dx

>
< ∞∫ A . 

 

 
 
Figure 3.5 Classification of Lévy processes in terms of the behavior of Lévy measure 

 A
 
[3.7.3] In Terms of the Total Variation of Lévy Process 
 
Definition 3.21 Total variation of a stochastic process     Consider a real valued 
stochastic process  on a filtered probability space[0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω PF . Partition the 
time interval [0  with the points: , ]T
 

0 1 2 10 ... n nt t t t t T−= < < < < = . 
 
Then, the total variation of a stochastic process  on the time interval [0  is 
defined by: 

[0, ]( t TX ∈ ) , ]T

 

1
1

( ) sup ( ) ( )
n

i i
i

T X X t X t −
=

= −∑ , 

 
where sup indicates a supremum (least upper bound).  
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Definition 3.22 Lévy processes of finite variation     A real valued Lévy process 

 on a filtered probability space[0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω PF on the interval [0  is said to be a 
Lévy process of finite variation, if the total variation on the interval [0  of a sample 
path of the Lévy process is finite with probability 1: 

, ]T
, ]T

 

1
1

( ) sup ( ) ( ) 1
n

i i
i

T X X t X t −
=

⎛ ⎞
= − < ∞⎜ ⎟

⎝ ⎠
∑P =

)

. 

 
Theorem 3.11 Lévy processes of finite variation     If  is a real valued Lévy 
process of finite variation on the interval [0  defined on a filtered probability space 

, then, its Lévy triplet 

[0, ]( t TX ∈

, ]T

[0, ]( , , )t T∈Ω PF ( , , )A γA  satisfies: 
 

0A =  and 
1

( )
x

x dx
<

< ∞∫ A . 

 
This corresponds to the proposition 3.9 of Cont and Tankov (2004) where its proof is 
given. Also consult a Sato’s monograph in Barndorff-Nielsen et al (2001) page 6.  
 
Lévy-Khinchin representation for Lévy processes of finite variation is given by theorem 
3.8.      
 
Definition 3.23 Lévy processes of infinite variation     A real valued Lévy process 

 on a filtered probability space[0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω PF on the interval [0  is said to be a 
Lévy process of infinite variation, if the total variation on the interval [0  of a sample 
path of the Lévy process is infinite with probability 1: 

, ]T
, ]T

 

1
1

( ) sup ( ) ( ) 1
n

i i
i

T X X t X t −
=

⎛ ⎞
= − = ∞⎜ ⎟

⎝ ⎠
∑P =

)

. 

 
Theorem 3.12 Lévy processes of infinite variation     If  is a real valued Lévy 
process of infinite variation on the interval [0  defined on a filtered probability space 

, then, its Lévy triplet 

[0, ]( t TX ∈

, ]T

[0, ]( , , )t T∈Ω PF ( , , )A γA  satisfies: 
 

0A ≠  or 
1

( )
x

x dx
<

= ∞∫ A . 

 
Consult a Sato’s monograph in Barndorff-Nielsen et al (2001) page 6.  
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Figure 3.6 Classification of Lévy processes in terms of its total variation on the 
interval [0   , ]T
 
[3.7.4] In Terms of the Properties of Lévy Triplet ( , , )A γA  by Sato 
 
Definition 3.24 Lévy processes of type A, type B, and type C     Consider a real valued 
Lévy process  with the Lévy triplet ( ,[0, ]( t TX ∈ ) , )A γA on a filtered probability space 

 on the time interval[0 .   [0, ]( , , )t T∈Ω PF , ]T
 
(1)  is said to be a type A Lévy process, if the Lévy triplet [0, ]( t TX ∈ ) ( , , )A γA  satisfies: 
 

0A =  and ( )dx
∞

−∞
< ∞∫ A . 

 
In other words, a type A Lévy process is a purely non-Gaussian finite activity Lévy 
process whose sample paths have a finite number of small and large jumps in any finite 
time interval. A compound Poisson process is a typical example of a type A Lévy 
process. 
(2)  is said to be a type B Lévy process, if the Lévy triplet ( ,[0, ]( t TX ∈ ) , )A γA  satisfies: 
 

0A = , ( )dx
∞

−∞
= ∞∫ A , and

1
( )

x
x dx

<
< ∞∫ A . 

 
In other words, a type B Lévy process is a purely non-Gaussian infinite activity Lévy 
process of finite variation whose sample paths have an infinite number of small jumps 
and a finite number of large jumps in any finite time interval. A variance process is one 
example of a type B Lévy process. 
(3)  is said to be a type C Lévy process, if the Lévy triplet ( ,[0, ]( t TX ∈ ) , )A γA  satisfies: 
 

0A ≠  or 
1

( )
x

x dx
<

= ∞∫ A . 
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In other words, a type C Lévy process is a Lévy process of infinite variation. A Brownian 
motion (with drift) is a typical example of a type C Lévy process.  
 
These definitions are from Sato’s monograph in Barndorff-Nielsen et al (2001) page 6.  
 

 
Figure 3.7 Sato’s Classification of Lévy processes in terms of the properties of Lévy 
triplet ( , , )A γA  
 
[3.7.5] In Terms of the Sample Paths Properties of Lévy Processes 
 
Theorem 3.13 A Lévy process with continuous sample path     Let  be a real 
valued Lévy process on a filtered probability space

[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P . If the sample paths of 
 are continuous with probability 1, then,  is a Gaussian Lévy process.  [0, )( tX ∈ ∞ ) )[0, )( tX ∈ ∞

 
This corresponds to theorem 11.7 of Sato (1999). Theorem 3.13 together with Lévy-Itô 
decomposition proves that a normal distribution is the only distribution which generates a 
real valued Lévy process with continuous sample paths.  
 
Theorem 3.14 A Lévy process with a piecewise constant sample path     Let  
be a real valued Lévy process on a filtered probability space

[0, )( )tX ∈ ∞

[0, )( , , )t∈ ∞Ω F P . If and only if  
a sample path of  is piecewise constant with probability 1, then,  is a 
compound Poisson process.  

[0, )( tX ∈ ∞ )

)

[0, )( )tX ∈ ∞

 
Theorem 3.15 The Converse of theorem 3.14      Let  be a compound Poisson 
process on a filtered probability space

[0, )( tX ∈ ∞

[0, )( , , )t∈ ∞Ω F P  whose Lévy triplet ( , , )A γA  satisfies 

0A = , , and ( )dx
∞

−∞
< ∞∫ A

1
( )

x
x dx

<
< ∞∫ A  (by the definition of a compound Poisson 

process). Then, a sample path of a compound Poisson process is piecewise constant with 
probability 1.  
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Proof 
 
Consult proposition 3.3 of Cont and Tankov (2004). 
 
Definition 3.25 Increasing Lévy processes (Subordinators)     Consider a real valued 
Lévy process  with the Lévy triplet ( ,[0, )( tX ∈ ∞ ) , )A γA  on a filtered probability space 

. A Lévy process  is said to be an increasing Lévy process if 
sample paths of the process  are non-decreasing with probability 1: 

[0, )( , , )t∈ ∞Ω F P [0, )( tX ∈ ∞ )
)

) 1=

)

[0, )( tX ∈ ∞

 
( :t h tX X h +

+ ≥ ∈P R . 
 
Theorem 3.16 Increasing Lévy processes (Subordinators)     Let  be an 
increasing Lévy process on a filtered probability space

[0, )( tX ∈ ∞

[0, )( , , )t∈ ∞Ω F P . Then, its Lévy 
triplet ( , , )A γA  satisfies the following conditions: 
 
(1) . Gaussian variance is zero. In other words, sample paths of  do not 
contain Brownian motion (with drift) parts (Lévy-Itô decomposition). 

0A = [0, )( tX ∈ ∞ )

(2) . The Lévy measure of an increasing Lévy process is concentrated on 

positive half axis. In other words, an increasing Lévy process has no negative jumps. 

0
( ) 0dx

−∞
=∫ A

(3) 
1

( )
x

x dx
<

< ∞∫ A . But because we always have positive jumps, this becomes  

(0,1)
( )x dx < ∞∫ A . This means that an increasing Lévy process is a Lévy process of finite 

variation (theorem 3.11). 
(4) 0 0γ ≥ . Sample paths of  have nonnegative drift (Lévy-Itô decomposition). [0, )( tX ∈ ∞ )

)

 
For more details and the proofs, consult Sato (1999) page 137-142.  
  
Definition 3.26 Symmetric Lévy processes     Consider a real valued Lévy process 

 with the Lévy triplet ( ,[0, )( tX ∈ ∞ , )A γA  on a filtered probability space . A 
Lévy process  is said to be symmetric if sample paths of the process  
satisfy: 

[0, )( , , )t∈ ∞Ω F P

[0, )( tX ∈ ∞ ) [0, )( )tX ∈ ∞

 
( )  ( )t tX d X− , 

 
which means that ( )tX  and ( )tX−  have identical distributions. 
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Figure 3.8 Classification of Lévy processes in terms of Sample Paths Properties 
 
[3.8] Lévy Processes as a Subclass of Markov Processes 
 
For the background knowledge of Markov processes, read section 2.3.3. 
 
Definition 3.27 Transition function     Consider a continuous time nonanticipating 
stochastic process  defined on a filtered probability space [0, )( tX ∈ ∞ ) [0, )( , , )t∈ ∞Ω F P  which 
takes values in a measurable space ( ,  (i.e. )B B ( )B∈B R ).  is called a state space 
of the process and the process is said to be 

( , )B B
B - valued. Consider an increasing sequence 

of time 0 . A real valued transition function t u v≤ ≤ ≤ < ∞ , ( , )t v x BP  with  and 
 is a mapping which satisfies the following conditions: 

x∈R
( )B∈B R

 
(1) , ( , )t v x BP  is a probability measure which maps every fixed  into B. x
(2) , ( , )t v x BP  is - measurable for everyB ( )B∈B R . 
(3) , ( , ) ( )t t x B Bδ=P . 

(4) , , ,( , ) ( , ) ( , )t v t u u vx B x dy y= ∫RP P P B . 

 
The condition (4) is called the Chapman-Kolmogorov identity. Chapman-Kolmogorov 
identity means that the transition probability , ( , )t v x BP  of moving from a state  at time 

 to a state 
x

t B  at time v  can be calculated as a sum (i.e. integral) of the product of the 
transition probabilities via an intermediate time t u v≤ ≤ , i.e. , ( , )t u x dyP  and . In 
the general cases, transition functions are dependent on the states and time. 

, ( , )u v y BP

 
Definition 3.28 Time homogeneous (temporary homogeneous or stationary) 
transition function     Consider an increasing sequence of time 0 t u v≤ ≤ ≤ < ∞ . A real 
valued transition function , ( , )t v x BP  with x∈R  and ( )B∈B R  is said to be time 
homogeneous if it satisfies: 
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, 0,( , ) ( , ) ( , )t v v t v tx B x B x− − B= =P P P , 
 
which indicates that the transition function , ( , )t v x BP  of moving from a state  at time  
to a state 

x t
B  at time  is equivalent to the transition function v 0, ( , )v t x B−P  of moving from 

a state  at time 0  to a state x B  at time v t− . In other words, the transition function is 
independent of the time t  and depends only on the interval of time v t− .  
 
Definition 3.29 Chapman-Kolmogorov identity for the time homogeneous transition 
function     Consider an increasing sequence of time 0 t u≤ ≤ < ∞ . Chapman-
Kolmogorov identity for the time homogeneous transition function is: 
 

0, 0,( , ) ( , ) ( , ) ( , ) ( , )t u t u t ux dy y B x dy y B x B+= =∫ ∫R R
P P P P P . 

 
Definition 3.30 Markov Processes (less formal)     Consider a continuous time 
nonanticipating stochastic process  defined on a filtered probability space 

. Then, the process  is said to be a Markov process if it satisfies, 
for every increasing sequence of time

[0, )( tX ∈ ∞ )
)[0, )( , , )t∈ ∞Ω F P [0, )( tX ∈ ∞

1 20 ... nt t t t u< ≤ ≤ ≤ ≤ ≤ < ∞ : 
 

1 20( ) ( , , ,..., , ) ( )
nu t u t t t t u tX X X X X X X X X= =FP P P , 

 
Informally, Markov property means that the probability of a random variable uX  at time 

 (tomorrow) conditional on the entire history of the stochastic process u t≥ [0, ] [0, ]t tX≡F  
is equal to the probability of a random variable uX  at time  (tomorrow) conditional 
only on the value of a random variable at time t  (today). In other words, the history 
(sample path) of the stochastic process  is of no importance in that the way this 
stochastic process evolved or the dynamics does not mean a thing in terms of the 
conditional probability of the process. This property is sometimes called a memoryless 
property. 

u t≥

[0, ]tF

 
Definition 3.31 Markov Processes (formal)     Consider a continuous time 
nonanticipating stochastic process  defined on a filtered probability space 

 which takes values in a measurable space .  is called a state 
space of the process and the process is said to be 

[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P ( , )E E ( , )E E
E - valued. Then, the process  

is said to be a Markov process if it satisfies, for an increasing sequence of time 
: 

[0, )( )tX ∈ ∞

0 t u v≤ ≤ ≤ < ∞ 0 t u< ≤ < ∞
 

[ ] [v t v tE X E X X=F ] , 
 
with the transition function (defined by the definition 3.27): 
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, , ,( , ) ( , ) ( , )t v t u u vx B x dy= ∫RP P P y B . 

 
Definition 3.32 Spatially homogeneous transition function     Consider an increasing 
sequence of time 0 . A real valued transition function t u v≤ ≤ ≤ < ∞ , ( , )t v x BP  with x∈R  
and  is said to be spatially homogeneous if it satisfies, for 

: 
( )B∈B R

, , , , { : }t v x B B x y x y B∀ − ∈ − ∈
 

, ,( , ) (0, )t v t vx B B x= −P P . 
 
Theorem 3.17 Lévy processes     Let  be a real valued Lévy process with Lévy 
triplet

[0, )( tX ∈ ∞ )
( , , )A γA  defined on a filtered probability space [0, )( , , )t∈ ∞Ω F P . Then, the transition 

functions of Lévy processes satisfy, for 0 t u v≤ ≤ ≤ < ∞ : 
 

, 0,( , ) (0, )t v v tx B B− x= −P P , 
 
in other words, Lévy processes are a subclass of Markov processes with the time 
homogeneous and spatially homogeneous transition functions. Its converse is also true. 
 
Theorem 3.18 Relationship between Markov processes and Lévy processes     Let 

 be a real valued Markov process defined on a filtered probability space 
. Then, a Markov process becomes a Lévy process if it satisfies the 

following additional conditions: 

[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P

 
(1) The process is stochastically continuous: 0ε∀ > , 

0
lim ( ) 0t h th

X X ε+→
− ≥ =P . 

(2) Its transition functions are time homogeneous and spatially homogeneous: 
  

, 0,( , ) (0, )t v v tx B B− x= −P P . 
 
Proof 
 
For the proofs of theorem 17 and 18 and for the more details about Lévy processes as a 
subclass of Markov processes, consult Sato (1999) section 10. 
 
Therefore, we can state that all Lévy processes are Markov process, but the converse is 
not true. 
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Figure 3.9 Lévy processes as a subclass of Markov processes 
 
It turns out that Lévy processes satisfy not only Markov property, but also strong Markov 
property. 
 
Theorem 3.19 Strong Markov property of Lévy processes     Let  be a real 
valued Lévy process with Lévy triplet ( ,

[0, )( tX ∈ ∞ )
, )A γA  defined on a filtered probability 

space . Define a new stochastic process as: [0, )( , , )t∈ ∞Ω F P
 

( : [0, ),t h hX X t h+ 0)− ∈ ∞ ≥ . 
 
Then, a process ( )t h hX X+ −  is a Lévy process satisfying: 
 
(1) [0, )( : [0, ), 0)  (t h h tX X t h d X+ ∈− ∈ ∞ ≥ )∞ . 
(2) (  and (: [0, ), 0)t h hX X t h+ − ∈ ∞ ≥ : 0 )tX t h≤ ≤  are independent. 
 
Proof 
 
Consult Sato (1999) section 10. 
 
[3.9] Other Important Properties of Lévy Processes 
 
Theorem 3.20 Linear transformation of Lévy processes     Consider a real valued Lévy 
process  on a filtered probability space [0, ]( t TX ∈ ) [0, ]( , , )t T∈Ω F P  whose Lévy triplet 
is ( , , )A bA . Let  be a constant on . Then, a linear transformation of the original Lévy 
Process  is also a real valued Lévy process whose Lévy triplet  is 
given by: 

c R
[0, ]( t TcX ∈ ) ( , , )c c cA bA

 
                       2

cA c A= , 

 62



 

\{0}
c c

⎡ ⎤= ⎢ ⎥⎣ ⎦

AA
R

 (i.e. a restriction of a measure 1c−A  to ), \{0}R

                        ( )1 11 1 (c x xb cb cx cx x dx
∞

≤ ≤−∞
= + −∫ A )

)

. 

 
This corresponds to proposition 11.10 of Sato (1999) where its proof is given.  
 
Theorem 3.21 Independence of Lévy processes      
 
Part 1) Consider a two dimensional real valued non-Gaussian Lévy process 

 on a filtered probability space [0, ] [0, ]( ,t T t TX Y∈ ∈ [0, ]( , , )t T∈Ω F P  whose Lévy triplet 

is ( 0, , )A b= A . Then, tX  and  are independent (i.e.  tY ( ) (t t
X Y X=P P )t ), if and only if 

the set {(  contains the support of its Lévy measure . In other words, , ) : 0}x y xy = A tX  
and  are independent, if and only if tY tX  and  do not jump together. tY
 
Part 2) If tX  and  are independent, then, for any arbitrary settY E , the Lévy measure of 

tX  can be expressed as (i.e. when tX  jumps,  never jumps): tY
 

( ) ({ : ( ,0) }X X XE x x )E= ∈A A , 
 
and the Lévy measure of  can be expressed as: tY
 

( ) ({ : (0, ) })Y Y YE y y E= ∈A A . 
  
And, the Lévy measure of a two dimensional independent non-Gaussian Lévy process 

 is given by the sum of these two Lévy measures: [0, ] [0, ]( ,t T t TX Y∈ ∈ )
 

( ) ( ) ( )X X Y YE E E= +A A A . 
 
This corresponds to proposition 5.3 of Cont and Tankov (2004) where its proof is given.  
 
Theorem 3.22 Sums of independent Lévy processes     If two Lévy processes  
and  with Lévy triplets  and  are independent, then, their 
sum 

[0, ]( )t TX ∈

[0, ]( t TY∈ )

t

( , , )X X XA bA ( , , )Y Y YA bA

tX Y+  is also a Lévy process. For more details and its proof, consult an example 4.1 
of Cont and Tankov (2004).  
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[4] Examples of Lévy Processes 
 
In this section, we present some building blocks of Lévy processes. 
 
[4.1] Brownian Motion: The only Lévy Process with Continuous Sample Paths 
 
Some people (non-mathematicians) believe that all Lévy processes have discontinuous 
sample paths, in other words, Lévy processes are equivalent to jump processes. But this 
belief is wrong. It is true to state that most (but one) Lévy processes have discontinuous 
sample paths. But you can carefully go through the definition of Lévy processes again 
and you’ll notice that the only sample paths condition which Lévy processes must satisfy 
is being a right continuous with left limit (i.e. rcll) stochastic process. This in turn 
indicates that a Lévy process can have continuous sample paths because all continuous 
processes are rcll processes by definition (read section 2). It turns out that the only Lévy 
process having continuous sample paths is a Brownian motion. 
 
[4.1.1] Definition of a Brownian Motion 
 
Definition 4.1 Standard Brownian motion (Standard Wiener process)     A standard 
Brownian motion  is a real valued stochastic process defined on a filtered 
probability space  satisfying: 

[0, )( tB∈ ∞ )

[0, )( , , )t∈ ∞Ω F P
 
(1) Its increments are independent. In other words, for 1 20 ... nt t t≤ < < < < ∞ : 
 

0 1 0 2 1 1
( ... )

n nt t t t t t tB B B B B B B
−

− − −∩ ∩ ∩ ∩P  
                                   

0 1 0 2 1
( ) ( ) ( )... ( )

n nt t t t t t t 1
B B B B B B B

−
= − − −P P P P . 

 
(2) Its increments are stationary (time homogeneous): i.e. for , 0h ≥ t h tB B+ −  has the 
same distribution as hB . In other words, the distribution of increments does not depend 
on t .  
(3) . The process starts from 0 almost surely (with probability 1). 0( 0)B = =P 1
(4) (0, )tB Normal t∼ . Its increments follow a Gaussian distribution with the mean  and 
the variance t . 

0

 
Theorem 4.1 Standard Brownian motion process (Standard Wiener process)     A 
standard Brownian motion process  defined on a filtered probability space 

 satisfies the following conditions: 
[0, )( tB∈ ∞ )

[0, )( , , )t∈ ∞Ω F P
 
(1) The process is stochastically continuous: 0ε∀ > , 

0
lim ( ) 0t h th

X X ε+→
− ≥ =P . 

(2) Its sample path (trajectory) is continuous in t  (i.e. continuous∈  rcll) almost surely.  
 
Proof 
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Consult Karlin (1975). We have to remind you that this proof is not that simple. 
 
As many of readers realize, the above definitions and conditions all appear to define Lévy 
processes in definition 3.1 other than (4) of definition 4.1. Let us put this into another 
words. 
 
Definition 4.2 Standard Brownian motion as a Lévy process     A standard Brownian 
motion  defined on a filtered probability space [0, )( tB∈ ∞ ) [0, )( , , )t∈ ∞Ω F P  is a Lévy process 
satisfying: 
 
(1) (0, )tB Normal t∼ . Its increments follow a Gaussian distribution with the mean  and 
the variance t . 

0

(2) Its sample path (trajectory) is continuous in t  (i.e. continuous∈  rcll) almost surely.  
 
The condition (1) implies the condition (2). 
 
Or more generally, a Brownian motion with drift is an only Lévy process with continuous 
sample paths. 
 
Definition 4.3 Brownian motion with drift     Let  be a standard Brownian 
motion process defined on a filtered probability space

[0, )( tB∈ ∞ )

[0, )( , , )t∈ ∞Ω F P . Then, a Brownian   
motion with drift is a real valued stochastic process defined on a filtered probability 
space  as: [0, )( , , )t∈ ∞Ω F P
 

[0, ) [0, )( ) (t tX t B )µ σ∈ ∞ ∈ ∞≡ + , 
 
where µ ∈R  is called a drift and σ +∈R  is called a diffusion (volatility) parameter. A 
Brownian motion with drift satisfies the following conditions: 
 
(1) Its increments are independent. In other words, for 1 20 ... nt t t≤ < < < < ∞ : 
 

1n n−0 1 0 2 1
( ... )t t t t t t tX X X X X X X− − −∩ ∩ ∩ ∩P

0 1 0 2 1 1
( ) ( ) ( )... ( )

n nt t t t t t tX X X X X X X
−

− −P P P P
 

                                   = − . 
 
(2) Its increments are stationary (time homogeneous): i.e. for , 0h ≥ t h tX X+ −  has the 
same distribution as hX . In other words, the distribution of increments does not depend 
on t .  
(3) 2( , )t tX t B Normal t tµ σ µ≡ + ∼ σ . Its increments follow a Gaussian distribution with 
the mean tµ  and the variance 2tσ . 
(4) Its sample path (trajectory) is continuous in t  (i.e. continuous∈  rcll) almost surely. 
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Definition 4.4 Brownian motion with drift as a Lévy process     A Brownian motion 
with drift [0, ) [0, )( ) (tX t B )tµ σ∈ ∞ ∈ ∞≡ +  defined on a filtered probability space 

 is a Lévy process satisfying: [0, )( , , )t∈ ∞Ω F P
 
(1) 2( , )t tX t B Normal t tµ σ µ≡ + ∼ σ . Its increments follow a Gaussian distribution with 
the mean tµ  and the variance 2tσ . 
(2) Its sample path (trajectory) is continuous in t  (i.e. continuous∈  rcll) almost surely.  
 
Next, we define a Brownian motion with drift process in terms of the properties of its 
Lévy triplet ( , , )A γA  and sample paths. 
 
Definition 4.5 Brownian motion with drift in terms of Lévy triplet ( , , )A γA       Let 

 be a real valued Lévy process with Lévy triplet[0, )( tX ∈ ∞ ) ( , , )A γA  defined on a filtered 
probability space . Then,  is a Brownian motion with drift, if it 
satisfies one of the following conditions: 

[0, )( , , )t∈ ∞Ω F P [0, )( tX ∈ ∞ )

)∈ ∞

 
(1) . The Lévy measure A  of this Lévy process is zero. Zero Lévy measure  
means that the Lévy process  has no small or large jumps (i.e. no jumps at all), 
in other words, sample paths of the process is continuous with probability 1.  

0=A 0=A
[0, )( tX

(2) Its increments follow a Gaussian distribution. 
 
[4.1.2] Sample Paths Properties of a Brownian Motion 
 
Before discussing the sample paths properties of Brownian motion, take a look at 
simulated sample paths of a standard Brownian motion on Panel (A) in Figure 1.1 and 
those of a Brownian motion with drift on Panel (B) and (C). 
 

0 100 200 300 400 500
Time

-20
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0

10

20

 
A) Sample Paths of Standard Brownian Motions. 
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B) Sample Paths of Brownian Motions with Drift. Different drifts and same diffusion 
parameters. 
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C) Sample Paths of Brownian Motions with Drift. Zero drifts and different diffusion 
parameters. 
 
Figure 4.1 Simulated Sample Paths of Brownian Motions with Drift 
 
Theorem 4.2 Sample paths properties of Brownian motion with drift     Consider a 
real valued Brownian motion with drift process [0, ) [0, )( ) (tX t B )tµ σ∈ ∞ ∈ ∞≡ +  defined on a 
filtered probability space  and let ( ,[0, )( , , )t∈ ∞Ω F P , )A γA  be its Lévy triplet. Then, the 
sample paths of  possess following properties: [0, )( tX ∈ ∞ )
 
(1) Sample paths are continuous with probability 1. In other words, the Lévy measure  
of the process is zero. Zero Lévy measure 

A
0=A  means that a Brownian motion with drift 

process has no small or large jumps, therefore, no jumps at all.  
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(2) Sample paths are of infinite variation on any finite interval [0 . In other words, the 
total variation on any finite interval [0  of a sample path of a Brownian motion with 
drift is infinite with probability 1 in the limit  (as the partition becomes finer and 
finer): 

, ]t
, ]t

n →∞

 

1
1

lim ( ) lim sup ( ) ( ) 1
n

i in n i
T X X t X t −→∞ →∞

=

⎛ ⎞
= − = ∞⎜ ⎟

⎝ ⎠
∑P = . 

 
As we saw in section 3.7.3, the infinite variation property is equivalent to the nonzero 
Gaussian variance in terms of the Lévy triplet ( , , )A γA : 
 

0A ≠ . 
 
Intuitively speaking, the infinite variation property means highly oscillatory sample 
paths. 
(3) The quadratic variations of sample paths of Brownian motions with drift  are 

finite on any finite interval [0  and converge to 
[0, )( )tX ∈ ∞

, ]t 2tσ  with probability 1 in the limit 
 (as the partition becomes finer and finer): n →∞

 
22 2

1
1

lim ( ) lim sup ( ) ( ) 1
n

i in n i
T X X t X t tσ−→∞ →∞

=

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
∑P < ∞ =

)

)
)

. 

 
For more details and proofs about theorem 4.2, consult Sato (1999) page 22 – 28 and 
Karatzas and Shreve (1991) section 1.5 and 2.9. We also recommend Rogers and 
Williams (2000) chapter 1. 
 
[4.1.3] Equivalent Transformations of Standard Brownian Motion 
 
Theorem 4.3 Equivalent transformations of Standard Brownian motion     If 

 is a real valued standard Brownian motion defined on a filtered probability 
space , then, it satisfies the four conditions: 

[0, )( tB∈ ∞

[0, )( , , )t∈ ∞Ω F P
 
(1) A standard Brownian motion  is symmetric. In other words, the process 

 is also a standard Brownian motion: 
[0, )( tB∈ ∞

[0, )( tB∈ ∞−
 

[0, ) [0, )( )  (t tB d B∈ ∞ ∈ ∞ )− . 
 
(2) A standard Brownian motion  has a time shifting property. In other words, 

the process 
[0, )( tB∈ ∞ )

( )t A AB B+ −  is also a standard Brownian motion for A +∀ ∈R : 
 

[0, )( )  (t A A tB B d B+ ∈ )∞− . 
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(3) Time scaling property of a standard Brownian motion. For any nonzero , the 

process 

c∈R

/( )t ccB  or 1( ct )B
c

 is also a standard Brownian motion: 

 

/ [0
1( )  ( )  (ct t c tB d cB d B
c ∈ ∞, ) ) . 

 
(4) Time inversion property of a standard Brownian motion (i.e. a variant of (3)). The 
process defined as: 
 

[0, )
1/

0   if   0
( )

( )   if 0t
t

t
B

tB t∈ ∞

=⎧
= ⎨ < < ∞⎩

� , 

 
is also a standard Brownian motion: 
 

[0, ) [0, )( )  ( )t tB d B∈ ∞ ∈ ∞
� . 

 
Proof 
 
These are easy exercises for readers. For the proof of the continuity of  at 0, 
consult Rogers and Williams (2000) page 4. 

[0, )( tB∈ ∞
� )

)

 
[4.1.4] Characteristic Function of Brownian Motion 
 
Consider a real valued Brownian motion with drift process [0, ) [0, )( ) (t tX t Bµ σ∈ ∞ ∈ ∞≡ +  
defined on a filtered probability space [0, )( , , )t∈ ∞Ω F P  and let ( , , )A γA  be its Lévy triplet. 
Its characteristic function can be obtained by two approaches. First approach is the direct 
use of the definition of a characteristic function (i.e. Fourier transform of the probability 
density function with Fourier transform parameters ): (1,1)
 

                                   [ ]( ) ( ) ( )
t

i x
X x e x dωφ ω

∞

−∞
≡ ≡ ∫F P P x  

( )2

22

1( ) exp
22t

i x
X

x t
e d

tt
ω µ

φ ω
σπσ

∞

−∞
x

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∫  

                                   
2 2

( ) exp( )
2tX
ti t σ ωφ ω µ ω= − . 

 
Second approach is the use of Lévy-Khinchin representation (theorem 3.3). Because we 
know the Lévy triplet of a Brownian motion with drift is given as 2( , 0,A )σ γ µ= = =A , 
its characteristic exponent is given by: 

 69



 

{ }
2

( ) exp( ) 1 1 ( )
2X D

A i i x i xω dxψ ω γω ω ω
∞

−∞
= − + + − −∫ A  

                            
2 2

( )
2X iσ ωψ ω µ= − + ω , 

 
thus, its characteristic function ( )Xφ ω  is expressed as: 
 
                                                ( )( ) exp ( )X Xtφ ω ψ= ω , 

2 2

( ) exp( )
2tX
t i tσ ωφ ω µ= − + ω . 

 
Table 4.1 summarizes the properties of a Brownian motion with drift. 
 

Table 4.1 Brownian motion with drift 
Lévy process   Gaussian variance A    Lévy measure    drift A γ    variation   sample path 
standard Brownian 
motion tB                    1A =                       0=A            0γ µ= =     infinite     continuous 
 
Brownian motion  
with drift tt Bµ σ+     2A σ=                     0=A             0γ µ= ≠    infinite      continuous 
 
[4.1.5] Brownian Motion as a Subclass of Continuous Martingale 
 
For the background knowledge of martingales, read section 2.3.2. 
 
Theorem 4.4 Standard Brownian motion is a continuous martingale     Let ( )  
be a standard Brownian motion process defined on a filtered probability space 

. Then,  is a continuous martingale with respect to the filtration 
 and the probability measure .  

[0, )tB∈ ∞

)

)

[0, )( , , )t∈ ∞Ω F P [0, )( tB∈ ∞

[0, )t∈ ∞F P
 
Proof 
 
By definition,  is a nonanticipating process (i.e. [0, )( tB∈ ∞ [0, )t∈ ∞F - adapted process) with 

the finite mean [ ] 0tE B = < ∞  for [0, )t∀ ∈ ∞ . For 0 t u∀ ≤ ≤ < ∞ : 
 

                                                          
u

u t t vB B dB= + ∫ .                                                      (1) 

 
Using the equation (1) and the fact that a Brownian motion is a nonanticipating process, 
i.e. [ ]t t tE B B=F : 
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[ ] [ ] [ ] [ ]
u

u t t u t t t t v tt
E B B E B E B E B dB− = − = + −∫F F F F tB  

                        [ ] [ ] [ ]
u

u t t t t v tt
E B B E B E dB B− = + −∫F F F t  

                        [ ] 0u t t t tE B B B B− = + −F 0= , 
  
or in other words: 
 

[ ] [ ] [ ] [ ]
u u

u t t v t t t v t tt t
E B E B dB E B E dB B= + = + = +∫ ∫� � � �F F F F 0  

                     [ ]u t tE B B=�F , 
 
which is a martingale condition. 

,  
 
Theorem 4.5 Brownian motion with drift is not a continuous martingale     Let 

 be a standard Brownian motion process defined on a filtered probability space 
. Then, a Brownian motion with drift 

[0, )( tB∈ ∞ )
)[0, )( , , )t∈ ∞Ω F P [0, ) [0, )( ) (t tX t Bµ σ∈ ∞ ∈ ∞≡ +  is not a 

continuous martingale with respect to the filtration [0, )t∈ ∞F  and the probability measure .  P
 
Proof 
 
By definition,  is a nonanticipating process (i.e. [0, )( tX ∈ ∞ ) [0, )t∈ ∞F - adapted process) with 
the finite mean [ ] [ ]t tE X E t B tµ σ µ= + = < ∞  for [0, )t∀ ∈ ∞  and µ ∈R . For 

: 0 t u∀ ≤ ≤ < ∞
 

                                                         
u

u t t
X X dX= + v∫ .                                                     (2) 

 
Using the equation (2) and the fact that a Brownian motion with drift is a nonanticipating 
process, i.e. [ ]t t tE X X=F : 
 

[ ] [ ] [ ] [
u u

u t t v t t t v tt t
E X E X dX E X E dX= + = +∫ ∫� � �F F F ]�F  

                          [ ] (u t tE X X u tµ= + −�F )

)

, 
 
which violates a martingale condition.  

,  
 
Theorem 4.6 Detrended Brownian motion with drift is a continuous martingale     
Let  be a standard Brownian motion process defined on a filtered probability 
space . Then, a detrended Brownian motion with drift defined as: 

[0, )( tB∈ ∞

[0, )( , , )t∈ ∞Ω F P
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[0, ) [0, ) [0, )( ) ( ) (t tX t t B t B )tµ µ σ µ σ∈ ∞ ∈ ∞ ∈ ∞− ≡ + − ≡ , 

 
is a continuous martingale with respect to the filtration [0, )t∈ ∞F  and the probability 
measure .  P
 
Proof 
              
For : 0 t u∀ ≤ ≤ < ∞
 

                        [ ] [( ) (
u u

u t t vt t
E X u E X t dX dvµ µ µ− = − + −∫ ∫� �F F) ]t  

[ ] [( ) ] [( ) ]
u u

u t t t vt t
E X u E X t E dX dvµ µ µ− = − + −∫ ∫� �F F t�F  

                         [ ] ( ) (u t tE X u X t u t u tµ µ µ µ− = − + − −�F )−  

                         [ ]u t tE X u X tµ µ− = −�F , 
 
which satisfies a martingale condition.  

,  
 
Theorem 4.7 Exponential of a standard Brownian motion is a continuous martingale     
Let  be a standard Brownian motion process defined on a filtered probability 
space . Then, for any

[0, )( tB∈ ∞ )

[0, )( , , )t∈ ∞Ω F P θ ∈R , the exponential of a standard Brownian motion 
defined as: 
 

                                                      21exp( )
2t tZ B tθ θ= − ,                                                 (3) 

 
is a continuous martingale with respect to the filtration [0, )t∈ ∞F  and the probability 
measure .  P
 
Proof 
 
We first prove the often used proposition. 
 
Proposition 4.1     Note that if 2( , )X Normal t tµ σ∼ , then for anyθ ∈R : 
 

                                            2 21[exp( )] exp( )
2

E X t tθ θµ θ σ= + .                                        (4) 

 
Proof 
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2

22

1 ( )[exp( )] exp( ) exp{ }
22

X tE X X
tt
µθ θ

σπσ

∞

−∞

−
= −∫ dX  

                    
2 2 2 2

22

1 2 2exp{ }
22

X t X X t t dX
tt

θ σ µ µ
σπσ

∞

−∞

− + − +
= −∫  

                    
2 2 2 2

22

1 2( )exp{ }
22

X t t X t dX
tt

θσ µ µ
σπσ

∞

−∞

− + +
= −∫  

                    
2 2 2 2 2 2

22

1 ( ( )) ( )exp{ }
22

X t t t t t dX
tt

θσ µ θσ µ µ
σπσ

∞

−∞

− + − + +
= −∫  

                    
2 2 2 2 2 2

2 22

1 ( ( )) ( )exp{ }exp{ }
2 22

X t t t t t dX
t tt

θσ µ θσ µ µ
σ σπσ

∞

−∞

− + + −
= −∫  

                    
2 2 2 2 2 2

2 22

( ) 1 ( ( ))exp{ } exp{ }
2 22

t t t X t t dX
t tt

θσ µ µ θσ µ
σ σπσ

∞

−∞

+ − − +
= −∫  

                    
2 2 2 2 2 4 2 2

2 2

( ) 2exp{ } exp{ }
2 2

t t t t t t
t t

θσ µ µ θ σ θσ µ
σ σ

+ − +
= =  

                    2 21exp{ }
2

t tθµ θ σ= +  

,  
 
Now we are ready to prove the Brownian exponential defined by the equation (3) is a 
martingale. 
 
Firstly, the process  is nonanticipating because a standard Brownian motion 

 is nonanticipating. 
[0, )( tZ ∈ ∞ )

)[0, )( tB∈ ∞

 
Secondly, it satisfies the finite mean condition, since [ ] 1tE Z = < ∞ : 
 

                                             21[ ] [exp( )]
2t tE Z E B tθ θ= −  

                                             21[ ] [exp( ) exp( )]
2t tE Z E B tθ= − θ                             

21[ ] exp( ) [exp( )]
2t tE Z t Eθ θ= − B , 

 

using the proposition 4.1, 21[exp( )] exp( )
2tE B tθ θ= : 

 
2 21 1[ ] exp( ) exp( ) 1

2 2tE Z t tθ θ= − = . 
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For , by the definition of0 t t h∀ ≤ ≤ + < ∞ tZ : 
 

21[ ] [exp{ ( )}
2t h t t h tE Z E B t hθ θ+ += − +F F ] . 

 
The trick is to multiply 0exp( ) 1t tB B eθ θ− = =  inside the expectation operator: 
 

           21[ ] [exp( )exp{ ( )} ]
2t h t t t t h tE Z E B B B t hθ θ θ θ+ += − − +F F  

2 21 1[ ] [exp( )exp( )exp( ) exp( ) exp( ) ]
2 2t h t t t t h tE Z E B B B t hθ θ θ θ θ+ += − − −F F  

           2 21 1[ ] [exp( )exp{ ( ) } ]
2 2t h t t t h t tE Z E B t B B hθ θ θ θ+ += − − −F F . 

 
Since Brownian increments are independent: 
 

2 21 1[ ] [exp( ) ] [exp{ ( ) } ]
2 2t h t t t t h t tE Z E B t E B B hθ θ θ θ+ += − − −F F F , 

 
and since tB  is -adapted: tF
 

2 21 1[ ] exp( ) [exp{ ( ) }]
2 2t h t t t h tE Z B t E B Bθ θ θ θ+ += − − −F h . 

 
By the definition of tZ : 
 

21[ ] [exp{ ( )}exp( )]
2t h t t t h tE Z Z E B Bθ θ+ += − −F h , 

 

and since 21exp( )
2

hθ−  is a constant: 

 
21[ ] exp( ) [exp{ ( )}]

2t h t t t h tE Z Z h E B Bθ θ+ += − −F . 

 
Use the proposition 2.1 because (0, )t h tB B Normal h+ − ∼ : 
 

2 21 1[ ] exp( )exp( )
2 2t h t tE Z Z hθ θ+ = −F h  

                                        [ ]t h t tE Z Z+ =F .                
,  
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Figure 4.2 Brownian motion as a subclass of continuous martingales 
 
[4.1.6] Brownian Motion as a Subclass of Markov Processes 
 
For the background knowledge of Markov processes, read section 2.3.3 and 3.8. 
 
Theorem 4.8 A standard Brownian motion process     A standard Brownian motion 

 defined on a filtered probability space[0, )( tB∈ ∞ ) [0, )( , , )t∈ ∞Ω F P  satisfies the followings: 
 
(1) It is a time homogeneous Markov process. In other words, for any bounded Borel 
function  and for : :f →R R 0 t u∀ ≤ ≤ < ∞
 

0,[ ( ) ] ( ) ( )u t u t t u t tE f B f B f B− −= =F P P . 
 
(2) Its transition function  is given by: u t h− ≡P P
 

21 (( , ) exp
22h

x yx y
hhπ

)⎧ ⎫−
= −⎨ ⎬

⎩ ⎭
P . 

 

(3) . 
( )   if   0

( )
( , ) ( )    if   0h

h

f x h
f x

x y f y dy h
∞

−∞

=⎧⎪= ⎨
>⎪⎩∫

P
P

 
Proof 
 
Markov property is a result of independent increments property of Brownian motion. Let 

 be a standard Brownian motion defined on a filtered probability space [0, )( tB∈ ∞ )
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[0, )( , , )t∈ ∞Ω F P . Consider an increasing sequence of time 1 20 ... nt t t t u< < < < < < < ∞  
where t  is the present. As a result of independent increments condition: 
 
                                      

1 2 10( , ,..., )
nu t t t t t tX X X X X X X X− − − −P  

                                  1 2 1

1 2 1

0

0

( , ,..., )
( , ,..., )

n

n

u t t t t t t

t t t t t

X X X X X X X X
X X X X X X

− − − −
=

− − −

∩P
P

 

1 2 1

1 2 1

0

0

( ) ( , ,..., )
( , ,..., )

n

n

u t t t t t t

t t t t t

X X X X X X X X
X X X X X X

− − − −
=

− − −

P P
P

 

                                  ( )u tX X= −P , 
 
which means that there is no correlation (probabilistic dependence structure) on the 
increments among the past, the present, and the future.  
 
Using the simple relationship ( )u u t tX X X X≡ − +  for an increasing sequence of time 

: 1 20 ... nt t t t u< < < < < < < ∞
 

1 2 1 20 0( , , ,..., , ) (( ) , , ,..., , )
n nu t t t t u t t t t t tX X X X X X X X X X X X X X= − +P P  

                                                             ( )u tX X= P , 
 
which holds because an increment ( )u tX X−  is independent of tX  by definition and the 
value of tX  depends on its realization ( )tX ω .  

,  

 
Figure 4.3 Brownian motion as a subclass of Markov processes 
 
[4.2] Poisson Process 
 
A Poisson process is a continuous time stochastic process with discontinuous sample 
paths. To be more precise, the sample paths of Poisson process is right continuous with 
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left limit (i.e. rcll) step functions of jump size 1. It can be used as a building block for all 
Lévy processes. 
 
[4.2.1] Exponential Random Variable 
 
Definition 4.6 Exponential random variable     An exponential random variable X  
with a parameter  is a positive random variable whose probability density function 
is given, for , by: 

λ +∈R
x +∈R

 
                                                             ( ) x

Xf x e λλ −= .                                                      (5) 
 
Its distribution function is for x +∈R :  
 
                                                 ( ) Pr( ) 1 x

XF x X x e λ−= ≤ = − .                                            (6) 
 
Its mean and variance are: 
 

1[ ]E X
λ

=  and 2

1[ ]Var X
λ

= . 

 
For example, the probability density function of an exponential random variable X  with 

0.01λ =  is plotted below. 
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x

0.004

0.006

0.008

0.01

fH
xL
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Figure 4.4 Plot of the probability density function of an exponential random 
variable with 0.01λ =  
 
Theorem 4.9 Lack of memory of an exponential random variable     If a random 
variable X  is an exponential random variable, then, for ,a b +∀ ∈R : 
 

Pr{ } Pr{ }X a b X b X a> + > = > . 
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If X  is a random arrival time of an event, the probability of  given  is 
the same as the probability of . This concept of lack of memory has nothing to do 
with the concept of statistical independence. Let

X a b> + X b>
X a>

A a b≡ + , B X b≡ > , and . 
Then, the lack of memory property becomes: 

C X a≡ >

 
Pr{ } Pr{ }A B C= . 

 
If two events A  and B  are independent: 
 

Pr{ } Pr{ }Pr{ }Pr{ } Pr{ }
Pr{ } Pr{ }

A B A BA B A
B B

= = =
∩ . 

 
Proof 
 

                   Pr{ } Pr{ }Pr{ }
Pr{ } Pr{ }

X a b X b X a bX a b X b
X b X

> + > > +
> + > = =

> >
∩

b
 

( )1 ( ) 1 (1 )Pr{ }
1 ( ) 1 ( ) 1 (

a b a b
X

X X

F a b e e eX a b X b
F b F b F b

λ λ− + − −− + − −
> + > = = =

− − − )X

λ

 

                    {1 ( )}{1 ( )}Pr{ } 1 ( )
1 ( )

X X
X

X

F a F bX a b X b F a
F b

− −
> + > = = −

−
        

                    Pr{ } Pr{ }X a b X b X a> + > = >         
,  

 
We will give one illustrating example. Suppose that the first arrival time of a large 
earthquake X  is modeled as an exponential random variable with the mean of 1/ 100λ =  
years. Using  years and 10a = 40b =  years, the lack of memory property becomes: 
 

Pr{ 50 40} Pr{ 10}X X X> > = > . 
 
This means that the probability that 40 years has past since the last large earthquake and 
there will be more than 10 years for the next large earthquake to hit (i.e. which is 
Pr{ 50 40}X X> > ) is equal to the unconditional probability that there will be more than 
10 years for the next large earthquake to hit (i.e. which is ). In other words, an 
exponential random variable 

Pr{ 10}X >
X  does not remember the fact that the 40 years has past 

since the last large earthquake.  
 
[4.2.2] Poisson Random Variable and Poisson Distribution 
 
Definition 4.7 Poisson random variable     A Poisson random variable  is a discrete 
random variable with a parameter 

N
λ +∈R  called an intensity whose probability mass 

function is given, for  (i.e. k∀ ∈N 0,1, 2,...k = ), by: 
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( )
!

keN k
k

λλ−

= =P . 

 
Its mean and variance are: 
 

[ ]E N λ=  and [ ]Var X λ= . 
 
A Poisson random variable  is used for the purpose of counting the number of arrivals 
of an event in unit time interval. For example, if we model the number of arrivals of 
small earthquakes in one year as a Poisson random variable with the intensity

N

10λ = , its 
probability mass function is given by: 
 

1010( )
!

keN k
k

−

= =P , 

 
which is plotted in Figure 4.5. 
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Figure 4.5 Plot of the probability mass function of a Poisson random variable with 

10λ =  
 
[4.2.3] Relationship between the Sums of Independent Exponential Random 
Variables and Poisson Distribution 
 
Suppose we model the number of dogs we see in one day  as a Poisson random 
variable with the intensity . Then, its probability mass function is: 

N
λ +∈R

 

( )
!

keN k
k

λλ−

= =P . 
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Next, the number of dogs we see in t  days  can be models as a Poisson random 
variable with the intensity

tN
tλ +∈R . Then, its probability mass function is: 

 

                                                      ( )( )
!

t k

t
e tN k

k

λ λ−

= =P .                                                (7) 

 
The intensity tλ  can be interpreted as the average number of arrivals of an event (i.e. 
seeing a dog in our case) in the time interval of[0 . Let T  be the waiting time until the 
first arrival of an event. Then, the probability of zero arrival of an event in [0  can be 
calculated as: 

, ]t
, ]t

 
                                                  ( ) ( 0) t

tT t N e λ−> = = =P P .                                             (8) 
 
                          0                                                            t                 T    
                           
                                                                                                                        
Figure 4.6 Zero arrival of an event in [0  , ]t
 
                          0                                    T                      t  
 
 
Figure 4.7 One arrival of an event in [0  , ]t
 
Using the equation (8), the distribution function of a waiting time T of the first arrival of 
an event in the interval [0  can be expressed as: , ]t
 
                                        ( ) ( ) 1 ( ) 1 t

TF t T t T t e λ−= < = − > = −�P P .                                    (9) 
 
As you can see, the equation (9) is identical to the equation (6) which means that a 
waiting time T of the first arrival of an event in the interval [0  is an exponential 
random variable with the parameter

, ]t
λ .  

 
                       0                                                                                 1T 2T 3T kT t
                                  
                           
 
Figure 4.8 k  arrivals of an event in [0  , ]t
 
This idea can be extended. Suppose that an event arrives  times in the interval[0 .  
Note in this case,  indicates the moment when i th event arrives. Waiting time of the 
arrival of the first event is  which means that the waiting time between the 
arrival of the second event and the first event can be expressed as 

k , ]t

iT

1 0T − = 1T

2 1T T−  and the waiting 
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time between the arrival of the th event and the (i 1)i − th event can be expressed as 
 . In this case, a Poisson random variable  with the intensity 1i iT T −− tN tλ  counts the 

number of arrival of an event in the interval [0  which means that a Poison random 
variable is a discrete random variable or has discontinuous sample paths (i.e. ). 
And, each waiting time  is an  exponential random variable with the 
parameter

, ]t

tN ∈N

1i iT T −− . .i i d
λ : 

 
1( )

1( ) i iT T
i iT T e λλ −− −

−− =P , 
 
which indicates that  is a continuous random variable because an event can arrive 
at any moment. 

1i iT T −−

 
For example, suppose that the average number of dogs we see in one day (i.e. the 
intensity) is 12λ = : 
 

1[ ] 12E N λ= = . 
 
Then, each waiting time  is an  exponential random variable with the 
parameter

1i iT T −− . .i i d
12λ =  which means that the average waiting time to see a dog is 1/12 day 

which is equal to 2 hours: 
 

1
1 1 day 2 hours[ ]

12dogs 1 dogi iE T T
λ−− = = = . 

 
[4.2.4] Poisson Process 
 
Definition 4.8 Poisson process     A Poisson process  with the intensity [0, ]( tN ∈ ∞ ) λ +∈R  
is a stochastic process which counts the number of random times  (i.e. ) of 
the arrival of an event in the time interval [0  defined as: 

kT 1 2, ,..., kT T T
, ]t

 

1
1

kt t
k

N ≥
≥

= T∑ , 

 
which means that the sample paths of  are right continuous step functions of 
jump size equal to one (i.e. discontinuous sample paths). Its probability mass function 
follows a Poisson distribution with the parameter

[0, ]( tN ∈ ∞ )

tλ : 
 

( )( )
!

t k

t
e tN k

k

λ λ−

= =P . 
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And, each waiting time  is an  exponential random variable with the 
parameter

1i iT T −− . .i i d
λ : 

 
1 1( ) exp{ ( )i i i iT T T T }λ λ− −− = − −P , 

 
which indicates that a Poisson process  is a continuous time stochastic process 
because an event can arrive at any moment. 

[0, ]( tN ∈ ∞ )

 
 
 
                                                
Arrival time    0                                      T        T                                       T                1T 2 3 k t
  
           
        
Waiting time      T1 0−             T2 1T−           T T3 2−  
 
Figure 4.9 An event arrivals  times in the interval [0  k , ]t
 
For more details, consult Karlin and Taylor (1975) pages 22-26. 
 
[4.2.5] Properties of Poisson Process 
 
We present the important properties of a Poisson process in this section. Some of which 
can be easily seen by the simulated sample paths of a Poisson process which is shown in 
Figure 4.10. Note that a path 1 has 10 jumps, a path 2 has 7 jumps, and a path 3 has 13 
jumps.   
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Figure 4.10 Simulated sample paths of Poisson processes with the intensity λ = 5 
and .  [0, 2]t∈
 
Theorem 4.10 Fundamental properties of Poisson processes     A Poisson process 

 with the intensity [0, ]( tN ∈ ∞ ) λ +∈R  defined on a filtered probability space  
satisfies the following conditions: 

[0, ]( , , )t∈ ∞Ω F P

 
(1) Its increments are independent. In other words, for any increasing sequence of 
time : 1 20 .. nt t t≤ < < <.

1t

 
1 2 10 0( ... )

n nt t t tN N N N N N N
−

− − −∩ ∩ ∩ ∩P  
                                   . 

1 2 10 0( ) ( ) ( )... ( )
n nt t t tN N N N N N N

−
= − − −P P P P

1t

1

 
(2) Its increments are stationary (time homogeneous): i.e. for ,  has the 
same distribution as . In other words, the distribution of increments does not depend 
on t .  

0h ≥ t h tN N+ −

hN

(3) . The process starts from 0 almost surely (with probability 1). 0( 0)N = =P
(4) The process is stochastically continuous: 0ε∀ > , 

0
lim ( ) 0t h th

N N ε+→
− ≥ =P . 

(5) Its sample paths are 1) non-decreasing functions, 2) right continuous with left limit 
step functions in , and 3) its jump (step) size is 1. Obviously, these sample 
paths properties are true almost surely.  

[0, ]t∀ ∈ ∞

(6) For , . In other words, the number of arrivals of an event 
is almost surely finite for any  including an infinite time horizon (i.e. ). 

(0, ]t∀ ∈ ∞ ( ) 1tN k= < ∞ =P
0t > t = ∞

 
Proof 
 
Theorems (1), (2), and (5) are true by definition. For more details, consult Ross (1983) 
chapter2 and Cont and Tankov (2004) pages 48-52. 
 
[4.2.6] Poisson Process as a Lévy Process 
 
As you may notice, it is very obvious that a Poisson process is a Lévy process because 
the condition (1) – (5) of theorem 4.10 is the definition of Lévy process (i.e. the 
definition 3.1).  
 
Definition 4.9 Poisson process as a Lévy process     A Poisson process  with 

the intensity  defined on a filtered probability space
[0, ]( )tN ∈ ∞

λ +∈R [0, ]( , , )t∈ ∞Ω F P  is a Lévy 
process satisfying: 
 
(1)  follows a Poisson distribution with the intensity tN tλ : 
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( )( )
!

t k

t
e tN k

k

λ λ−

= =P . 

 
(2) Its sample paths are non-decreasing right continuous with left limit step functions of 
step size 1 in  with probability 1. [0, ]t∀ ∈ ∞
 
The condition (1) implies the condition (2). 
 
Theorem 4.11 Lévy process whose sample paths are non-decreasing right 
continuous with left limit step functions of step size 1     Let  be a real valued 
Lévy process on a filtered probability space

[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P . If and only if the sample paths 
of  are non-decreasing right continuous with left limit step functions of step size 
1 in  with probability 1, then,  is a Poisson process.  

[0, )( tX ∈ ∞ )
)[0, ]t∀ ∈ ∞ [0, )( tX ∈ ∞

 
Proof 
 
Consult proposition 3.3 of Cont and Tankov (2004). 
 
Definition 4.10 Poisson process in terms of Lévy triplet ( , , )A γA       Let  be a 
real valued Lévy process with Lévy triplet ( ,

[0, )( )tX ∈ ∞

, )A γA  defined on a filtered probability 
space . Then,  is a Poisson process with the intensity , if it 
satisfies the following conditions: 

[0, )( , , )t∈ ∞Ω F P [0, )( tX ∈ ∞ ) λ +∈R

 
(1) . Its Gaussian variance is zero (i.e. Lévy-Itô decomposition). 0A =
(2) 0γ = . Its drift is zero (i.e. Lévy-Itô decomposition). 
(3) Its Lévy measure is given by: 
 

( ) ( 1)x xλδ= −A , 
 
where ( 1x )δ −  is a Dirac’s delta function (see Appendix 1) satisfying: 
 

(0)   if   1
( 1)

0        otherwise
x

x
δ

δ
=⎧

− = ⎨
⎩

. 

 
( 1x )δ −  is a pulse of unbounded height and zero width with a unit integral: 

 

( 1) 1x dxδ
∞

−∞
− =∫ . 

 
Note that a Dirac’s delta function ( 1x )δ −  is a jump size probability density function for 
Poisson processes because Poisson processes have only one type of jumps which are 
jumps of size 1. And not surprisingly, the integral of the Lévy measure of a Poisson 
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process is the intensity parameter λ +∈R  because a Lévy measure ( )xA  measures the 
arrival rate of jumps: 
  

( ) ( 1) ( 1)x dx x dx x dxλδ λ δ λ
∞ ∞ ∞

−∞ −∞ −∞
= − = − =∫ ∫ ∫A < ∞

>

, 

 
which is finite because the number of arrivals of an event is almost surely finite for 
any t  including an infinite time horizon t0 = ∞  (the number (6) of theorem 4.10). 
 
Theorem 4.12 Finite variation property of Poisson process     If (  is a Poisson 
process defined on a filtered probability space ( ,

[0, ] )t TX ∈

, )t T∈[0, ]Ω PF , then, it is a real valued Lévy 
process of finite variation on the interval [0 . And, its Lévy triplet ( ,, ]T , )A γA  satisfies: 
 

0A =  and 
1

( )
x

x dx
<

< ∞∫ A , 

 
which are finite variation conditions for Lévy processes (i.e. theorem 3.7). Zero Gaussian 
variance  of a Poisson process is obvious and the second condition for a Poisson 
process is satisfied because there is no need to truncate jumps and jump sizes are all 1: 

0A =

 

1 1 1
( ) ( 1) ( 1)

x x x
x dx x x dx x x dxλδ λ δ

< = =
= − = −∫ ∫ ∫A  

                                
1

( )
x

x dx λ
<

= < ∞∫ . A

 
Finite variation property of a Poisson process can be easily guessed from its sample paths 
behavior. Stochastic processes of infinite variation have highly oscillatory sample paths 
such as a Brownian motion with drift. But, the sample paths of a Poisson process are rcll 
step functions of step size 1 which implies that a Poisson process is of finite variation: 
 

1
1

( ( ) sup ( ) ( ) ) 1
n

i i
i

T X X t X t −
=

= − < ∞∑P =

x

. 

 
Table 4.2 summarizes the properties of a Poisson process. 
 

Table 4.2 Poisson process 
Lévy process   Gaussian variance   Lévy measure   drift   variation   sample path 
Poisson process                      0A = ( 1)λδ= − 0A        finite      rcll step functions of γ =
                                                                                                             step size 1 
 
[4.2.7] Characteristic Function of Poisson Process 
 
Consider a Poisson process  defined on a filtered probability space 

 and let 
[0, ]( tX ∈ ∞ )

[0, ]( , , )t∈ ∞Ω F P ( , , )A γA  be its Lévy triplet. Its characteristic function can be 
obtained by two approaches. First approach is the direct use of the definition of a 
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characteristic function (i.e. Fourier transform of the probability density function with 
Fourier transform parameters ): (1,1)
 

[ ] 0

( )( ) ( )
!

t k
i k

X t k

e tX k e
k

λ
ωλφ ω

−
∞

=
≡ = ≡∑F P  

                                    . ( ) exp[ ( 1)]i
X t e ωφ ω λ= −

 
Note that in the above, a series expansion is used instead of the Fourier integral 

 because a Poisson distribution is discrete. ( )i xe x dω∞

−∞∫ P x

 
Second approach is the use of Lévy-Khinchin representation (theorem 3.3). Because we 
know the Lévy triplet of a Poisson process is given by: 
 

( )0, ( 1), 0A xλδ γ= = − =A , 
 
its characteristic exponent is given by: 
 

{ }
2

( ) exp( ) 1 1 ( )
2X D

A i i x i xω dxψ ω γω ω ω
∞

−∞
= − + + − −∫ A  

                            { }( ) exp( ) 1 ( 1)X i x x dxψ ω ω λδ
∞

−∞
= −∫ −  

                            . ( ) (e 1)i
X

ωψ ω λ= −�
 
Note that the term 1Di xω−  in the Lévy-Khinchin representation drops out for Poisson 
processes because there is no need to distinguish between large and small jumps for 
Poisson processes (i.e. all jumps sizes are 1). Thus, its characteristic function ( )Xφ ω  is 
expressed as: 
 

( )( ) exp ( )X Xtφ ω ψ= ω , 

    ( ) exp{ (e 1)}i
X t ωφ ω λ= − . 

 
[4.2.8] Lévy Measure of Poisson Process 

 
Theorem 4.13 Lévy measure of Poisson process     A Lévy measure of Poisson process 

 with the intensity [0, ]( tX ∈ ∞ ) λ +∈R  defined on a filtered probability space  
is given by: 

[0, ]( , , )t∈ ∞Ω F P

 
( ) ( 1)x xλδ= −A . 

 
And, a Poisson process is a finite activity Lévy process because its Lévy measure 
satisfies: 
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( )x dx λ
∞

−∞
= < ∞∫ A . 

  
Proof 
 
The Lévy measure ( )xA  of a Poisson process must satisfy two important conditions by 
the definition. One is that its jump size density is concentrated at 1x =  and the other is 
that the average number of jumps per unit of time must equal to the intensity λ  of a 
Poisson process. Thus, the only Lévy measure satisfying these two conditions is given 
by: 
 

( ) ( 1)x xλδ= −A , 
 
where ( 1x )δ −  is a Dirac’s delta function (see Appendix 1) satisfying: 
 

(0)   if   1
( 1)

0        otherwise
x

x
δ

δ
=⎧

− = ⎨
⎩

. 

 
( 1x )δ −  is a pulse of unbounded height and zero width with a unit integral: 

 

( 1) 1x dxδ
∞

−∞
− =∫ . 

 
Note that a Dirac’s delta function ( 1x )δ −  is a jump size probability density function for 
Poisson processes because Poisson processes have only one type of jumps which are 
jumps of size 1. The integral of the Lévy measure of a Poisson process is the intensity 
parameter  because a Lévy measure λ +∈R ( )xA  measures the arrival rate of jumps: 
  

1
( ) ( 1) ( 1)

x
x dx x dx x dxλδ λ δ

∞ ∞

−∞ −∞ =
= − = −∫ ∫ ∫A  

                                   ( )x dx λ
∞

−∞
= < ∞∫ A , 

 
which is finite because the number of arrivals of an event is almost surely finite for 
any  including an infinite time horizon t0t > = ∞  (the number (6) of theorem 4.10). 
 
[4.2.9] Poisson Process as a Subclass of Markov Processes 
 
Theorem 4.14 Poisson process as a time homogeneous and spatially homogeneous 
Markov process     A Poisson process  with the intensity  defined on a 
filtered probability space  is a Markov process with a time homogeneous 
and spatially homogeneous transition function. 

[0, ]( tX ∈ ∞ ) λ +∈R

[0, ]( , , )t∈ ∞Ω F P
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Proof 
 
For an increasing sequence of time 1 20 ...t t t t h≤ ≤ ≤ ≤ ≤ + : 
 

1 10 0( 1 ) ( 1 , ,..., )t h t t t h t t t t tX X X X X k X k X+ +− = = − = = = =FP P k  

                   
1( )( 1 ) ( 1) ( 1)

1!

h

t h t t t h t h
e hX X X X X

λ λ−

+ +− = = − = = = =FP P P  

                   ( 1 ) h
t h t tX X e λ hλ−
+ − = =FP . 

 
In the limit : 0h ↓
 

0
lim ( 1 )t h t th

X X hλ+↓
− = =FP . 

 
In other words, the transition function of a Poisson process is time homogeneous and 
spatially homogeneous: 
 

, 0,( , 1) (0,1)t t h t t hx x hλ+ + = =P P . 
,  

 
[4.2.10] Poisson Process and Martingales: Compensated Poisson Process 
 
Theorem 4.15 Nonmartingale property of Poisson process     A Poisson process 

 with the intensity [0, ]( tX ∈ ∞ ) λ +∈R  defined on a filtered probability space  
is not a martingale. 

[0, ]( , , )t∈ ∞Ω F P

 
Proof 
 
A Poisson process has a nonanticipating tX  (i.e. tX  is -adapted) by definition. A 
Poisson process has a finite mean by definition, for

tF
[0,  ]t∀ ∈ ∞ : 

 
[ ] [ ]t tE X E X tλ= = < ∞ , 

 
which is the number (6) of theorem 4.10. For 0  t u∀ ≤ ≤ ≤ ∞ : 
 

[ ] [ ] [ ] [u t t u t t t t u t tE X E X X E X E X− −= + = +� � �F F F ]�F  

                             [ ] [ ] (u t t u t t tE X X E X X u tλ−= + = + −� �F F )  

                             [ ]u t tE X X≠�F . 
,  
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Theorem 4.16 Martingale property of Compensated Poisson process     A 
compensated Poisson process [0, ] [0, ]( ) (t tX X )tλ∈ ∞ ∈ ∞≡ −�  with the intensity  defined 
on a filtered probability space  is a martingale. 

λ +∈R

[0, ]( , , )t∈ ∞Ω F P
 
Proof 
 
A compensated Poisson process has a nonanticipating t tX X tλ≡ −�  (i.e. tX�  is -
adapted) by definition. A compensated Poisson process has a finite mean by definition, 
for : 

tF

[0,  ]t∀ ∈ ∞
 

[ ] [ ] [ ] 0t t tE X E X t E X t t tλ λ λ λ= − = − = − = < ∞� . 
 
For : 0  t u∀ ≤ ≤ ≤ ∞
 
                          [ ] [ ] [ ] [u t t u t t t t u t tE X E X X E X E X− −= + = +� � � � �

� � �F F F ]�F  

[ ] [ ] [ ( )u t t u t t t u tE X X E X X E X u tλ− −= + = + − −� � � �
� �F F ]t�F  

                          [ ] [ ] (u t t u t tE X X E X u tλ−= + − −� �
� �F F )  

                          [ ] ( ) ( )u t t tE X X u t u t Xλ λ= + − − − =� �
�F � . 

,  
                              
A compensated Poisson process is not integer-valued and not a counting process because 
of the compensator tλ . It behaves like a standard Brownian motion after rescaling it by  

1/ λ  since [0, ]
1 ( tX
λ ∈ ∞

� )  satisfies: 

 
1 1[ ] [ ] ( )t

t
XE E X t t tλ λ λ
λ λ λ

= − = −
�

0=  

 
and: 
 

1 1 1 1[ ] [ ] [ ] [t t tVar X Var X Var X t Var Xλ
λ λ λλ

= = − =� � ]t  

                            1 1[ ]tVar X t tλ
λλ

= =� . 

 
Theorem 4.17 Property of Compensated Poisson process     Consider a finite time 
horizon . In the limit as the intensity of a compensated Poisson process [0, ]t T∈

[0, ] [0, ]( ) (t T t TX X )tλ∈ ∈≡ −�  approaches infinity: 
 

λ +∈ ↑ ∞R , 
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a compensated Poisson process has an identical distribution to a standard Brownain 
motion: 
 

[0, ] [0, ] [0, ]lim( ) ( )  ( )t T t T t TX X t d B
λ

λ∈ ∈ ∈↑∞
≡ −� . 

 
For more details, consult Cont and Tankov (2004) page 53. 
 
[4.3] Compound Poisson Process 
 
A compound Poisson process is a general case of a Poisson process. It is a continuous 
time stochastic process with discontinuous sample paths. But, unlike a Poisson process, a 
compound Poisson process is not necessarily an increasing process and jump size density 
can be of any type (thus, it is more general).  
 
[4.3.1] Compound Poisson Process 
 
Definition 4.11 Compound Poisson process     A compound Poisson process  

with the intensity  is a stochastic process defined on a filtered probability space 
 which is the sum of  jumps 

[0, ]( )tX ∈ ∞

λ +∈R
[0, ]( , , )t∈ ∞Ω F P . . .i i d iX  from the jump size density : ( )f x

 

1

tN

t i
i

X X
=

= ∑  with . . . ( )iX i i d f x∼ , 

 
where a Poisson process  with the intensity [0, ]( tN ∈ ∞ ) λ +∈R  counts the number of 
random times  (i.e. ) of the arrival of an event in the time interval [0  
defined as: 

kT 1 2, ,..., kT T T , ]t

 

1
1

kt t
k

N ≥
≥

= T∑ . 

 
Note that a Poisson process  and the jumps sizes  are assumed to be 
independent. 

[0, ]( tN ∈ ∞ ) 1( )i iX ≥

 
This means that if an event arrives k +∈R  times in the time interval (0, ]t∀ ∈ ∞ , i.e. 

, then, a compound Poisson process is the sum of   jumps tN k= k . . .i i d iX  from the 
jump size density : ( )f x
 

1 2
1

...
tN k

t i
i

kX X X X X
=

=

= = + + +∑ . 
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Another point is that a Poisson process is considered as a compound Poisson process with 
the unit jump size , since: 1iX =
 

                                                    
1

tN

t i
i

X X
=

= ∑  with 1iX =  

1 1
1 1

t

k

N

t t
i k

X N ≥
= ≥

= = = t T∑ ∑ . 

 
[4.3.2] Properties of Compound Poisson Process 
 
We present the important properties of a compound Poisson process in this section. Some 
of which can be easily seen by its simulated sample paths illustrated by Figure 4.11. In 
this figure, the jump size density  is a standard normal: ( )f x
 

21( ) exp( )
22
xf x

π
= − . 

 
Note that a path 1 has 7 jumps, a path 2 has 10 jumps, and a path 3 has 11 jumps.   
 

0 0.5 1 1.5 2
Time

-2

0

2

4

path 3

path 2

path 1

 
Figure 4.11 Simulated sample paths of a compound Poisson process with the 
intensity λ = 5 and .  [0, 2]t∈
 
Theorem 4.18 Fundamental properties of compound Poisson processes     A 
compound Poisson process  with the intensity [0, ]( tX ∈ ∞ ) λ +∈R  defined on a filtered 
probability space  satisfies the following conditions: [0, ]( , , )t∈ ∞Ω F P
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(1) Its increments are independent. In other words, for any increasing sequence of 
time : 1 20 .. nt t t≤ < < <.

1t

 
1 2 10 0( ... )

n nt t t tX X X X X X X
−

− − −∩ ∩ ∩ ∩P  
                                   . 

1 2 10 0( ) ( ) ( )... ( )
n nt t t tX X X X X X X

−
= − − −P P P P

1t

 
(2) Its increments are stationary (time homogeneous): i.e. for , 0h ≥ t h tX X+ −  has the 
same distribution as hX . In other words, the distribution of increments does not depend 
on t .  
(3) . The process starts from 0 almost surely (with probability 1). 0( 0)X = =P 1
(4) The process is stochastically continuous: 0ε∀ > , 

0
lim ( ) 0t h th

X X ε+→
− ≥ =P . 

(5) Its sample paths are right continuous with left limit step functions in  and 
the jump sizes

[0, ]t∀ ∈ ∞

iX  are  random variables from a density .  . . .i i d ( )f x
(6) For , . In other words, the number of arrivals of an event 
is almost surely finite for any  including an infinite time horizon (i.e. ). 

(0, ]t∀ ∈ ∞ ( ) 1tN k= < ∞ =P
0t > t = ∞

 
Proof 
 
Similar to the proof of theorem 4.10. 
 
[4.3.3] Compound Poisson Process as a Lévy Process 
 
As you may notice, it is very obvious that a compound Poisson process is a Lévy process 
because the condition (1) – (5) of theorem 4.18 is the definition of Lévy process (i.e. the 
definition 3.1).  
 
Definition 4.12 Compound Poisson process as a Lévy process     A Compound Poisson 

process  with the intensity [0, ]
1

( ) (
tN

t
i

X ∈ ∞
=

≡ ∑ )iX λ +∈R  defined on a filtered probability 

space  is a Lévy process satisfying: [0, ]( , , )t∈ ∞Ω F P
 
(1) A counter  follows a Poisson distribution with the intensitytN tλ : 
 

( )( )
!

t k

t
e tN k

k

λ λ−

= =P . 

 
(2) The jump sizes are  random variables from a density : . . .i i d ( )f x
 

. . . ( )iX i i d f x∼ . 
 
(3) Its sample paths are right continuous with left limit step functions. 
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The condition (3) is implied by the conditions (2) and (3). 
 
Theorem 4.19 Lévy process whose sample paths are right continuous with left limit 
step functions     Let  be a real valued Lévy process on a filtered probability 
space . If and only if the sample paths of  are right continuous with 
left limit step functions in  with probability 1, then,  is a compound 
Poisson process.  

[0, )( tX ∈ ∞ )
)

)
[0, )( , , )t∈ ∞Ω F P [0, )( tX ∈ ∞

[0, ]t∀ ∈ ∞ [0, )( tX ∈ ∞

 
Proof 
 
Consult proposition 3.3 of Cont and Tankov (2004). 
 
Definition 4.13 Compound Poisson process in terms of Lévy triplet ( , , )A γA       Let 

 be a real valued Lévy process with Lévy triplet[0, )( tX ∈ ∞ ) ( , , )A γA  defined on a filtered 
probability space . Then,  is a compound Poisson process with the 

intensity , if it satisfies the following conditions: 
[0, )( , , )t∈ ∞Ω F P [0, )( tX ∈ ∞ )

λ +∈R
 
(1) . Its Gaussian variance is zero (i.e. Lévy-Itô decomposition). 0A =
(2) 0γ = . Its drift is zero (i.e. Lévy-Itô decomposition). 
(3) Its Lévy measure is given by: 
 

( ) ( )x f xλ=A , 
 
where  is a jump size density satisfying: ( )f x
 

( ) 1f x dx
∞

−∞
=∫ , 

 
which holds because  is a probability density function. The integral of the Lévy 
measure of a compound Poisson process is the intensity parameter  because a 
Lévy measure 

( )f x
λ +∈R

( )xA  measures the arrival rate of jumps: 
  

( ) ( ) ( )x dx f x dx f x dxλ λ λ
∞ ∞ ∞

−∞ −∞ −∞
= = =∫ ∫ ∫A < ∞ , 

 
which is finite because the number of arrivals of an event is almost surely finite for 
any  including an infinite time horizon t0t > = ∞  (the number (6) of theorem 4.10). 
 
Theorem 4.20 Finite variation property of Compound Poisson process     If  
is a compound Poisson process defined on a filtered probability space , 

[0, ]( )t TX ∈

[0, ]( , , )t T∈Ω PF
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then, it is a real valued Lévy process of finite variation on the interval [0 . And, its 
Lévy triplet ( ,

, ]T
, )A γA  satisfies: 

 
0A =  and 

1
( )

x
x dx

<
< ∞∫ A , 

 
which are finite variation conditions for Lévy processes (i.e. theorem 3.7). Finite 
variation property of a compound Poisson process can be easily guessed from its sample 
paths behavior. Stochastic processes of infinite variation have highly oscillatory sample 
paths such as a Brownian motion with drift. But, the sample paths of a compound Poisson 
process are rcll step functions which imply that a compound Poisson process is of finite 
variation: 
 

1
1

( ( ) sup ( ) ( ) ) 1
n

i i
i

T X X t X t −
=

= − < ∞∑P = . 

 
Table 4.3 summarizes the properties of a compound Poisson process. 
 

Table 4.3 Compound Poisson process 
Lévy process   Gaussian variance   Lévy measure   drift   variation   sample path 
Compound Poisson                  0A = ( )f xλ=A      0γ =      finite      rcll step functions 
process                                                                                                                        
 
[4.3.4] Characteristic Function of Compound Poisson Process 
 
Theorem 4.21 (with the proof) Characteristic function of Compound Poisson 
process     Consider a compound Poisson process  with the intensity [0, ]( tX ∈ ∞ ) λ +∈R  
defined on a filtered probability space ( , [0, ] , )t∈ ∞Ω F P  and let ( , , )A γA  be its Lévy triplet. 
Individual jumps iX  of a compound Poisson process are  random variables from a 
density , i.e.

. . .i i d
( )f x . . . ( )iX i i d f x∼ . Let fφ  be a characteristic function of a jump size 

density: 
 

[ ]( ) ( ) ( ) [ ]i x i x
f f x e f x dx E eω ωφ ω

∞

−∞
≡ ≡ =∫F . 

  
Then, using the Lévy-Khinchin representation (theorem 3.3) with the Lévy triplet of a 
compound Poisson process ( , the characteristic exponent of a 
compound Poisson process is given by: 

)

}

0, ( ), 0A f xλ γ= = =A

 

{ } {( ) exp( ) 1 ( ) ( )exp( ) ( )X i x f x dx f x i x f x dxψ ω ω λ λ ω
∞ ∞

−∞ −∞
= − = −∫ ∫  

                 ( ) { ( )exp( ) ( ) }X f x i x dx f x dxψ ω λ ω
∞ ∞

−∞ −∞
= −∫ ∫  

                 ( ) { ( ) 1}X fψ ω λ φ ω= − . 
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Thus, the characteristic function of a compound Poisson process ( )Xφ ω  is expressed as: 
 
                                                ( )( ) exp ( )X Xtφ ω ψ= ω  

( ) exp { ( ) 1}X ftφ ω λ φ ω⎡ ⎤= −⎣ ⎦ . 
 
For more information regarding the characteristic function of a compound Poisson 
process, consult Cont and Tankov (2004) pages 74-75 and Sato (1999) pages 18-21: 
 
[4.3.5] Lévy Measure of a Compound Poisson Process 
 
Theorem 4.22 Lévy measure of compound Poisson process     A Lévy measure of a 
compound Poisson process  with the intensity [0, ]( tX ∈ ∞ ) λ +∈R  defined on a filtered 
probability space  is given by: [0, ]( , , )t∈ ∞Ω F P
 

( ) ( )x f xλ=A , 
 
where individual jumps iX  of a compound Poisson process are  random variables 
from a density , i.e.

. . .i i d
( )f x . . . ( )iX i i d f x∼ . 

 
A compound Poisson process is a finite activity Lévy process because the integral of the 
Lévy measure of a compound Poisson process is the intensity parameter : λ +∈R
  

( ) ( ) ( )x dx f x dx f x dxλ λ λ
∞ ∞ ∞

−∞ −∞ −∞
= = =∫ ∫ ∫A < ∞ , 

 
which is finite because the number of arrivals of an event is almost surely finite for 
any  including an infinite time horizon t0t > = ∞  (the number (6) of theorem 4.10). 
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[5] Stable Processes 
 
In this section we present stable processes which are a subclass of Lévy processes. But 
since stable processes are very important, we decided to give it an independent section. 
 
[5.1] Stable Distributions and Stable Processes 
 
Definition 5.1 Strictly stable distribution     Let X  be an infinitely divisible random 
variable on  and R ( )Xφ ω  be its characteristic function. Then, X  is said to have a strictly 
stable distribution, if its characteristic function satisfies, for 0a∀ > , ( ) 0b a∀ > , and 
ω∀ ∈R :  

 
( ) ( ( ))a

X X b aφ ω φ ω= . 
 
Definition 5.2 Stable distribution     Let X  be an infinitely divisible random variable 
on  and R ( )Xφ ω  be its characteristic function. Then, X  is said to have a stable 
distribution, if its characteristic function satisfies, for 0a∀ > , ( ) 0b a∀ > , , and ( )c a ∈R
ω∀ ∈R :  

 
( ) ( )( ) ( ) exp ( )a

X X b a ic aφ ω φ ω ω= . 
 
Example 5.1 Normal distribution as a stable distribution     Consider a normal random 
variable Y  with the mean µ∀ ∈R  and variance 2σ +∀ ∈R , i.e. 2( , )Y N µ σ∼ . 
Then, Y  has a stable distribution with  and1/ 2( )b a a= 1/ 2( ) ( )c a a a µ= − + . 
 
Proof 
 
The characteristic function of a normal random variable Y  is, for ω∀ ∈R : 
 

2 2( ) exp( / 2)Y iφ ω µω σ ω= − . 
 
Then, Y  has a stable distribution since it satisfies the definition 5.2 with  
and

1/ 2( )b a a=
1/ 2( )c a ( )a a µ= − +

a

: 
 

2 2 2 2( ) {exp( / 2)} exp( / 2)a a
Y i i aφ ω µω σ ω µω σ ω= − = −  

                          2 2( ) exp( / 2)exp( )a
Y i a a i a i aφ ω µω σ ω µω µω= − −  

                          2 2( ) exp{ ( ) / 2}exp( )a
Y i a a i a i aφ ω µω σ ω µω µω= − −  

                          ( ) ( )exp{ ( ) }a
Y X a i a aφ ω φ ω µω= − . 

,  
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Example 5.2 Zero Mean normal distribution as a strictly stable distribution     
Consider a normal random variable Y  with the mean 0µ =  and variance , 
i.e.

2σ +∀ ∈R
2(0, )Y N σ∼ . Then, Y  has a strictly stable distribution with . 1/ 2( )b a a=

 
Proof 
 
Apply the previous proof. 
 
Definition 5.3 Cauchy distribution     A Cauchy distribution is a continuous probability 
distribution whose probability density function is given by, for x∀ ∈R : 
 

2 2

1( )
( )
bf x

b x aπ
=

+ −
, 

 
where  is called a location parameter which determines the location of the peak of 
the density as illustrated by the Panel A of Figure 5.1 and 

a∈R
b +∈R  is called a scale 

parameter which influences the fatness of the tail of the density as illustrated by the Panel 
B of Figure 5.1. 
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A) Role of a location parameter a∈R . A scale parameter  is set to 1. b
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B) Role of a scale parameterb +∈R . A location parameter  is set to 0. a
 
Figure 5.1 Plot of Cauchy distribution 
 
When  and , the Cauchy probability density function becomes: 0a = 1b =
 

2

1 1( )
1

f x
xπ

=
+

, 

 
which is called a standard Cauchy distribution. 
 
Theorem 5.1 Properties of Cauchy distribution     Consider a Cauchy distribution 
whose probability distribution function is given by, for a∀ ∈R , , and : b +∀ ∈R x∀ ∈R
 

2 2

1( )
( )
bf x

b x aπ
=

+ −
. 

 
( )f x  has the following properties: 

 
(1) It has a unit integral because it is a probability measure: 
 

( ) 1f x dx
∞

−∞
=∫ . 

 
(2)  is a positive measure for ( )f x x∀ ∈R  because it is a probability measure: 
 

( ) 0f x ≥ . 
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(3) Its mean is undefined and its variance is infinite. Thus, higher order moments are 
undefined as well.  
(4) Its mode and median are equal to . a
(5) Its characteristic function is calculated as: 
 

2 2

1( ) ( )
( )

i x i x
X

be f x dx e dx
b x a

ω ωφ ω
π

∞ ∞

−∞ −∞
≡ =

+ −∫ ∫  

                                ( ) exp( )X ia bφ ω ω= − ω . 
 
(6) It is an infinitely divisible distribution. 
 
Proof of (6) 
 

( )1/1/( ) exp( ) exp
nn

X

biaia b
n n

ωωφ ω ω ω
⎛ ⎞

= − = −⎜ ⎟
⎝ ⎠

 

                                1/( ) exp ( ) ( )n
X

a bi
n n

φ ω ω⎛ ⎞= −⎜ ⎟
⎝ ⎠

ω . 

 
This means that a Cauchy random variable X  with parameters  and  has an identical 
distribution as a sum of   Cauchy random variables each with the location 
parameter  and the scale parameter . Take a look at proposition 3.1.  

a b
n . . .i i d

/a n /b n
,  

 
Example 5.3 Cauchy distribution as a strictly stable distribution     Consider a 
Cauchy random variable Y  with the location parameter c∈R  and the scale parameter 

 whose probability density function is given by: d +∈R
 

2 2

1( )
( )
df x

d x cπ
=

+ −
. 

 
Then, Y  has a strictly stable distribution withb a= . 
 
Proof 
 
The characteristic function of a Cauchy random variable Y  is, for ω∀ ∈R : 
 

( ) exp( )Y ic dφ ω ω= − ω . 
 
Then, Y  has a stable distribution since it satisfies the definition 5.2 withb a : =
 

( )( ) exp( ) exp( )
aa

Y ic d ic a d aφ ω ω ω ω ω= − = −  

                                 ( )( ) exp ( ) ( )a
Y ic a d aφ ω ω ω= −  
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                                 ( ) ( )a
Y Y aφ ω φ ω=  

,  
 
We can extend this idea from single infinitely divisible random variable X  on  to a real 
valued Lévy process  defined on a filtered probability space

R
[0, )( tX ∈ ∞ ) [0, )( , , )t∈ ∞Ω F P  

because of the proposition 3.2 and 3.3 which proposes one to one relationship between an 
infinitely divisible distribution and a Lévy process. 
 
Definition 5.3 Strictly stable process     A strictly stable process  is a real 
valued stochastic process defined on a filtered probability space 

[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P  satisfying 
the following conditions:  
 
(1)  is a Lévy process.  [0, )( tX ∈ ∞ )
(2) The distribution of tX  at  is a strictly stable distribution. 1t =
 
Definition 5.4 Stable process     A stable process  is a real valued stochastic 
process defined on a filtered probability space 

[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P  satisfying the following 
conditions:  
 
(1)  is a Lévy process.  [0, )( tX ∈ ∞ )
(2) The distribution of tX  at  is a stable distribution. 1t =
 
It is apparent, but a standard Brownian motion is an example of a strictly stable process 
and a Brownian motion with drift is an example of a stable process. 
 
[5.2] Selfsimilar and Broad-Sense Selfsimilar Stochastic Processes 
 
Definition 5.5 Selfsimilar stochastic processes     A real valued stochastic process 

 defined on a filtered probability space [0, )( tX ∈ ∞ ) [0, )( , , )t∈ ∞Ω F P  is said to be selfsimilar if, 

for  and , the process satisfies: a +∀ ∈R b +∀ ∈R
 

[0, ) [0, )( )  (at tX d bX∈ ∞ ∈ ∞ )

)

. 
 
This means that for selfsimilar stochastic processes, a change in the time domain is 
equivalent to a change in the spatial domain in terms of the distributional property. 
 
Definition 5.6 Broad-sense selfsimilar stochastic processes     A real valued stochastic 
process  defined on a filtered probability space [0, )( tX ∈ ∞ [0, )( , , )t∈ ∞Ω F P  is said to be 

broad-sense selfsimilar if, for a +∀ ∈R , b +∀ ∈R , and ( ) :[0, )c t ∞ → R ,  the process 
satisfies: 
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[0, ) [0, )( )  ( (at t ))X d bX c t∈ ∞ ∈ ∞ + . 
 
Example 5.4 Standard Brownian motion as a selfsimilar stochastic process     A 
standard Brownian motion  defined on a filtered probability space  

is a selfsimilar stochastic process with .  
[0, )( tB∈ ∞ ) [0, )( , , )t∈ ∞Ω F P

1/ 2b a=
 
Proof 
 
We know: 
 
                                                        (0, )atB Normal at∼  

(0, )taB Normal at∼ . 
  
Therefore: 
 

[0, ) [0, )( )  (at tB d aB∈ ∞ ∈ ∞ )

)t

. 
,  

 
Example 5.5 Brownian motion with drift as a broad-sense selfsimilar stochastic 
process     A Brownian motion with drift [0, ) [0, )( ) (tX t Bµ σ∈ ∞ ∈ ∞≡ +  defined on a filtered 
probability space  is a broad-sense selfsimilar stochastic process with 

 and 
[0, )( , , )t∈ ∞Ω F P

1/ 2b aσ= ( )c t t a atµ σ µ= − + .  
 
Proof 
 
We know: 
 
                                                    2( , )tX Normal t tµ σ∼  
                                                   2( ,at )X Normal at atµ σ∼  

2( ,taX Normal t a atσ µ σ∼ )σ . 
  
Therefore: 
 

[0, ) [0, )( )  (at t )X d aX t a aσ µ σ∈ ∞ ∈ ∞ − + tµ

)

. 
,  

 
[5.3] Relationship between Stability and Broad-Sense Selfsimilarity for Lévy 
Processes 
 
Theorem 5.2 Strict stability and selfsimilarity for Lévy Processes     A real valued 
Lévy process  defined on a filtered probability space [0, )( tX ∈ ∞ [0, )( , , )t∈ ∞Ω F P  is 
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selfsimilar, if and only if  is strictly stable. Its converse is also true. A real 
valued Lévy process  is strictly stable, if and only if  is selfsimilar. 

[0, )( tX ∈ ∞ )
) )

)
)

) )

[0, )( tX ∈ ∞ [0, )( tX ∈ ∞

 
Theorem 5.3 Stability and broad-sense selfsimilarity for Lévy Processes     A real 
valued Lévy process  defined on a filtered probability space  is 
broad-sense selfsimilar, if and only if  is stable. Its converse is also true. A real 
valued Lévy process  is stable, if and only if  is broad-sense 
selfsimilar. 

[0, )( tX ∈ ∞ [0, )( , , )t∈ ∞Ω F P

[0, )( tX ∈ ∞

[0, )( tX ∈ ∞ [0, )( tX ∈ ∞

 
Proof 
 
Consult Sato (1999) page 71. 
 
Apparently, theorems 5.2 and 5.3 indicate that for Lévy processes, selfsimilarity is 
identical to strict stability and broad-sense selfsimilarity is identical to stability. 
 

 
Figure 5.1 Relationship among Lévy processes, stable processes, and broad-sense 
selfsimilar processes 
 
[5.4] More on Stable Processes 
 
[5.4.1] Stability Index α  
 
Theorem 5.4 Stability Index α       
(1) For every stable distribution, there exist a constant called a stability index (0, 2]α ∈  
satisfying, for , , 0a∀ > ( ) 0b a∀ > ( )c a ∈R , and ω∀ ∈R : 
 

( ) ( )( ) ( ) exp ( )a
X X b a ic aφ ω φ ω ω=  

                                             ( )1/( ) ( ) exp ( )a
X X a ic aαφ ω φ ω ω= , 
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in other words: 
 

1/( )b a a α= . 
 
A stable distribution with the stability index (0, 2]α ∈  is said to be α -stable distribution. 
(2) For every stable process , there exist a constant called a stability index [0, )( tX ∈ ∞ )

(0, 2]α ∈  satisfying, for ,a +∀ ∈R ( )b a +∀ ∈R , and ( ) :[0, )c t ∞ → R , and ω∀ ∈R : 
 

[0, ) [0, )( )  ( ( ) (at t ))X d b a X c t∈ ∞ ∈ ∞ +  

                                              1/
[0, ) [0, )( )  ( (at tX d a X cα

∈ ∞ ∈ ∞ + ))t , 
 
in other words: 
 

1/( )b a a α= . 
 
A stable process  with the stability index [0, )( tX ∈ ∞ ) (0, 2]α ∈  is said to be α -stable 
process. 
 
Proof 
 
Consult Sato (1999) pages 75-76. 
 
Example 5.6 Normal distribution as the only 2-stable distribution     Consider a 
normal random variable Y  with the mean µ∀ ∈R  and variance , 
i.e.

2σ +∀ ∈R
2( , )Y N µ σ∼ . Then, Y  is the only 2-stable distribution with  and 1/ 2( )b a a=

1/ 2( ) ( )c a a a µ= − + . 
 
Proof 
 
The characteristic function of a normal random variable Y  is, for ω∀ ∈R : 
 

2 2( ) exp( / 2)Y iφ ω µω σ ω= − . 
 
Then, Y  is a stable distribution with the stability index 2α = , since it satisfies the 
theorem 5.4 with  and1/ 2( )b a a= 1/ 2( ) ( )c a a a µ= − + : 
 

2 2 2 2( ) {exp( / 2)} exp( / 2)a a
Y i i aφ ω µω σ ω µω σ ω= − = − a  

                          2 2( ) exp( / 2)exp( )a
Y i a a i a i aφ ω µω σ ω µω µω= − −  

                          2 2( ) exp{ ( ) / 2}exp( )a
Y i a a i a i aφ ω µω σ ω µω µω= − −  

                          ( ) ( ) exp{ ( ) }a
Y X a i a aφ ω φ ω µω= − . 

 103



,  
 
Theorem 5.5 Normal distribution as the only 2-stable distribution     A real valued 
infinitely divisible probability density function ( )xP  is normal, if ( )xP  is 2-stable. Its 
converse is also true. A real valued infinitely divisible probability density function ( )xP  
is 2-stable, if ( )xP  is normal. 
 
Theorem 5.6 Zero Mean Normal distribution as the only strictly 2-stable 
distribution     A real valued infinitely divisible probability density function ( )xP  is 
normal with zero mean, if ( )xP  is strictly 2-stable. Its converse is also true. A real valued 
infinitely divisible probability density function ( )xP  is strictly 2-stable, if ( )xP  is 
normal with zero mean. 
   
Proof 
 
These correspond to theorems 14.1 and 14.2 of Sato (1999) where proofs are provided.  
 
Example 5.7 Brownian motion with drift as the only 2-stable process     A Brownian 
motion with drift [0, ) [0, )( ) (tX t B )tµ σ∈ ∞ ∈ ∞≡ +  defined on a filtered probability space 

 is the only 2-stable process with  and [0, )( , , )t∈ ∞Ω F P 1/ 2( )b a aσ= ( )c t t a atµ σ µ= − + .  
 
Proof 
 
We know: 
 
                                                    2( , )tX Normal t tµ σ∼  
                                                   2( ,at )X Normal at atµ σ∼  

2( ,taX Normal t a atσ µ σ∼ )σ . 
  
Therefore: 
 

[0, ) [0, )( )  (at t )X d aX t a aσ µ σ∈ ∞ ∈ ∞ − + tµ

)

)

. 
,  

 
Theorem 5.7 Brownian motion with drift as the only 2-stable process     A real valued 
Lévy process  (by definition its increments possess infinite divisibility) defined 
on a filtered probability space  is a Brownian motion with drift, if  
is a 2-stable process. Its converse is also true. A real valued Lévy process  is a 
2-stable process, if  is a Brownian motion with drift. 

[0, )( tX ∈ ∞

[0, )( , , )t∈ ∞Ω F P [0, )( )tX ∈ ∞

[0, )( )tX ∈ ∞

[0, )( tX ∈ ∞

 

 104



Theorem 5.7 Standard Brownian motion as the only strictly 2-stable process     A 
real valued Lévy process  (by definition its increments possess infinite 
divisibility) defined on a filtered probability space 

[0, )( tX ∈ ∞ )

[0, )( , , )t∈ ∞Ω F P  is a standard Brownian 
motion, if  is a strictly 2-stable process. Its converse is also true. A real valued 
Lévy process  is a strictly 2-stable process, if  is a standard Brownian 
motion.  

[0, )( tX ∈ ∞ )
) )[0, )( tX ∈ ∞ [0, )( tX ∈ ∞

 
Example 5.8 Cauchy distribution as a strictly 1-stable distribution     Consider a 
Cauchy random variable Y  with the location parameter c∈R  and the scale parameter 

 whose probability density function is given by: d +∈R
 

2 2

1( )
( )
df x

d x cπ
=

+ −
. 

 
Then, Y  is a strictly 1-stable distribution with ( )b a a= . 
 
Proof 
 
The characteristic function of a Cauchy random variable Y  is, for ω∀ ∈R : 
 

( ) exp( )Y ic dφ ω ω= − ω . 
 
Then, Y  is a strictly 1-stable distribution with ( )b a a= , since: 
 

( )( ) exp( ) exp( )
aa

Y ic d ic a d aφ ω ω ω ω ω= − = −  

                                 ( )( ) exp ( ) ( )a
Y ic a d aφ ω ω ω= −  

                                 ( ) ( )a
Y Y aφ ω φ ω=  

,  
 
[5.4.2] Properties of Stable Distributions and Stable Processes with the Stability 
Index 0 2α< <  
 
Theorem 5.7 Properties of stable distributions with the stability index 0 2α< <           
Let X  be a real-valued random variable from a stable distribution ( )xP  with the stability 
index 0 2α< <  (this excludes the Gaussian). Let ( , , )A γA  be its Lévy triplet. Then, X  
has the following properties: 
  
(1) ( )xP  is an infinitely divisible distribution (by definition). 
(2) . Gaussian variance is zero (Lévy-Itô decomposition).  0A =
(3) Its Lévy measure ( )xA  is absolutely continuous and given by, for , , 

: 
1 0c ≥ 2 0c ≥

1 2 0c c+ >
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1 2

0 011( ) 1 1x x
c cx

x x αα > <++= +A . 

 
(4) The total mass of the Lévy measure ( )xA  is infinite: 
 

( )x dx
∞

−∞
= ∞∫ A . 

  
For more details and proofs, consult Sato (1999) section 14.  
 
Theorem 5.8 Properties of stable processes with the stability index 0 2α< <      Let 

 be a real-valued stable process with the stability index 0[0, )( tX ∈ ∞ ) 2α< <  (this excludes 
the Brownian motion with drift). Let ( , , )A γA  be its Lévy triplet. Then,  has the 
following properties: 

[0, )( tX ∈ ∞ )

)

2

  
(1)  is a Lévy process by definition. [0, )( tX ∈ ∞

(2) . Gaussian variance is zero (Lévy-Itô decomposition). This means that stable 
processes with the stability index 0

0A =
α< <  are pure jump processes (i.e. purely non-

Gaussian processes). 
(3) Its Lévy measure ( )xA  is absolutely continuous and given by, for , , 

: 
1 0c ≥ 2 0c ≥

1 2 0c c+ >
 

1 2
0 011( ) 1 1x x

c cx
x x αα > <++= +A . 

 
(4) The total mass of the Lévy measure ( )xA  is infinite: 
 

( )x dx
∞

−∞
= ∞∫ A . 

  
In other words, all stable processes with the stability index 0 2α< <  are infinite activity 
Lévy processes which has a finite number of large jumps and an infinite number of small 
jumps. 
(5) As the stability index gets closer to zero, i.e. 0α → , the Lévy measure ( )xA  becomes 
less concentrated at zero and its tails become fatter which means that the frequency of 
arrivals of large jumps increases. Therefore, in this case, large jumps drive the process 

. As the stability index gets closer to 2, i.e.[0, )( tX ∈ ∞ ) 2α → , the Lévy measure ( )xA  
becomes more concentrated at zero and its tails become thinner which means that the 
frequency of arrivals of large jumps decreases. Therefore, in this case, small jumps drive 
the process . This point is illustrated by Figure 5.2 where the nonnegative 
constants are set as  (this implies a symmetric Lévy measure).  

[0, )( tX ∈ ∞ )

1 2 1.2c c= =
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A) Three different values for the stability index 0 2α< <  with nonnegative constants are 
all set . 1 2 0.2c c= =
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B) Three different values for the stability index 0 2α< <  with nonnegative constants are 
all set . 1 2 1.2c c= =
 
Figure 5.2 Plot of Lévy measure ( )xA  of stable processes with the stability index 
0 2α< <  
 
Theorem 5.9 Characteristic function of stable processes with the stability index 
0 2α< <      Let  be a real valued stable process with the stability index [0, )( tX ∈ ∞ )

20 α< <  (this excludes the Brownian motion with drift). Then, for anyω∈R , the 
characteristic function ( )Xφ ω  of  can be expressed as: [0, )( tX ∈ ∞ )
 

( )( ) exp ( )X Xtφ ω ψ= ω , 
 
where ( )Xψ ω  called a characteristic exponent is given by: 
 

(1) ( ) 1 sgn tan
2X i c iα παψ ω τω ω β ω⎛ ⎞= − −⎜ ⎟

⎝ ⎠
, when 1α ≠ , 

(2) 2( ) 1 sgn lnX i c iψ ω τω ω β ω ω
π

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

, when 1α = , 

 
where , 0c > [ 1,1]β ∈ −  andτ ∈R . A parameter τ  is called a shift parameter which 
equals the drift 0γ  of the Lévy-Itô decomposition when 0 1α< <  and equals the center 

1γ  when1 2α< < . A parameter  is a scale parameter. A parameter c β  determines the 
skewness of the Lévy measure ( )xA . As a compact notation, ( , , )S cα β τ  denotes a real 
valued stable distribution with the stability index (0, 2]α ∈  and with parameters , 0c >

[ 1,1]β ∈ −  andτ ∈R .    
 
Proof 
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This corresponds to theorem 14.10 and 14.15 of Sato (1999) where the proofs are given. 
 
Theorem 5.10 A necessary and sufficient condition of a strictly stable distribution     
A real valued stable distribution ( , , )S cα β τ  with the stability index 0 2α< <  (this 
excludes the Gaussian) is strictly stable, if it satisfies the following conditions: 
 
(1) 0τ = , when 1α ≠ . 
(2) 0β = , when 1α = . 
 
Proof 
 
This corresponds to theorem 14.10 and 14.15 of Sato (1999) where the proofs are given. 
 
Theorem 5.11 Role of skewness parameter β  of stable distribution     The Lévy 
measure ( )xA  of a real valued stable distribution ( , , )S cα β τ  with the stability index 
0 2α< <  (this excludes the Gaussian) is:   
 
(1) symmetric, if and only if 0β = . 

(2) concentrated on the positive half axis, i.e. 
0

( ) 0x dx
−∞

=∫ A , if and only if 1β = . This 

means that the process has no negative jumps. 

(3) concentrated on the negative half axis, i.e. 
0

( ) 0x dx
∞

=∫ A , if and only if 1β = − . This 

means that the process has no positive jumps. 
 
This corresponds to definition 14.16 of Sato (1999). 
 
Definition 5.7 Symmetric stable distribution     A real valued stable distribution 

( , , )S cα β τ  with the stability index 0 2α< <  (this excludes the Gaussian) is said to be a 
symmetric stable distribution if ( , , )S cα β τ  satisfies the following condition: 
 
(1) 0β = . This means that the Lévy measure ( )xA  is symmetric.  
(2) 0τ = . Zero shift parameter. 
(3) Its characteristic function is of the form, from theorem 5.9:  
 

( )( ) expX c αφ ω ω= − . 

 
Note the condition (3) is implied by the conditions (1) and (2).  
 
Theorem 5.12 (with Proof) Moments of stable distribution with the stability index 
0 2α< <      Consider a real valued stable distribution ( , , )S cα β τ  with the stability index 
0 2α< <  (this excludes the Gaussian). Then, ( , , )S cα β τ  admits a first moment which is 
equal to zero only if 1α >  and never admits a second moment plus higher order moments 
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due to the explicit form of the Lévy measure given by theorem 5.8 or that of the 
characteristic function given by theorem 5.9. For the ease of illustration, consider a 
symmetric stable random variable X  with the characteristic function (i.e. definition 5.7): 
 

( )( ) expX c αφ ω ω= − . 

 
From its characteristic exponent ( )X c αψ ω = − ω

c

, its cumulants are calculated as: 
 
                                            1

1 0c iα α−=  
                                            2

2 0 ( 1)c cα α α−= −  
                                            3

3 0 ( )( 1)( 2)c iα cα α α−= − − −  
4

4 0 ( 1)( 2)( 3)c cα α α α α−= − − − − . 
 
It is obvious that X  admits a first moment which equals zero if 1α > , and never admits a 
second moment because 0 2α< <  makes 20α −  a complex infinity. 
 
Theorem 5.13 Three closed form probability density functions of stable distributions     
The probability density functions of real valued stable distributions ( , , )S cα β τ  with the 
stability index 0 2α< ≤  are known in closed form for only three following cases: 
 
(1) Gaussian distribution 2 ( ,0, )S c µ : 
 

2

2
1 1 (( ,0, ) exp

2 (2 )2 (2 )
xS c

cc
µµ

π
⎛ ⎞−

= −⎜ ⎟
⎝ ⎠

) . 

 
(2) Cauchy distribution 1( ,0, )S c µ : 
 

1 2 2

1( ,0, )
( )
cS c

c x
µ

π µ
=

+ −
. 

 
(3) Lévy distribution 1/ 2 ( ,1, )S c µ : 
 

1 2(1 )
2

1/ 2

( ) exp       
( ,1, )    2( )2

                            0                            otherwise

c cx i
S c x

µ µ
µ µπ

− +⎧ ⎧ ⎫
− − >⎪ ⎨ ⎬= −⎨ ⎩ ⎭

⎪
⎩

f x
. 
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Appendix 
 
 
 
[A.1] Dirac’s Delta Function (Impulse Function) 
 
Consider a function of the form with n +∈R : 
 

                                                      ( 2 2( ) expnh x n x
π

= − ) .                                        

 
This function is plotted in Figure A.1.1 for three different values for . The function 

 becomes more and more concentrated around zero as the value of  increases. The 
function  has a unit integral: 

n
( )h x n

( )h x
 

    ( )2 2( ) exp 1nh x dx n x dx
π

∞ ∞

−∞ −∞
= − =∫ ∫ .   

-2 -1 0 1 2
x

0

1

2

3

4

5

hH
xL

n=10

n=è!!!!!!!10

n=1

 
Figure A.1.1 Plot of a function h(x) for n = 1, n = 101/2, and n = 10. 
 
Dirac’s delta function denoted by ( )xδ  can be considered as a limit of  when 

. In other words, 
( )h x

n →∞ ( )xδ  is a pulse of unbounded height and zero width with a unit 
integral: 
 

( ) 1x dxδ
∞

−∞
=∫ . 

 

 111



Dirac’s delta function ( )xδ  evaluates to 0 at all x∈R  other than 0x = : 
 

(0)   if   0
( )

0        otherwise
x

x
δ

δ
=⎧

= ⎨
⎩

 

 
where (0)δ  is undefined. ( )xδ  is called a generalized function not a function because of 
undefined (0)δ . Therefore, ( )xδ  is a distribution with compact support {0} meaning that 

( )xδ  does not occur alone but occurs combined with any continuous functions  and 
is well defined only when it is integrated.  

( )f x

 
Dirac’s delta function can be defined more generally by its sampling property. Suppose 
that a function  is defined at( )f x 0x = . Applying ( )xδ  to  yields : ( )f x (0)f
 

( ) ( ) (0)f x x dx fδ
∞

−∞
=∫ . 

 
This is why Dirac’s delta function ( )xδ  is called a functional because the use of ( )xδ  
assigns a number  to a function . More generally for(0)f ( )f x a∈R : 
 

(0)   if   
( )

0        otherwise
x a

x a
δ

δ
=⎧

− = ⎨
⎩

 

 
and: 
 

( ) ( ) ( )f x x a dx f aδ
∞

−∞
− =∫ , 

 
or for 0ε > : 
 

( ) ( ) ( )
a

a
f x x a dx f a

ε

ε
δ

+

−
− =∫ . 

 
( )xδ  has identities such as: 

 

                                         1( ) ( )ax x
a

δ δ= , 

[ ]2 2 1( ) ( ) (
2

)x a x a x
a

δ δ δ− = + + − a . 

 
Dirac’s delta function ( )xδ  can be defined as the limit  of a class of delta 
sequences: 

n →∞
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( ) lim ( )nn
x xδ δ

→∞
= , 

 
such that: 
 

lim ( ) ( ) (0)nn
x f x dx fδ

∞

−∞→∞
=∫ , 

 
where ( )n xδ  is a class of delta sequences. Examples of ( )n xδ  other than (3.8) are: 
 

                                                 , 
n   if   -1/ 2 1/ 2

( )
0         otherwisen

n x n
xδ

< <⎧
= ⎨
⎩

                                                 ( )1( ) exp
2

n

n n
x iux duδ

π −
= ∫ , 

                                                 1( )
2

inx inx

n
e ex

x i
δ

π

−−
= , 

( )
( )

sin 1/ 21( )
2 sin / 2n

n x
x

x
δ

π
⎡ ⎤+⎣ ⎦= . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 113



 
 
 
Bibliography 
 
 
 
Applebaum, D. 2004, Lévy Processes and Stochastic Calculus, Cambridge University 
Press. 
 
Barndorff-Nielsen, O. et al. 2001, Lévy Processes: Theory and Applications, Birkhäuser. 
 
Brzezniak, Z. and Zastawniak, T. 1999, Basic Stochastic Processes, Springer. 
 
Capinski, M., Kopp, E., and Kopp, P. E., 2004, Measure, Integral and Probability, 
Springer-Verlag.  
 
Cont, R. and Tankov, P., 2004, Financial Modelling with Jump Processes, Chapman & 
Hall/CRC Financial Mathematics Series. 
 
Feller, W., 1968, An Introduction to Probability Theory and Its Applications, John Wiley 
& Sons. 
 
Harrison, J. M., and Pliska, S.R., 1981, “Martingales and Stochastic Integrals In the 
Theory of Continuous Trading,” Stochastic Processes and Applications 11, 215-260. 
 
Harrison, J. M. and Pliska, S.R., 1983, “A Stochastic Calculous Model of Continuous 
Trading: Complete Markets,” Stochastic Processes and Applications 15, 313-316. 
 
Karatzas, Ioannis., and Shreve, S. E., 1991, Brownian Motion and Stochastic Calculus, 
Springer-Verlag. 
 
Karlin, S., and Taylor, H. M., 1975, A First Course in Stochastic Process, Academic 
Press.  
 
Neftci, S. N., 2000, An Introduction to the Mathematics of Financial Derivatives, 
Academic Press. 
 
Oksendal, B., 2003, Stochastic Differential Equations: An Introduction with 
Applications, Springer. 
 
Rogers, L.C.G., and Williams, D., 2000, Diffusions, Markov Processes and Martingales, 
Cambridge University Press. 
 
Ross, S. M., 1983, Stochastic Processes, John Wiley & Sons. 
 

 114



Sato, K., 1999, Lévy process and Infinitely Divisible Distributions, Cambridge 
University Press. 
 
 
 
 
 
 

 115


